
Vol.: (0123456789)
1 3

Meccanica 
https://doi.org/10.1007/s11012-024-01833-y

Analysis of deformation in tensegrity structures with curved 
compressed members

Hannes Jahn   · Valter Böhm · Lena Zentner

Received: 23 October 2023 / Accepted: 28 May 2024 
© The Author(s) 2024

influences the structure’s locomotion. It can be said 
that the deformation of the components significantly 
influences the locomotion of tensegrity structures and 
should be considered when analyzing highly compli-
ant structures.
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1  Introduction

Tensegrity structures consist of compressed bars con-
nected by strings in tension. As strings are stable but 
at the same time light and foldable, tensegrity struc-
tures have the potential to assume these properties 
[1]. And therefore have unique properties such as 
high flexibility, high compliance, adjustable stiffness 
and enormous strength to mass ratio [2]. Because 
of these advantages, the structures are, for instance, 
discussed for use in tensegrity robots for space appli-
cations. These robots can be divided into different 
categories [2], such as prismatic tensegrity robots 
[3–5], bio-inspired tensegrity robots [6–8] and spheri-
cal robots [9–12]. An example of a spherical robot 
is introduced by NASA as a tensegrity robot named 
superball. Its structure is able to survive high-speed 
landings and locomotes to desired positions [12]. Due 
to the straight members of these conventional struc-
tures, their locomotion is produced by deformation 

Abstract  Tensegrity structures are prestressed 
structures consisting of compressed members con-
nected by prestressed tensioned members. Due to 
their properties, such as flexibility and lightness, 
mobile robots based on these structures are an attrac-
tive subject of research and are suitable for space 
applications. In this work, a mobile robot based on a 
tensegrity structure with two curved members con-
nected by eight tensioned strings is analyzed in terms 
of deformation in the curved members. Further, the 
difference in locomotion trajectory between the unde-
formed and deformed structure after the prestress is 
analyzed. For that, the theory of large deflections of 
rod-like structures is used. To determine the rela-
tionship between acting forces and the deformation, 
the structure is optimized using minimization algo-
rithms in Python. The results are validated by param-
eter studies in FEM. The analysis shows that the dis-
tance between the two curved members significantly 

H. Jahn (*) · L. Zentner 
Department of Mechanical Engineering, Mechanics 
of Compliant Systems Group, P.O. Box 100565, 
98693 Ilmenau, Germany
e-mail: hannes.jahn@tu-ilmenau.de

L. Zentner 
e-mail: lena.zentner@tu-ilmenau.de

V. Böhm 
Faculty of Mechanical Engineering, OTH Regensburg, 
P.O. Box 120327, 93025 Regensburg, Germany
e-mail: valter.boehm@oth-regensburg.de

http://orcid.org/0000-0002-0040-0202
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-024-01833-y&domain=pdf


	 Meccanica

1 3
Vol:. (1234567890)

and tip-over sequences instead of actual rolling loco-
motion. Therefore, the authors in [13] introduced a 
specific class of spherical tensegrity structures with 
two curved members which is able to perform rolling 
locomotion [14, 15]. Two example mechanisms are 
shown in Fig. 1.

Previous research has shown that the application 
of curved members in tensegrity structures indicates 
their potential ability for use in rolling mobile robots. 
Two internal masses realized the actuation of the 
system. First, the two masses were shifted between 
the ends of the curved members on a straight line, 
which led to a restriction of the distance between the 
members [13]. Later the masses for the locomotion 
were shifted along the curved members [14]. Based 
on the results of that research, essential parameters, 
that influence the behavior of the system, are shown 
in [16]. In order to use such systems in space, an 
important parameter besides the volume is the mass 
of the system because even in times of reusable rock-
ets, space-traveling is very expensive [17]. To reduce 
the mass of those structures, one possibility is to use 
smaller cross-sections of the curved members. This 
causes the problem that the curved members could be 
deformed due to the prestress of the structures. With 
the deformation of the system, the rolling motion 
should be influenced.

In this contribution, a detailed analysis of the 
deformation of the curved members of the structure 
is made and a parameter study is conducted to ver-
ify the analytical model. In Sect. 2 the structure and 
the forces acting in its members are described and 
analyzed. Upon this, an analytical model is set up in 
Sect. 3 where the equilibrium of the forces is used to 
describe the distance between the two bending mem-
bers. The results of the analytical model are verified 
in a parameter study with a finite element model in 
Sect. 4 and a conclusion at the end.

2 � Description of the system and the forces

The considered tensegrity structure comprises two 
curved members, which are called bending members. 
It is based on the prototype B in [13]. It consists of 
two curved bending members, which are connected 
by eight tensioned strings at the ends of the bend-
ing members and in the middle of them, as shown in 
Fig. 2.

Therein, the thicker parts represent the curved 
bending members, which will be analyzed in terms of 
deformation. Dotted lines in blue are drawn between 
the ends of the curved bending members. The vari-
able d indicates the distance between these lines. In 

Fig. 1   Examples of tensegrity structures with curved mem-
bers. (a) Structure with two curved members, connected by 
eight strings; (b) structure with three curved members con-
nected by twelve strings
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[16], this variable is highlighted as an important 
parameter in the locomotion behavior of the struc-
ture. The straight lines represent the tensioned mem-
bers. Later, the tensioned members are modeled with 
variable lengths, as these only represent a force in the 
direction of the respective member. The figure also 
shows a shadow of the system to illustrate the contact 
points of the structure with the floor.

Tensegrity structures must be statically in equilib-
rium. If they were not, they would collapse. With the 
knowledge of the structure’s appearance, an abstract 
model is shown in Fig.  3. Therein, all forces which 
act on one bending member are plotted. The forces in 

the middle of a bending member are defined as Fmi 
and the forces acting only at the ends are defined as 
Fei . These forces refer to the force’s action on the 
strings. The index i is used to distinguish the forces 
of the strings. The absolute values of each of them are 
identical, assuming a precisely symmetrical structure.

Each force has the same impact on the opposite 
curved member. To get the structure in equilibrium, 
the inner forces have to be in equilibrium, as shown 
in Eq. (1).

All forces Fmi and Fei have different alignments in 
global coordinates. The symmetry of the structure 
leads to the fact that opposing forces dissolve each 
other. Only in y direction, the forces do remain. In 
Eq.  (2), the force components in opposite directions 
are reduced.

It follows from Eq. (2) that the forces in the y direc-
tion must be equal in opposite directions in order to 
keep the system in equilibrium.

Due to the symmetry of the structure, it is suffi-
cient to only consider half of the whole structure for 
the analytical model, as can be seen in Fig. 3, shown 
in red. The half of the upper segment is modeled as a 
fixed end. At the other end, the beam is loaded by the 
forces Fe and Fm.

In Fig. 4, the locomotion of a structure with two 
curved members is shown three three-dimensional. 

(1)
4
∑

i=1

F⃗mi +

4
∑

j=1

F⃗ej =
�⃗0

(2)
4
∑

i=1

Fmie⃗y +

4
∑

i=1

Feie⃗y =
�⃗0

Fig. 2   The considered tensegrity structure on a plane with 
shadows

Fig. 3   Forces acting on one bending member in the tenseg-
rity structure: (black) Whole structure with distance d between 
the centers of the bending members; (red) Part of the structure 
which is analyzed. (Color figure online)

Fig. 4   Locomotion path of a structure to show how it toggles. 
One curved member is blue and one red. The green line repre-
sents the path of the center of gravity. (Color figure online)



	 Meccanica

1 3
Vol:. (1234567890)

It should be noted, that there is no influence of 
gravity. On the left side it can be seen how the 
structure turns around the point where the blue 
member has contact to the ground. The fading color 
shows where the locomotion starts. At the end of 
this first turn, the structure is performing the same 
turn around the contact point of the red member. 
In doing so, the contact lines of the members are 
shown on the ground ( z = 0  mm). The green line 
represents the trajectory of the center of gravity of 
the structure. For this trajectory, only the line in the 
middle of the cross-section is used. In order of the 
small cross-section in comparison to the size of the 
structure, the differences should be neglectable.

With the knowledge of the locomotion behavior, 
the different locomotion pathes of that structure are 
shown in Fig. 5. The grey rectangles show the ratio 
d/R and it can be seen how the two members are 
arranged to each other. The structures themselves 
are undeformed, meaning that the curvature of the 
curved members is constant. The system moves 
from one member to the other in a tumbling motion. 
This means that while one member rolls along its 
curvature, the other is "standing" on its end-point, 
also called pivot point, as shown in the Fig. 5.

In (a), it can be seen that with a higher d/R, more 
distance is covered by the structure. In (b), the traveling 
distance is lower, but the perpendicular movement of 
the structure’s center rises.

3 � Analytical description of the structure

An analytical description of the deformation of the 
curved flexural members is given by various models, 
such as Castigliano or elliptic integrals. An overview 
of the different models can be found in [18]. For the 
specific analysis of the locomotion of the structure, 
the whole nonlinear deformation along the beam axis 
is needed, and therefore the analysis of large deflec-
tions of rod-like structures is well suited. The analyti-
cal model to characterize the acting forces is based on 
the theory of large deflections of rod-like structures 
[19]. In literature, rod-like structures are defined as 
beams whose cross-sectional dimensions are at least ten 
times smaller than their length or curvature radii [19]. 
The structure in this work fulfills these requirements, 
so the theory is well suited for this application. To sim-
plify the analysis, taking advantage of the symmetry of 
both bending members, only a quarter of the tensegrity 
structure is modeled.

The forces acting in the system are characterized to 
create an analytical model. For better understanding, 
they are shown in Fig.  6 for one counter-member. In 
this perspective, the second member is also cut in half 
on a slider in y-direction.

In Fig. 6 it can be seen that the force F⃗e has compo-
nents in each direction of the cartesian coordinate sys-
tem. The force F⃗m , on the other hand, only acts in the 
direction of x and y. To determine the components of 
the forces, three angles, � , � and � , are introduced. Due 
to the symmetry of the structure, the angle � = 225◦ 
stays the same all the time. Since the mechanism 
deforms simultaneously in every member, the angle 
between the members will always be the same. The 
other two angles are described by the coordinates from 
the endpoints of the two curved members. The formu-
las for determining them are given in Eq. (3).

Fig. 5   Locomotion paths: (a) Path with d∕R = 0.9 ; (b) Path 
with d∕R = 0.1 . Front view of both systems in grey boxes. 
Representation without tension members. Blue and red lines 
represent the contact points of each curved member. Green 
lines indicate the trajectory of the center point. (Color figure 
online)
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With the angles from Eq.  (3), the acting forces can 
be derived by using their components. So, the inner 
working forces are described by Eq. (4).

For calculation purposes, the force Fez is not relevant, 
as it is resolved by the symmetry of the structure.

3.1 � Theory of large deflection of rod‑like structures

For the used theory of large deflections of rod-like 
structures, the principle of st. venant, bernoulli’s 

(3)

� =
5

4
�,

� = arctan
d

√

A2
x
+ A2

x

,

� = arctan
Ay − d

Ax

(4)

Fex = cos(�) cos(�) ⋅ Fe

Fey = sin(�) ⋅ Fe

Fez = − sin(�) cos(�) ⋅ Fe

Fmx = cos(� + �) ⋅ Fm

Fmy = sin(� + �) ⋅ Fm

hypotheses and hooke’s law are assumed. The math-
ematical model is derived from the deflected state of 
a beam. That beam is described by its length, width, 
height, curvature and young’s modulus. The width 
and height result in a surface moment of inertia Iz for 
a rectangular cross-section.

The beam shown in Fig. 7 is fixed in the coordinate 
origin and loaded at the free end, which results in the 
deflected state due to consideration of large deflec-
tions. The beam-axis s is introduced in the deformed 
state. It describes a running parameter along the beam 
axis, along which the differential equation system can 
then be solved. A deflection angle � results along the 
axis. From the before introduced forces Fm and Fe the 
forces Fx and Fy are the resulting directional forces 
in the cartesian coordinate system. The sum of the 
forces in directions x and y from Eq. (4) defines them 
in the respective directions. Due to the theory, the fol-
lowing system of differential equations is obtained:

(5)

dMz

ds
= Fx sin � − Fy cos �,

d�

ds
=

Mz

EIz
+ �0,

dx

ds
= cos �,

dy

ds
= sin �.

Fig. 6   Acting forces in one quarter of the tensegrity structure 
with curved members and introducing the three angles � , � and 
� to determine the force-components. The slider at the bottom 
is a simplification of the symmetry

Fig. 7   Model of the analyzed quarter of the structure with 
important parameters for mathematical description with the 
theory of large deflections
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In these equations, Mz stands for the bending moment 
around the z-axis and �0 represents the curvature of 
the beam in the undeflected state, which is described 
by the reciprocal of the radius. To solve the system, 
boundary conditions are needed. They are shown in 
Eq. (6).

With these boundary conditions, an initial value prob-
lem is resolved. In this regard, the system is solved 
by using Python® with the help of the scipy-function 
RK45, which is a four-step runge–kutta method for 
solving initial value problems. A flowchart of the 
solution process is shown in Fig. 8, marked in blue.

With that method, the deformation of one mem-
ber can be found. In doing so, the directions of the 
forces change and with that, the values of them in 
Eq.  (4) also change. In order to get the forces in 
equilibrium, it is possible to change the distance d. 
To solve the equilibrium in Eq. (1) of the structure 
another optimization tool is applied. With scipy’s 
function minimize, which is a root-finding method, 
the condition of Eq. (1) can be found with a speci-
fied accuracy. After each iteration, a new distance d 

(6)
x(0) = 0, y(0) = 0,

�(0) = 0, Mz(0) = FxAy + FyAx.

is set, until a minimum, with a specified tolerance, 
is found.

The resulting forces are split up in their compo-
nents in x and y direction with Eqs. (3) and (4).

3.2 � Description of the FEM‑model

The finite element method (FEM) is a numeri-
cal tool that enables approaching the solution of 
complex mechanical matters. In this context, the 
mechanical structure is discretized into a number of 
element bodies. The number of finite element bod-
ies is defined in the model. In this work, the FEM 
model is set up in Ansys Workbench 2021 R1 using 
the integrated DesignModeler to build the struc-
ture. The structure is constructed by a two-dimen-
sional arc, corresponding to the neutral axis of a 
curved member, and a rectangular cross-section. In 
the initial state, the initial distance d between the 
curved members is equal to half of their radius. In 
Mechanical, the bodies are modeled as beam188 
elements, whose are based on Timoshenko beam 
theory which includes shear-deformation effects, 
which at the same time are generally neglected for 
the used dimensions in this work. The forces are 
applied by using springs as connection elements. 
The initial tension of the springs is used to define 
the magnitude of the forces Fei and Fmi . The analyti-
cal model uses constant forces. In the FEM model, 
the stiffnesses of the springs are set to a value close 
to zero in order to have minimal influence of addi-
tional elongation and therefore approach a constant 
force acting in these springs during the deforma-
tion of the structure. As boundary conditions, the 
model is fixed in the upper middle of the structure. 
With the use of the springs, the result represents the 
equilibrium of the inner forces of the system in the 
deflected state. Probe-points are used to compare 
the results of the displacements at the end of the 
fixed member in x and y direction. Displacements 
are indicated by the variables u with the corre-
sponding directions in indices. A third probe-point 
in y-direction is used at one of the ends of the sec-
ond member in y-direction to determine the final 
distance d, using the initial distance. The boundary 
condition and the probe-points are shown in Fig. 9.

Fig. 8   Flowchart of the solution process to find the deforma-
tion of the structure and its distance d for given forces Fm and 
Fe (blue). Flowchart of the solution process for finding the 
force-relation to realize a specific distance d (red). (Color fig-
ure online)
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4 � Parameter studies with FEM and theory 
of large deflections of rod‑like structures

In order to validate the built models, a parameter 
study is carried out. For that, both, FEM and ana-
lytical models, were loaded with a general force F, 
which is used to define a general load condition for 
the structure and reach a relationship between the 
forces at the ends and middle of the structure ( Fe and 
Fm respectively). For that, a new parameter k is intro-
duced. This parameter can take values between zero 
and one. The expressions for the forces Fe and Fm in 
terms of the parameter k and the general force F are 
given in Eq. (7).

As the parameter k varies from 0 to 1, the values for 
Fe and Fm varies from 0 to F, as shown in Eq. (7). The 
geometric dimensions used in the parameter study are 
given in Table 1. The strucures youngs’s modulus is 
E = 72, 000MPa , representing an aluminium.

The first part of the study analyzes the relation 
between the ratio k and the distance d. As it is shown 
in Fig.  10, it is a complex relation between these 
parameters and cannot be simplified as a linear equa-
tion, leading to the conclusion, that the problem’s 
solution is also not trivial. In Fig.  10a for k = 0.05 
the results for the distance d are out of the contour, 
which leads to the idea of numerical errors because 

(7)Fe = F ⋅ k Fm = F(1 − k)

the rest of the curves are continuous similar to the 
FEM results.

The second part of the parameter study is con-
ducted to validate the analytical model and the results 
are presented in Fig. 11. The points in the diagrams 
represent the parameters investigated; the lines are 
only drawn for clarity. The graph in Fig.  11a shows 
the deviation, of the distance d from the analytical 

Fig. 9   FEM-Model with boundary condition and probe-points 
with the geometric dimensions used in the parameter study

Table 1   Geometric dimensions of the analyzed structure with 
initial distance d 

Geometrical dimension Magnitude

Width w = 2mm

Height h = 2mm

Radius R = 100mm

Initial distance d = 50mm

Fig. 10   Parameter study with variation of the parameter 
0 ≤ k ≤ 1 with general forces F from 1 N to 4 N: Distance d 
over k; (a) Analytical model; (b) FEM simulation
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model to the FEM-model, over k. At a few points, the 
graphs show some peaks, which can be interpreted 
as numerical errors in the analytical solution, similar 

to the before mentioned irregularity in Fig.  10, and 
therefore, they can be neglected. Overall, the analyti-
cal model with a maximal deviation of around 0.1% 
is accurate compared to FEM. The parameter stud-
ies proved that the endpoints of the single rods are 
also similar to the FEM-model. The displacements 
ux and uy are also only diverting about 0.1%, regard-
ing the few peaks as numerical errors, as can be seen 
in Fig. 11b and c. The deviations of the displacement 
ux and uy become higher with higher acting forces but 
are nevertheless small. In this comparison, only the 
endpoints are regarded. Besides the endpoints, it is 
important to compare if the actual beam axis is also 
aligning between the models.

Figure 12 shows an overlay of the deformed and 
undeformed structure from the FEM- and the ana-
lytical model to represent the acquired results along 
the beam axis. Therein the three-dimensional grey 
construct of the structure is the FEM solution and 
the blue overlay on the plot is the solution from 
the analytical model. Both figures are scaled to the 
same dimensions and are aligned. This shows repre-
sentative the small deviations between both models, 
it can also be seen, that the whole axis of the bend-
ing member aligns. This is relevant for later calcu-
lating the rolling locomotion in the deformed state. 
With the shown distance d it can also be seen, how 
the deformation influences that distance. With that 

Fig. 11   Parameter study with variation of the ratio 0 ≤ k ≤ 1 
with general forces from 1 N to 4 N: (a) Deviation of the dis-
tance d from the analytical model to the FEM-model over k; 
(b) Deviation of the endpoints of the analytical model to the 
endpoints of the FEM-model in x-direction; (c) Deviation of 
the endpoints of the analytical model to the endpoints of the 
FEM-model in y-direction

Fig. 12   Overlay of the FEM-calculated deformation in grey 
with a plot of the analytical calculation in blue. Parameter d in 
deflected state. (Color figure online)
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parameter study, the analytical model is validated 
using the theory of large deflections of rod-like 
structures for tensegrity structures.

In Fig. 13 a graphical explanation of the calcula-
tion of the rolling paths is shown. Therefore the cal-
culated quarter of the beam axis is mirrored to get 
information of the whole bending member. After 
that, the second bending member is arranged with 
the distance d. In Fig.  13a the structure is shown 
at the beginning of one rolling iteration. With the 
grey surface, the rolling contour is highlighted. 
Along that surface, two new variables are intro-
duced. First the distance a and second the angle � . a 
is calculated with the geometric information of the 
two bending members in the cartesian space with 
Eq. (8).

The indices 1 and 2 distinguish the respective mem-
bers. With a and ds, the angle � is calculated with:

So, the structure’s motion path can be calculated with 
the angle � and the distance a, similar to Fig.  13b 
in the plane ( z = 0 ). This procedure is repeated 
for the next curves in order to represent a complete 
locomotion.

As mentioned before, the deformed structure has 
a different locomotion behavior than the undeformed 
structure due to the varying curvature of the bend-
ing members. This is represented visually in Fig. 14, 
where the locomotion paths of the structure for differ-
ent d/R are shown in the deformed and undeformed 
states. The motion paths for the structure, with a ratio 
d∕R = 0.9 , in the undeformed and deformed states, 
are shown in Fig.  14a and b, respectively. It can be 
seen that the motion of the same structure changes 
significantly under deformation, which can be advan-
tageous for different applications. A noticeable differ-
ence can also be seen for a structure with d∕R = 0.1 
in Fig. 14c and d.

To produce the locomotion paths of the differ-
ent structures, the distance of the point to the other 
curved member is used.

After the successful validation of the analyti-
cal model with the help of FEM-analyzes, and the 
knowledge that the distance d and the deformation 
significantly impact the locomotion behavior of the 
structure, a new model is set up, where it is possible 
to specify a certain distance d. It is similar to the pre-
vious solution process. The optimization is therefore 
also shown in Fig. 8, marked by the red colors.

The main difference to the first analytical models 
is that the parameter d is the goal of this optimiza-
tion. To achieve a special distance d, the minimize-
function gives a new ratio k after each iteration. That 
ratio k influences the forces as shown in Eq. (7), until 
the forces in y-direction are equal for that specific 
distance d. It is possible to set the right forces on the 

(8)

a(s) =
(

(

x1(s = 0) − x2(s)
)2

+
(

y1(s = 0) − y2(s)
)2

+
(

z1(s = 0) − z2(s)
)2
)

1

2

(9)�(s) = arcsin
ds

a(s)
.

Fig. 13   Rolling behavior of the tensegrity structure: (a) Struc-
ture with the rolling path and the curved grey face which then 
is shown after rolling in (b). (Color figure online)
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tensioned members to influence the distance d and the 
bending members in their shape to influence the sys-
tem’s locomotion behavior.

As an application, it is conceivable to adjust the 
forces in the system for a given trajectory so that a 
desired locomotion is achieved.

5 � Application of the developed method

Following, an example is investigated using the devel-
oped method. The results from the above-presented 
optimization are the forces Fm and Fe , calculated from 
a given general force F and the distance d. In Order to 
verify the developed method, a given structure with 
the geometric dimensions presented in Table  2 ori-
ented to the structure from [14] is analyzed.

In [14] the authors analyze a structure with a 
ratio d∕R = 0.7 which leads to a desired distance 

d = 59.5 mm. For the application of the method, the 
cross-sectional dimensions are estimated. The goal 
of the method is to predict the forces in the system 
to get the given distance. To calculate the ratio of the 
forces, the describing parameters, including a general 
force, are written in the script. The calculated forces 
are given to the FEM-model, to validate the deforma-
tion and the resulting distance. With the probe-points 
(see Sect. 4), the distance is evaluated and compared 
with the desired number. The calculated forces and 
displacements are given in Table 3.

The differences in the deformation and the dis-
tance between the analytical and FEM solutions are 
minimal, with a deviation of less than one per mille. 
With this application, it is shown how reliable the cal-
culation works.

6 � Conclusions

With this contribution, the authors presented an ana-
lytical method to describe the elastic behavior of 

Fig. 14   Locomotion of 
initial and deformed struc-
ture: upper and lower arcs 
(red and blue) represent-
ing contact lines of curved 
member 1 and 2 (CM1, 
CM2); middle line (green) 
represents center of gravity 
(CoG)-track. (a) Initial 
structure with d∕R = 0.9 ; 
(b) Deformed structure 
with d∕R = 0.9 ; (c) Initial 
structure with d∕R = 0.1 ; 
(d) Deformed structure with 
d∕R = 0.1 . (Color figure 
online)

Table 2   Geometric dimensions of the structure for the meth-
od’s application with calculated force to feed the FEM-model

Geometrical dimension Magnitude

Width w = 6mm

Height h = 4mm

Radius R = 85mm

youngs’s modulus E = 72, 000MPa

General force F = 10N

Calculated force Fe = 4.04N

Calculated force Fm = 5.96N

Table 3   Calculated displacements from the analytical model 
and the FEM-model with forces from the analytical model

With the relative deviations from the FEM-model

Analytical (mm) FEM (mm) Deviation (‰)

ux −2.062 −2.063 0.605
uy −1.260 −1.260 0.043
d 59.5 59.5 0.002
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tensegrity structures with curved bending members. 
The analytical calculations in this paper are based 
on the theory of large deformations of rod-like struc-
tures. It was shown that there is an analytical possi-
bility to adjust the parameter d by applying different 
forces to the tensile strings in the system. The ana-
lytical results generated were successfully validated 
in a parameter study using FEM. The calculations 
can be easily applied and are very time-saving com-
pared to FEM simulations. In addition, the influ-
ence of the deformation of the bending members 
on the system’s locomotion behavior was presented 
for different parameters d. The deformation should 
not be neglected when considering highly compli-
ant systems, because it has a great influence on the 
locomotion behavior. Adding another optimization 
goal made it possible to generate a specified distance 
d using force relations. This feature allows setting 
forces between the two curved members to achieve 
specific locomotion behavior. It has been tested and 
presented with a validation in FEM. The results from 
analytical and FEM models exhibit negligible differ-
ences between them, demonstrating accurate estima-
tions. In addition, based on these investigations, it is 
conceivable to actively regulate and adjust the param-
eter d and therefore the deformation during locomo-
tion. Subsequent studies could investigate the extent 
to which gravitation influences movement behavior. 
However, this would have to include further consid-
erations, as the structure’s symmetry would no longer 
be guaranteed. In addition, the forces in the tension 
members considered in this work could be applied to 
actual tensioned members, in which tension is then 
considered.
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