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virtual, for any arbitrary initial configuration? The 
aim of this paper is to try to answer this basic ques-
tion, which indeed does not have an immediate and 
simple answer, in particular as a consequence of the 
fact that bending moment could be related to two dif-
ferent notions of flexural curvature.

Keywords  Variational formulation · Newton 
approach · Euler–Lagrange approach · Helmholtz 
conditions · Euler–Bernoulli beam

1 � Introduction and motivation

Many modern engineering systems, which include 
lightweight, thin, and flexible elements as essential 
parts, are often called upon to meet high, if not 
extreme, performance. Therefore, cables, ropes, 
pipes, and beams have countless applications and a 
widespread presence in structural design. Similarly, 
natural systems, such as cellular cilia and flagella, 
tree branches, mammalian long bones or insect legs, 
to name a few, have shapes that allow us to consider 
them, with some accuracy, as ropes or beams. The 
behavior of each of these types of elements can 
be described using an appropriate beam theory. 
Noteworthy, the formulation of a beam includes many 
modeling assumptions that are difficult to capture in 
their wide diversity, leading the definition itself of 
a beam to represent a challenge [1]. One of the key 
aspects concerns constitutive assumptions, whose 

Abstract  There is a clear and compelling need 
to correctly write the equations of motion of struc-
tures in order to adequately describe their dynamics. 
Two routes, indeed very different from a philosophi-
cal standpoint, can be used in classical mechanics to 
derive such equations, namely the Newton vectorial 
approach (i.e., roughly, sum of forces equal to mass 
times acceleration) or the Euler–Lagrange variational 
formulation (i.e., roughly, stationarity of a certain 
functional). However, it is desirable that whichever 
derivation strategy is chosen, the equations are the 
same. Since many structures of interest often con-
sist of slender and highly flexible beams operating in 
regimes of large displacement and large rotation, we 
restrict our attention to the Euler-Bernoulli assump-
tions with a generic initial configuration. In this set-
ting, the question that arises is: What conditions must 
the constitutive assumptions satisfy in order for the 
equations of motion obtained by Newton’s approach 
to be identical to the Euler–Lagrange equations 
derived from an appropriate Lagrangian, natural or 
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definitions can be given with or without reference 
to a three-dimensional beam theory, as induced or 
intrinsic theories do, respectively. In this respect, 
a delicate point is the choice of the curvature to be 
adopted as the flexural deformation in formulating the 
constitutive relation for the bending moment.

Basically, there are different, though equivalent, 
definitions of what must be said the curvature of a 
plane curve in a point. Roughly speaking we can 
say that the curvature of a plane curve in a point is 
the rate of change of direction (of the tangent vector 
to the curve) with arc length at that point measured 
along the curve. As reported in [2], such a concept 
was already stated in 1758 by Kästner in his book 
“Foundations of Mathematics”, where the curvature 
of a curve at a point is defined as the ratio of the 
angle subtended between two tangents to the curve at 
two points, in the limit of their coincidence, and the 
length of the arc of the curve between them. However, 
the Cartesian form of the curvature was derived 
by Newton even before 1671, year during which 
his “Method of fluxions” was finished (although 
published in 1736, when Newton was already passed 
away), by using for the first time the concept of 
“fluxion”, kind of kinematic notion of derivative.

Lamb, in two articles of his book [3], namely 
Art. 127, p. 275, “The capillary curve” and Art. 150, 
p.  323, “Finite flexure of a rod”, claims that the 
two problems are essentially equivalent and both 
described through the Young-Laplace equation. 
Indeed, the latter states that the pressure jump at the 
interface between two fluids at different pressures 
is proportional to the surface tension times the 
curvature of the interface. To use the same equation 
for the beam problem, it is necessary to multiply 
both the pressure jump and the surface tension for a 
quantity having dimensions of a volume. Thus, they 
take dimensions of a bending moment and a bending 
stiffness, respectively, leaving unchanged dimensions 
of curvature, which now refers to the beam axis. 
Indeed, as reported by Love [4], already Bernoulli and 
Euler stated that the bending moment is proportional 
to the curvature of the deformed beam axis (see also 
[5, p.  123]). However, such a seemingly innocuous 
statement actually has subtle consequences, at least 
from a purely theoretical point of view. Since they are 
worthy of further study, in the following we will try 
to illuminate these aspects from the ground up.

We know that, in general, in a beam bent in a 
plane, without shearing deformation, two different 
cross sections exhibit different rotations. Let us con-
sider cross sections at a mutual reference distance 
which is approaching zero and measure the variation 
of rotation with respect to the undeformed element. If 
the length of the element remains unchanged during 
the deformation process, the local extrinsic curvature 
has same value of the derivative of the rotation with 
respect to the reference configuration. If, on the other 
hand, the bending is accompanied by stretching, the 
geometric curvature has instead value equal to that 
of the derivative of the rotation with respect to the 
deformed arclength.

Therefore, there are two notable choices for the 
derivative of the rotation, which we call from now 
on “mechanical” and “geometrical” curvatures, of 
course both having dimensions of inverse of a length 
and both, at least in principle, could be considered as 
candidates for the strain to set up a one-dimensional 
constitutive assumption for the bending moment.

There is a long history of formulations to describe 
large deformations of beams and there is in parallel 
a large amount of papers accepting, sometimes 
implicitly, the constitutive assumption of Bernoulli 
and Euler (i.e. the moment is proportional to the 
geometrical curvature), or even the moment is 
whatever function of the geometrical curvature. A 
short, not exhaustive list of contributions in this 
direction includes [3, 5–15]. In some cases, the 
geometrical curvature is considered for the general 
case, although only the inextensible one is analyzed, 
making the two curvatures identical [16–20]. In 
addition, the geometrical curvature in the Cartesian 
form is explicitly adopted sometimes [21–24], 
although it is observed in [25] that it has no physical 
meaning for the problem of the bending of a beam in 
terms of the axial coordinate, unless derivatives are 
redefined to be with respect to the shortened axis, 
thus achieving the relation found by Koiter [26] 
(having, from a purely formal perspective, the same 
structure of a curvature in parametric form).

In contrast, there are many contributions assuming 
that the mechanical curvature (possibly adopting 
different names) is the right flexural strain related to 
the bending moment, as in [27–40], to cite a few.

There are also attempts to unravel the issue as in 
[41, 42], where it is concluded that it is better to use 
the mechanical curvature, although it is recalled that 
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in intrinsic beam theories constitutive assumptions 
are introduced in axiomatic way and therefore, at 
least in principle, both geometrical and mechanical 
curvature may be legitimate choices.

The definition of the problem also seems to be 
complicated by reasons of nomenclature, to the point 
that [43] feels the need to explicitly warn that the 
quantity measuring the bending does not coincide 
with the curvature of the beam, apparently in the 
sense that the bending strain should differ from the 
curvature seen in the geometric sense.

Therefore, two questions arise. Why is the choice 
of curvature so important? Is there one, in any sense, 
that is correct?

The answer to the former question, besides the 
above cited purely theoretical interest, could be 
relevant also from a practical point of view. In 
fact, the choice of the strain measure to adopt in 
formulating a constitutive relationship for the bending 
moment for beams undergoing large deflections and 
rotations may influence the accuracy and reliability 
of results, in comparison with experiments, unless 
specific conditions are met. To cite a few, if the 
inextesibility assumption of the beam centerline 
is enforced (as already stated before), or the beam 
does not experience any extension due to loads or 
boundary conditions, or the curvature is expanded 
in power series and only linear terms are retained, 
the two curvatures, still different in principle, are 
quantitatively coincident. In these cases, choosing 
one or the other curvature does not affect the practical 
results, but this is no longer true if these conditions 
are not met, and the issue regains possible moderate 
relevance in practical terms as well. In fact, in [44] 
it is shown that the use of the two definitions of 
curvature does not affect the linear frequency, while 
it has an effect on the nonlinear correction coefficient 
of the backbone curve, which becomes negligible for 
slender beams.

The answer to the second question given above 
is more complicated to figure out and requires a 
comparative approach. Staying in an abstract setting, 
provided a beam can be defined in some way and 
the fields involved have appropriate smoothness 
properties, the balance equations can be derived in 
differential form by exploiting the Newton approach, 
also in case the constitutive assumptions are left 
undefined. Indeed, basically equations of motion in 
Newtonian form state that the rate of the total linear 

momentum of the constrained system is the total 
resultant acting on the system [45].

On the other hand, using a variational principle, 
the equations of motion can be obtained directly from 
a scalar functional, the Lagrangian, whose existence 
is sometimes axiomatically assumed to be basic, 
to the extent that equations not derivable from such 
a principle would be considered in certain circles 
hardly reliable or acceptable. [46, 47].

Therefore, we may argue that the “correct” 
curvature is that allows deriving the same equations 
of motion when written in differential form as 
Newtonian equations and derived from a variational 
principle. Both definitions of curvature could, in 
principle, satisfy this basic request. However, we will 
show in this work - and this is our principal finding 
- that only the mechanical curvature can have this 
property, by an adequate choice of the constitutive 
laws. On the contrary, the geometrical curvature does 
not have it, whatever is the constitutive law, and thus 
it is less “robust” from a theoretical point of view, 
even if of course one can decide in any case to use 
it, if that is convenient from a different point of view.

In trying to satisfy the previous property, we 
underline that our unique “degree of freedom”, i.e., 
the sole part we can choose or modify to obtain the 
results, is the constitutive law, since the balance 
law is derived from basic principles and kinematic 
relations are exact, so both cannot be changed. 
Therefore, the play now moves to understanding 
how the constitutive laws should be made so that 
the balance equations obtained by the Newton 
approach can also be derived from the stationarity 
of a Lagrangian function. In other words, when the 
differential equations are given, one needs to find out 
whether they are variational or not [48]. Additionally, 
in the affirmative case any Lagrange function for 
these equations must be constructed. Indeed, the 
Lagrangian in not unique and it can be either natural 
(that is, equal to the difference between the kinetic 
and potential energy of the system [49]) or virtual 
(also called nonstandard or unnatural, that cannot be 
split into kinetic and potential energy [50]).

This is the inverse problem of the calculus of 
variations [51], which is of considerable interest, 
since the variational formulation provides compact 
descriptions of dynamical systems, also giving natural 
means of approximating or finding solutions [52], 
to the point that numerical methods using discrete 
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Lagrangians often have significant advantages over 
other integration methods such as, for instance, 
Runge–Kutta algorithms [50].

General conditions for the existence of Lagrangians 
were first obtained by Helmholtz [53] (and therefore 
referred to as the Helmholtz conditions) and then 
generalized by Boehm [54]. In agreement with what 
was previously stated, the goal of this contribution is 
indeed to verify, by exploiting Helmholtz conditions, 
which notion of curvature gives rise to a variational 
system of equations of motion.

The paper is organized as follows. The exact 
kinematics of the beam, with no a priori assumption 
on the order of magnitude of displacements and 
rotations, is introduced in Sect.  2. The balance 
written by means of the Newton approach is 
reported in Sect.  3 and the constitutive assumptions 
are detailed in Sect.  4. The variational form of the 
equations of motion is introduced in Sect.  5 and 
Helmholtz conditions are summarized in Sect. 6. The 
existence of a Lagrangian under the condition that 
one or another definition of the curvature is chosen 
as bending strain is discussed in Sects.  7 and  8, 
which are indeed the main core of this work. Some 
conclusive remarks are finally reported in Sect. 9.

2 � The exact kinematics and the strain measures

Let us consider a plane beam that in general, both in 
its initial and deformed configuration, has a curved 
shape. Given a generic frame of reference, the beam 
configurations can be conveniently represented in 
parametric form by expressing the components of 
the vectors from the origin to points with coordinates 
X,  Y (initial configuration) and x,  y (current 
configuration) as functions of a space parameter z 
and time t. For convenience, the parameter z can be 
taken as a coordinate along one of the reference axes. 
Therefore, the initial configuration, which is assumed 
to be stress-free, is remapped to a straight reference 
configuration, as shown in Fig.  1. By calling dS the 
length of an infinitesimal beam element in initial 
configuration, we may state

where prime means derivative with respect to z.

(1)dS =
√

dX2 + dY2
→ S� =

√

X�2 + Y �2 ,

The angle between the tangent to the initial 
configuration and the reference one is

The geometrical curvature of the initial configuration 
is defined as

where the angle dΦ is also

R being the radius of the osculans circle at the 
infinitesimal initial element (see Fig. 1).

We note that the curvature given by Eq.  (3) can 
be seen as the product of Φ� times the ratio between 
the length dz of the reference beam-element and the 
length dS of the initial one.

We call Φ� the initial mechanical curvature,

in agreement with the definition adopted in [41] 
(although using a slight different symbology) and we 
observe that the quantity

represents the fictitious stretch relating initial and 
reference configurations, which however has no 
physical meaning.

Once the beam element is deformed, its 
infinitesimal length is

and the angle d� is

r being the radius of the osculans circle at the 
infinitesimal deformed element (see Fig.  1). The 
current (i.e. deformed) mechanical curvature, 
coherently with Eq. (5), is expressed as

(2)Φ = arctan

(

dY

dX

)

= arctan

(

Y �

X�

)

.

(3)Kg =
dΦ

dS
=

dΦ

dz

dz

dS
=

Φ�

S�
,

(4)dΦ =
dS

R
,

(5)Km =
dΦ

dz
= Φ� = KgS

�,

(6)�R =
dS

dz
= S�

(7)ds =
√

dx2 + dy2 → s� =
√

x�2 + y�2 ,

(8)d� =
ds

r
,
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and the current geometrical curvature is

Similarly to what was observed above, the stretch the 
element undergoes when passing from the reference 
configuration to the current one is given by

(9)

km =
d�

dz
= �� =

(

arctan

(

y�

x�

))�

=
x�y�� − y�x��

x�2 + y�2
,

(10)kg =
km

s�
=

x�y�� − y�x��

(

x�2 + y�2
)3∕2

.

By comparing initial and current configurations, we 
may define the deformation of the beam-element 
along its tangent direction as

(11)� =
ds

dz
= s�.

(12)

� =
ds

dS
− 1 =

�

�R
− 1 =

s�

S�
− 1 =

√

x�2 + y�2

S�
− 1,

Fig. 1   The beam element 
in its three relevant configu-
rations (reference, initial 
stress-free and deformed)
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and the changes of mechanical and geometrical 
curvatures respectively as

and

In the following we consider Euler-Bernoulli beams 
only. Accordingly, the rotation � of two adjacent 
cross sections is equal to the tangent angle of the 
deformed configuration, and there is no shear strain. 
Therefore, the axial strain given in Eq.  (12) and the 
flexural strain, alternatively given by Eq.  (13) or 
Eq.  (14), are enough to describe the deformation of 
the beam. Notice that, in the Euler-Bernoulli beam 
theory, kg is quantitatively equivalent to the curvature 
1/r of the deformed beam line. On the contrary, in the 
stress-free configuration, it should be recognized that 
Kg = 1∕R holds.

2.1 � Additional remarks on kinematics

A number of further relationships among the kinematic 
quantities can be found. We report here some of them.

From Eq. (12),

straightforwardly follows. It is also easily recognized 
that

hold, and from these it also attained

(13)Δkm = km − Km= �� − Φ� = (� − Φ)� = (Δ�)�

(14)Δkg = kg − Kg=
��

s�
−

Φ�

S�
.

(15)s� = S�(1 + �)

(16)
sin� =

y�

s�
= S�

��

�y�
= −

�Δkm

�x��
S�(1 + �)

= −
�Δkg

�x��

(

S�(1 + �)
)2

,

(17)
cos� =

x�

s�
= S�

��

�x�

=
�Δkm

�y��
S�(1 + �) =

�Δkg

�y��

(

S�(1 + �)
)2

(18)tan� =
y�

x�
=

��

�y�

��

�x�

= −

�Δkm

�x��

�Δkm

�y��

= −

�Δkg

�x��

�Δkg

�y��

.

We also emphasize that � here and the one in [41] 
have different meanings: here � is, indeed, the Biot 
strain of the beam axis [34], whereas � in [41] is 
the Euler–Lagrange strain in the direction and at the 
height of the beam axis.

It is important to observe that the displacements 
along the global directions x(z, t) − X(z) and 
y(z, t) − Y(z) (X and Y independent of time) are 
related to the tangential displacement u(z,  t) (i.e. 
along the axis of the initial configuration) and the 
radial displacement v(z, t) (i.e. transversal to the axis 
of the initial configuration) by

and that �(z, t) is the rotation of the section with 
respect to the fictitious straight configuration, 
being Δ�(z, t) = �(z, t) − Φ(z) ( Φ independent of 
time) the actual rotation with respect to the initial 
configuration.

2.2 � Nesting between nonlinear strains

There is a number of possible definitions of strains 
relevant in a beam theory. The strains used in this 
work are the axial strain � defined in Eq. (12) and the 
flexural strains Δkm and Δkg defined in Eq.  (13) and 
Eq. (14), respectively.

The three different strains depend on z,   in a 
direct way, being functions of S′ or Φ� or both, and in 
nested way being functions of the derivatives of the 
placements x and y.

Actually, only two of the three measures are 
independent on each other, as shown by the simple 
relation

that is obtained by exploiting Eq.  (3), Eq.  (5), 
Eq.  (10), Eq.  (13), Eq.  (14), and Eq.  (15). More 
precisely, from a theoretical point of view it is 
necessary to assume that the axial strain � and one of 
the two flexural strains are independent of each other, 
while the other flexural strain follows from (21).

By virtue of Eqs.  (16) and (17), from Eq.  (13), it 
can be achieved

(19)x − X = u cosΦ − v sinΦ ,

(20)y − Y = u sinΦ + v cosΦ ,

(21)Δkg =
Δkm − �Φ�

S�(1 + �)
,
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which is another relation between derivatives of 
strains, that could be useful in the sequel. Note that 
it does not imply that Δkm is a function of the local 
value of �, but of the whole function �(z, t) that varies 
from case to case.

3 � The balance with Newton approach

The balance equations can be obtained through the 
Newton approach by requiring that the sum of forces 
and bending moments, including inertial ones, vanish 
on the deformed configuration, see Fig. 2. By calling N,  
T and M the generalized internal forces and moments, 
qx, qy the distributed external loads, c the distributed 
external moments, the equations of motion projected 
along the global axes take the form

(22)

Δkm = S�
(

��

�x�

(

S�
��

�y�

)�

−
��

�y�

(

S�
��

�x�

)�
)

− Φ�,

(23)(N cos𝜑 + T sin𝜑)� + qx = 𝜌Aẍ,

(24)(N sin𝜑 − T cos𝜑)� + qy = 𝜌Aÿ,

and the equation of rotary motion (written about the 
right end of the beam element, i.e., the end with the 
greater value of the abscissa) is

In Eqs.  (23) to  (25), A and J are the cross-sectional 
area and second moment of area, respectively, ẍ and 
ÿ are the accelerations along the global directions and 
𝜑̈ is the rotary acceleration. Superimposed dots stand 
for the time derivative, where prime, as already stated, 
means derivative with respect the space parameter z. 
It is noteworthy that qx, qy, c,  �A and �J are intensi-
ties per unit length of the axis in the reference config-
uration. In addition, it must be emphasized that N and 
T in the present work have Fa and Ft as counterparts 
in [41] (therefore, N and T here have a slightly differ-
ent meaning compared to N and T there).

The inertial terms appear linearly in 
Eqs.  (23)–(25) and so in the following it is 
convenient to define (see Fig. 2)

i.e. to use a d’Alembert’s approach, in a reversed 
way, by collecting inertial terms and external loads. 
Indeed, d’Alembert’s principle formally generalizes 
static equations to dynamics by including the inertia 
forces as part of the body forces [55], thus extending 
the principle of virtual work from the statics to 
dynamics. It is worth noting that applying virtual 
work to statics results in algebraic equations between 
forces, whereas d’Alembert’s principle applied to 
dynamics gives differential equations [56]. The use 
of Eqs.  (26) strongly simplifies the formulation (for 
example transforms the PDEs in ODEs, which are 
easier to manage), and allow us to focus on our main 
results by considering a dynamical problem through 
its static counterpart, with advantages in terms of 
computations and understanding. It is worth to 
underline that this is not a restrictive hypothesis, just 
a way to simplify the developments.

In Euler-Bernoulli beam model, the shear force T 
is an internal reaction and not a constitutive force, 
the rotary inertia 𝜌J𝜑̈ can be assumed negligible 
and the distributed external moment c is typically 
null. With these assumptions behind Eq. (25), T can 
be written as

(25)M� − Ts� + c = 𝜌J𝜑̈.

(26)q̂x = qx − 𝜌Aẍ, q̂y = qy − 𝜌Aÿ, ĉ = c − 𝜌J𝜑̈,

Fig. 2   Internal and external forces and moments in the 
deformed configuration
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and thus it can be eliminated from Eq.  (23) and 
Eq.  (24), which, using Eq.  (16) and Eq.  (17), then 
take the form

or

which are the equations we deal with in the following.

4 � The constitutive relations

To complete the set of equations, the constitutive 
relations must be added to the kinematic and 
balance equations obtained in the previous sections. 
Assuming an elastic behavior, of local nature, they 
can be abstractly described by

or

depending on whether one alternately assumes 
mechanical or geometrical curvature as the measure 
of bending strain. We assume that constitutive 
relationships for N and M do not directly depend on 
t and z, i.e. the beam is assumed to be homogeneous. 
The case of non-homogeneous beams, that could be 
very interesting, is left for future works.

If the constitutive laws are assumed to be smooth 
enough, as it commonly happens, we have that both 
N and M can be defined as

(27)T =
M�

s�
=

M�

S�(1 + �)
,

(28)
(

N
x�

s�
+

M�

s�
y�

s�

)�

+ q̂x = 0,

(29)
(

N
y�

s�
−

M�

s�
x�

s�

)�

+ q̂y = 0,

(30)
(

NS�
𝜕𝜀

𝜕x�
+

M�

1 + 𝜀

𝜕𝜀

𝜕y�

)�

+ q̂x = 0 ,

(31)
(

NS�
𝜕𝜀

𝜕y�
−

M�

1 + 𝜀

𝜕𝜀

𝜕x�

)�

+ q̂y = 0 ,

(32)N = N(�,Δkm) and M = M(�,Δkm),

(33)N = N̂(�,Δkg) and M = M̂(�,Δkg),

where aij, and bij, i, j ∈ ℕ, are stiffness terms and 
where a00 and b00 are the pre-tension. In the linear 
elastic case without pre-tension we have

Similar expressions for N̂ and M̂ are easily obtained.
It is worth to the remark that smoothness is not 

really needed, and non-smooth constitutive relations 
can be considered as well.

5 � Equations of motion

The equations of motion can be derived in a number 
of different ways, depending whether Newton, 
Lagrange or Hamilton mechanics are considered (see, 
e.g. [49]). In the following we consider Newton and 
Lagrange approaches, and the final goal is to show 
how and when they are equivalent.

The Newtonian approach consists of combining 
kinematics, balance and constitutive equations 
obtained in the previous sections, in such a way to 
have two equations in the two unknowns x(z,  t) and 
y(z,  t). It will be detailed in forthcoming Sects.  7 
and 8.

The Lagrange (or variational) approach, on the 
other hand, is illustrated in the following subsection.

5.1 � The variational problem

The Lagrange approach consists of assuming the 
existence of the Lagrangian functional

where L is the Lagrangian density, that depends on 
the kinematics unknowns and their derivatives, and 

(34)N(�,Δkm) =

∞
∑

i=0

∞
∑

j=0

aij �
i Δkj

m
,

(35)M(�,Δkm) =

∞
∑

i=0

∞
∑

j=0

bij �
i Δkj

m
,

(36)N(�,Δkm) = a10� + a01Δkm ,

(37)M(�,Δkm) = b10� + b01Δkm .

(38)� =

L

∫
0

L dz,
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on z (the dependence on t is not necessary since 
we are using the d’Alembert approach, see (26)). It 
incorporates the constitutive relations and kinematic 
equations. Since the case of homogeneous beam is 
considered, it is consistently assumed that L also does 
not depend explicitly on z.

In our problem the unknowns are x and y and the 
highest derivative is the second (see  Eq.  (9)  or Eq. 
(10)). Therefore

The equations of motion, that substituted the missing 
balance equations, are obtained by assuming the 
stationarity of the functional in Eq. (39) with respect 
to any possible variation of the kinematic unknowns. 
This leads to the Euler–Lagrange equations, which 
take the form

together with appropriate boundary conditions, that 
however are not used in this work and thus are not 
reported for the sake of conciseness.

For the problem we are dealing with a natural 
Lagrangian density is of the form

where U = U(x�, y�, x��, y��) is the internal energy 
density and W = W(x, y) is the density of work of the 
external loads, that in the present case is simply given 
by

so that

and the loads are easily obtained in Eqs. (28)–(31).
If Eq.  (42) can be written, the balance given by 

Eqs. (40) and (41) are rewritten as

(39)L = L(x, y, x�, y�, x��, y��).

(40)−
d
2

dz2
�L

�x��
+

d

dz

�L

�x�
−

�L

�x
= 0 ,

(41)−
d
2

dz2
�L

�y��
+

d

dz

�L

�y�
−

�L

�y
= 0 ,

(42)L = U −W,

(43)W = q̂x x + q̂y y,

(44)
𝜕L

𝜕x
= −q̂x,

𝜕L

𝜕y
= −q̂y,

(45)
d

dz

(

𝜕U

𝜕x�
−

d

dz

𝜕U

𝜕x��

)

+ q̂x = 0 ,

While W is easy, more complicated is to achieve U. 
If indeed U exists, its form cannot be independent 
of the choice of the constitutive assumptions, so that 
two different forms of U should be expected, namely 
U = U somehow related to Eq.  (32), and U = Û to 
Eq. (33).

6 � Conditions for the existence of a Lagrangian

A fundamental problem is related to finding the 
conditions to be satisfied by Eq.  (30) and Eq.  (31) 
to be obtained from the stationarity of whatever 
Lagrangian functional, not necessarily with a 
physical meaning, i.e. the condition for Eq. (30) and 
Eq. (31) being equal to Eq. (40) and Eq. (41). This 
is the inverse problem of the calculus of variations 
[51].

In a more general setting, given the functions 
Pi = Pi

(

pj, p
�
j
,… , p

(2n)

j

)

, with pj = pj(z) and 
i, j = 1, 2,… ,m, the necessary and sufficient 
conditions for the existence of a given function L of 
the first n derivatives of the coordinates pi such that

were reported by Boehm [54] for n = 2 (i.e. fourth 
order derivatives in the equations), which generalized 
the work by Helmoltz [53] holding  for n = 1 (i.e. 
second order derivatives in the equations). Both are 
also reported by Kotůlek in [57, 58]. Such conditions 
state that 2n + 1 equations written as

with k spanning from 0 to 2n,  must be satisfied.
The case of interest for us is n = 2 , and Eqs. (48) 

explicitly become

(46)
d

dz

(

𝜕U

𝜕y�
−

d

dz

𝜕U

𝜕y��

)

+ q̂x = 0 .

(47)

−

(

�L

�pi
−

d

dz

(

�L

�p�
i

)

+⋯ + (−1)n
d
n

dzn

(

�L

�p
(n)

i

))

= Pi,

(48)

�Pi

�p
(k)

j

−

(

k + 1

1

)

d

dz

�Pi

�p
(k+1)

j

+

(

k + 2

2

)

d
2

dz2

�Pi

�p
(k+2)

j

−⋯

+(−1)2n−k
(

2n

2n − k

)

d
2n−k

dz2n−k

�Pi

�p
(2n)

j

= (−1)k
�Pj

�p
(k)

i

,
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In what follows, for symbolic computations, we 
remind that

in agreement with �, Δkm, and Δkg given by 
Eqs. (12), (13) and (14), respectively.

In addition, because of the cumbersome nature 
of the calculations required in the following, 
we will combine manual and computer-aided 
simplifications. For the latter, we will use symbolic 
manipulation software.

7 � The mechanical curvature as bending strain

Let us now assume that the constitutive laws are 
those symbolically given by Eqs. (32).

Recalling that by virtue of Eqs. (16) and  (17)

(49)
�P1

�p
(4)

2

=
�P2

�p
(4)

1

,

(50)
�P1

�p���
2

+
�P2

�p���
1

= 2
d

dz

(

�P1

�p
(4)

2

+
�P2

�p
(4)

1

)

,

(51)
�P1

�p��
2

−
�P2

�p��
1

=
3

2

d

dz

(

�P1

�p���
2

−
�P2

�p���
1

)

,

(52)

�P1

�p�
2

+
�P2

�p�
1

=
d

dz

(

�P1

�p��
2

+
�P2

�p��
1

)

−
d
3

dz3

(

�P1

�p
(4)

2

+
�P2

�p
(4)

1

)

,

(53)

�P1

�p2
−

�P2

�p1
=

1

2

d

dz

(

�P1

�p�
j

−
�P2

�p�
1

)

−
1

4

d
3

dz3

(

�P1

�p���
2

−
�P2

�p���
1

)

.

(54)� = �(x�, y�, S�) ,

(55)Δkm =Δkm(x
�, y�, x��, y��,Φ�) ,

(56)Δkg =Δkg(x
�, y�, x��, y��,Φ�, S�) ,

hold, Eq.  (30) and Eq.  (31) can be rewritten, after 
some algebra, as

or, alternatively,

It turns out that Eq.  (49) is automatically satisfied, 
while the condition

is got by developing Eq.  (50). From Eq.  (51), by 
taking into account Eq.  (62) and its first derivatives 
with respect to both � and Δkm, we attain

Since the constitutive assumptions we consider are 
Eqs. (32), �M∕�� ≠ 0 is expected to hold in general. 
Therefore, in order Eq. (63) be satisfied, S�� = 0 must 
hold, that is S′ does not explicitly depend on z,  so that

In fact, the condition S�� = 0 can already be 
determined from Eq.  (62): since we have assumed 
that N and M do not explicitly depend on z, and 
since Eq. (62) must hold for every Δkm and every �, it 
follows that S′ must not depend on z,  namely S�� = 0.

By developing Eqs.  (51)– (53) we see that the 
obtained expressions, which are too long to be written 
here, are automatically satisfied taking in account 
Eq. (62) and its derivatives and Eq. (64).

(57)

1

1 + �

��

�y�
= −

�Δkm

�x��
and

1

1 + �

��

�x�
=

�Δkm

�y��

(58)
(

NS�
𝜕𝜀

𝜕x�
−M

� 𝜕Δkm

𝜕x��

)�

+ q̂x = 0,

(59)
(

NS�
𝜕𝜀

𝜕y�
−M

� 𝜕Δkm

𝜕y��

)�

+ q̂y = 0 ,

(60)

�

N
x�

√

x�2 + y�2
+M

� y�

x�2 + y�2

��

+ q̂x = 0 ,

(61)

�

N
y�

√

x�2 + y�2
−M

� x�

x�2 + y�2

��

+ q̂y = 0 .

(62)S�
�N

�Δkm
=

�M

��

(63)S��
�M

��
= 0.

(64)S(k)(z) = 0, k ≥ 2.
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In summary, we see that Eq.  (62) and S�� = 0 are 
the only conditions to be met for the existence of a 
Lagrangian whose stationarity leads to Eqs.  (58) 
and (59).

7.1 � Symmetry conditions

Inspecting Eq.  (62), it could be noted that it is a 
symmetry condition. To argue this concept, let us 
assume that the potential density U = U exists and is 
at least twice continuously differentiable, so that the 
Schwarz theorem on second derivatives holds.

Comparing Eq.  (45) with Eq.  (58), and Eq.  (46) 
with Eq. (59), we can see that

where the constant of integration is set equal 
to 0 since this is enough to obtain the desired 
results. Developing the left hand sides of such 
equations, and remembering that � = �(x�, y�, S�) and 
Δkm = Δkm(x

�, y�, x��, y��,Φ�) , we get

Inserting Eq.  (67) in Eq.  (65), and  Eq.  (68) in 
Eq. (66), and knowing that

as seen by virtue of Eq. (9), we achieve

(65)�U

�x�
−

d

dz

�U

�x��
= NS�

��

�x�
−M

� �Δkm

�x��
,

(66)�U

�y�
−

d

dz

�U

�y��
= NS�

��

�y�
−M

� �Δkm

�y��
,

(67)

�U

�x�
−

d

dz

�U

�x��
=

�U

��

��

�x�
−

(

d

dz

�U

�Δkm

)

�Δkm

�x��

+
�U

�Δkm

(

�Δkm

�x�
−

d

dz

�Δkm

�x��

)

,

(68)

�U

�y�
−

d

dz

�U

�y��
=

�U

��

��

�y�
−

(

d

dz

�U

�Δkm

)

�Δkm

�y��

+
�U

�Δkm

(

�Δkm

�y�
−

d

dz

�Δkm

�y��

)

.

(69)
�Δkm
�x�

=
d

dz

�Δkm

�x��
and

�Δkm

�y�
=

d

dz

�Δkm

�y��
,

(70)

�U

��

��

�x�
−

(

d

dz

�U

�Δkm

)

�Δkm

�x��
= NS�

��

�x�
−M

� �Δkm

�x��
,

or reordering side by side

The latter are satisfied if

and

provided that ��∕�x�, ��∕�y�, �Δkm∕�x
�� and 

�Δkm∕�y
�� are not null in general. Then,

which is in fact Eq. (62).
We observe that, as confirmed by Eq.  (75), Δkm 

is work-conjugated to M, which is expected, while 
interestingly � is in correspondence to NS′, instead of 
N, as a consequence of Eq. (74).

7.2 � Construction of the internal energy density

By virtue of Eqs. (74), (75) and (76), it is possible to 
obtain the internal energy density as

where 𝜀⋆ and Δk⋆
m
 are dummy variables introduced 

for formal reasons. We must observe that Eq. (77) has 
only an abstract nature, since at this stage Eqs.  (32) 
are not explicitly written. An example is reported in 
the forthcoming Eq. (92).

(71)

�U

��

��

�y�
−

(

d

dz

�U

�Δkm

)

�Δkm

�y��
= NS�

��

�y�
−M

� �Δkm

�y��
,

(72)
(

�U

��
− NS�

)

��

�x�
=

d

dz

(

�U

�Δkm
−M

)

�Δkm

�x��
,

(73)
(

�U

��
− NS�

)

��

�y�
=

d

dz

(

�U

�Δkm
−M

)

�Δkm

�y��
.

(74)�U

��
= NS�

(75)
�U

�Δkm
= M,

(76)S�
�N

�Δkm
=

�2U

�Δkm��
=

�2U

���Δkm
=

�M

��
,

(77)

U =

𝜀

∫
0

𝜕U

𝜕𝜀⋆
d𝜀⋆ +

Δkm

∫
0

𝜕U

𝜕Δk⋆
m

dΔk⋆
m
−

Δkm

∫
0

𝜀

∫
0

𝜕2U

𝜕Δk⋆
m
𝜕𝜀⋆

d𝜀⋆dΔk⋆
m

=

𝜀

∫
0

NS�d𝜀⋆ +

Δkm

∫
0

MdΔk⋆
m
−

Δkm

∫
0

𝜀

∫
0

𝜕M

𝜕𝜀⋆
d𝜀⋆dΔk⋆

m
,
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7.3 � Some further remarks

We observe that satisfying Eq.  (64) implies that 
S(z) = c1z + c2, with c1 and c2 two constants to be 
chosen, the former dimensionless, the latter with 
dimension of a length. This, indeed, could be 
interpreted as a condition stating that an appropriate 
reference configuration must be chosen for the 
existence of the Lagrangian or, in different words, 
that the stationarity depends also on the reference 
configuration. In addition, Eq. (6) allows to observe 
that the fictitious stretch �R plays a role only in the 
transformation of the initial configuration into the 
reference one. Therefore, it defines a remapping 
rule. Noteworthy, whenever the initial length and 
the reference one are in a fixed ratio, S′ is constant. 
This simple choice is indeed convenient and 
rational.

Equation  (62) extends to the nonlinear realm 
a results that is well-known in linear elasticity, 
namely that a material is conservative if and only 
if its elasticity tensor is symmetric, i.e. a01 = b10 in 
Eqs. (36) and (37).

A further remark pertains to the uncoupled case 
of constitutive assumptions, i.e.

In such a case, Eqs.  (49) to  (53) are automatically 
satisfied, being Eq.  (62) an identity with both sides 
vanishing, leading to the symmetry which is trivially 
satisfied and the condition stated by Eq.  (64) is not 
anymore required.

Finally, an apparently not obvious relationship 
between the derivatives of M, standing the abstract 
nature of Eq. (32), descends from Eq. (49), which is 
automatically satisfied, as stated before. In fact both 
sides of Eq. (49) take the same value, i.e.,

To further manipulate Eq. (79), we use Eqs. (57) and

following from the chain rule. Thus, we are led to 
recognize that

(78)N = N(�) and M = M(Δkm).

(79)
�P1

�p
(4)

2

= −
1

S�
�M

�Δkm

�Δkm

�y��
�Δkm

�x��
=

�P2

�p
(4)

1

.

(80)

�M

�x��
=

�M

�Δkm

�Δkm

�x��
and

�M

�y��
=

�M

�Δkm

�Δkm

�y��
,

holds. It appears as the static counterpart of the 
kinematic relationship

taken from Eq. (18).

7.4 � An example of Lagrangian density

Let us consider no pre-tension and only terms at 
most cubic in �, Δkm and their mutual products in 
Eq. (34) and Eq. (35), obtaining

By virtue of Eq. (62) it can be recognized that

In addition, by introducing K
�
, (� = 0,… , 4), 

which are the products of the longitudinal elastic 
modulus times the moment of area of � th order, the 
dimensional analysis allows to set

where �ij and �ij, (i, j = 0,… , 3) are real numbers.
Therefore, generalized internal forces in 

Eqs. (83) and (84) can be rewritten as

(81)��

�y�
�M

�y��
= −

��

�x�
�M

�x��

(82)
��

�y�
�Δkm

�y��
= −

��

�x�
�Δkm

�x��
,

(83)

N(�,Δkm) = a10 � + a20 �
2 + a30 �

3

+ a01 Δkm + a02 Δk
2

m
+ a03 Δk

3

m

+ a11 �Δkm + a12 �Δk
2

m
+ a21 �

2 Δkm ,

(84)

M(�,Δkm) = b10 � + b20 �
2 + b30 �

3

+ b01 Δkm + b02 Δk
2

m
+ b03 Δk

3

m

+ b11 �Δkm + b12 �Δk
2

m
+ b21 �

2 Δkm .

(85)

a01 =
b10

S�
, a02 =

1

2

b11

S�
, a03 =

1

3

b12

S�
,

a11 = 2
b20

S�
, a12 =

b21

S�
, a21 = 3

b30

S�
.

(86)

a10 = K0 �10, a20 = K0 �20, a30 = K0 �30,

b10 = K1 �10, b20 = K1 �20, b30 = K1 �30,

b01 = K2 �01, b02 = K3 �02, b03 = K4 �03,

b11 = K2 �11, b21 = K2 �21, b12 = K3 �12,
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in a frame of reference whose axes, in general, do 
not pass through the cross-sectional centroid and 
are not principal. In addition, in Eqs.  (87) and  (88), 
�10 = �10 = �01 = 1 is conveniently accepted in order 
the linearized versions of Eqs.  (87) and  (88) agree 
with the standard linear model, that is

with reference and initial configurations having the 
same length ( S� = 1 ). In the centroidal principal 
axes ( K1 = 0 ), Eqs. (87) and (88) are coupled, while 
Eqs. (89) and (90) not.

It is straightforward to recognize that Eqs.  (87) 
and  (88) include different models, depending on the 
values of real constants. For instance, to recover the 
model in [34], written with respect the centroidal 
principal axes for a straight beam, whose stress-free 
configuration is used as reference, then again S� = 1, it 
is enough to set

7.4.1 � The potential energy density

As they are constructed, Eqs. (87) and (88) satisfy the 
symmetry condition and inserted in Eq.  (77) allow 
obtaining

(87)

N = K0 �
(

1 + �20 � + �30 �
2
)

+ K1

Δkm

S�

(

1 + 2 �20 � + 3 �30 �
2
)

+ K2

Δk2
m

S�

(

�11
2

+ �21 �

)

+ K3

�12 Δk
3
m

3 S�
,

(88)

M = K1 �
(

1 + �20 � + �30 �
2
)

+ K2 Δkm
(

1 + �11 � + �21 �
2
)

+ K3 Δk
2

m

(

�02 + �12 �
)

+ K4 �03 Δk
3

m
,

(89)N = K0 � + K1 Δkm ,

(90)M = K1 � + K2 Δkm ,

(91)�20 = �21 =
3

2
, �30 = �03 =

1

2
, �11 = 3.

(92)

U0 =
K0

2
S� �2

(

1 +
2 �20

3
� +

�30

2
�2
)

+ K1 �Δkm
(

1 + �20 � + �30 �
2
)

+
K2

2
Δk2

m

(

1 + �11 � + �21 �
2
)

+
K3

3
Δk3

m

(

�02 + �12 �
)

+
K4

4
�03 Δk

4

m
.

7.4.2 � The equations from Newton and Lagrange 
approaches

We conclude this section emphasizing that Eqs. (58) 
and (59), obtained according the Newton approach, 
i.e. directly from the balance of an infinitesimal 
beam element, become explicit in terms of 
functions x and y and their derivatives by virtue of 
generalized forces given by Eqs.  (87) and (88) and 
strains from Eqs. (12) and (13).

On the other hand, following the Lagrange 
approach, as stated before, we insert Eqs.  (43) and 
Eq. (92) in Eqs. (45) and (46).

After long, but straightforward, calculations, the 
two set of equations result identical, as expected 
being satisfied the Helmholtz-Boehm conditions.

8 � The geometrical curvature as bending strain

Let us now assume that the constitutive laws are 
those symbolically given by Eqs. (33).

As done before, we transform Eqs. (30) and (31) 
recalling Eqs.  (16) and   (17) and, after some 
algebra, attain

or, equivalently,

Similarly to the case of Eqs. (32), recalling Eqs. (12) 
and (21), Eq. (49) is satisfied, with results similar to 
Eq.  (80) and Eq.  (81), provided that M̂ and Δkg are 
used in place of M and Δkm, respectively.

From Eq. (50) we now get

(93)
(

�NS�
𝜕𝜀

𝜕x�
− �M�S�(1 + 𝜀)

𝜕Δkg

𝜕x��

)�

+ q̂x = 0,

(94)
(

�NS�
𝜕𝜀

𝜕y�
− �M�S�(1 + 𝜀)

𝜕Δkg

𝜕y��

)�

+ q̂x = 0,

(95)

�

�N
x�

√

x�2 + y�2
+ �M� y�

x�2 + y�2

��

+ q̂x = 0 ,

(96)

�

�N
y�

√

x�2 + y�2
− �M� x�

x�2 + y�2

��

+ q̂y = 0 .
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which is more complicated than Eq. (62).
Developing Eq.  (51), the resulting equation 

contains �N̂∕�Δkg, �2N̂∕�Δk2g and �2N̂∕�Δ��Δkg. 
The former is given by Eq. (97) and allows computing 
the others, also making use of the chain rule, as

Inserting Eq. (97), Eq. (98) and Eq. (99) in Eq. (51) 
allows us attaining the relation between the first 
derivative of M̂ with respect to its arguments as

or

This requires heavy and long computations, that are 
omitted for the sake of conciseness.

Equation (100) inserted in Eq. (97) gives

provided that Δk�
g
≠ −(Φ�∕S�)� holds (i.e. k′

g
≠ 0 ), 

which is the counter part of (62).
Inspecting Eqs.  (97) and (100), we note that they 

explicitly depend on the space variable z,   because 
of the term Φ�∕S�. However, observing that N̂ and 
M̂ in Eqs. (33) do not depend directly on z, since we 
have assumed that the beam is homogeneous, their 
derivatives with respect to � and Δkg do likewise. 
Therefore, in order left and right hand sides of 
both Eqs.  (97) and  (100) are mutually consistent, 
they cannot explicitly depend on z. In Eq.  (97) this 
requires Φ�∕S� = c3 , namely Φ(z) = c3S(z) + c4 , 
being c3 and c4 two constants to be freely chosen. 
Once the initial shape is given, i.e. Φ(z) is known, this 

(97)
�N̂

�Δkg
= (1 + �)

�M̂

��
−

(

Δkg +
Φ�

S�

)

�M̂

�Δkg
,

(98)

�2N̂

�Δk2
g

=(1 + �)
�2M̂

���Δkg
−

(

Δkg +
Φ�

S�

)

�2M̂

�Δk2
g

−
�M̂

�Δkg
,

(99)

�2N̂

���Δkg
=(1 + �)

�2M̂

��2
+

�M̂

��
−

(

Δkg +
Φ�
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(100)
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,
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g
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(
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�� S�

(

Δkg S
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)

S�
(

Δkg
� S� + Φ��

)

− S�� Φ�

)

�M̂

��
,

relation can be used to properly select S(z). We note 
again that to (hope to) have stationarity, the reference 
configuration cannot be chosen freely.

The four case-examples in Fig.  3 show that this 
implies that equidistant cross sections on the initial 
configuration do not correspond to equidistant cross 
sections on the reference configuration unless Φ� 
is constant, i.e., if the beam is initially straight or a 
circular arch. Therefore a configurational stretching 
(without physical effects) is needed to be applied to 
the reference configuration.

We observe that also assuming Φ�∕S� = c3 is not 
sufficient to make Eq. (100), rewritten as

independent of z. In fact, this would require to find a 
function f such that

This is an ODE in the two unknown functions x�(z) 
and y�(z) (the dependence on t is irrelevant here). 
Since Δk�

g
 contains x′′′ and y′′′ , see Eq. (10), that are 

not present on the right hand side, where there are 
only x′′ and y′′ , we conclude that it is not possible to 
find an f such that Eq. (104) is valid for any possible 
deformation x′ and y′ , which is indeed what we are 
looking for.

This means that independence of  z cannot be 
achieved. Therefore, the Helmholtz-Boehm condition 
given by Eq.  (51) cannot be satisfied, and we must 
conclude that a Û, which would imply that N̂ and 
M̂ in Eqs.  (33) are potentials, does not exist. Being 
no longer necessary at this point, we skip to test 
Eqs. (52) and (53).

This, which is the main result of this work and is 
valid for beams of any initial shape, marks a funda-
mental difference between geometrical and mechani-
cal curvature when used as strain measures of bend-
ing. It extends a preliminary result already cited in 
[59] for straight Timoshenko beams. See also [41] for 
further developments on this topic.

8.1 � An additional observation

As shown before, Eqs.  (33) are not potential, in the 
sense that it is not possible to find a Û from which 

(103)
Δk�

g

��
�M̂

�Δkg
=

�M̂

��
,

(104)Δk�
g
= f (�,Δkg)�
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to derive suitable Eqs.  (33) to recover Eqs.  (93) 
and  (94), not even in the uncoupled case N = N̂(�) 
and M = M̂(Δkg) . In fact, in Eq.  (97), �N̂∕�Δkg = 0 
leads to

but accepting the left hand side vanishes, i.e. 
�M̂∕�� = 0, would imply also �M̂∕�Δkg = 0, 
provided that, in the general case, Δkg ≠ −Φ�∕S� must 
hold. Of course, having M̂ independent of Δkg, after 
requiring the independence of � for the uncoupled 
case, is a contradiction. However, also if a mixed case 

(105)
�M̂

��
=

S�Δkg + Φ�

S�(1 + �)

�M̂

�Δkg
,

is considered, that is N = N̂(�) and M = M̂(�,Δkg), 
it is still not possible to make both Eq.  (100) and 
Eq. (105) independent of z.

8.2 � An alternative verification

In Sect. 7.1, by the direct comparison of Eq. (45) with 
Eq.  (58), and  Eq.  (46) with Eq.  (59), we recovered 
Eq.  (62), which is the symmetry condition for 
Hessian matrix of U and one out of two conditions to 
be required in order N and M be potential.

The fact that, as stated before, Eq.  (51) is not 
fulfilled in the case Δkg is adopted as the bending 
strain implies that there is no Û from which both 

)b()a(

)d()c(

Fig. 3   Four case-examples of initially curved beams with ref-
erence configurations stretched accordingly to the curvature 
Φ� : circular (a), parabolic (b), sinusoidal (c) and Jacobi’s ellip-
tic �

1
 arches. Notice that cross sections equally spaced on the 

initial configuration remains equally spaced in the reference 
configuration only for the case (a) of constant curvature
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N̂ and M̂ can be derived. Then, a question arises: 
what kind of result do we get in comparing the 
Euler–Lagrange equations for some arbitrary Û with 
Eqs. (93) and (94) written according to the Newton 
approach? We argue about this question here.

Let us assume a certain Û is chosen, from which 
we may develop, coherently with Eq. (45),

and, similarly for Eq. (46),

Assuming that ��∕�x� ≠ 0 and ��∕�y� ≠ 0 hold in 
general, comparing Eq.  (106) with Eq.  (93) and 
Eq. (107) with Eq. (94) we achieve

analogous and formally equivalent to Eq.  (74). 
Comparing Eq. (106) with Eq. (93) it is obtained

while comparing Eq. (107) with Eq. (94) gives

(106)
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(107)
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�Û

��

��

�y�

− S�
3
(1 + �)3

(

�Δkg

�y��

)2
d

dz

(

�Û
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(110)
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provided that �Δkg∕�y�� ≠ 0 and �Δkg∕�x�� ≠ 0 hold 
in general.

Dividing, side by side, Eq. (109) by Eq. (110), after 
some algebra, we achieve

which is satisfied only if �Û∕�Δkg = 0, provided that 
the other terms are not null, in general.

We must therefore conclude that, besides the 
fact that having Û independent of Δkg seems quite 
contradictory, it also implies that M̂ is not potential, 
in perfect agreement with what we deduced using 
Helmholtz-Boehm conditions.

8.2.1 � A naïve derivation of the equations of motion

The arguments shown above led us to the conclusion 
that a Lagrangian admitting Eqs.  (93) and  (94) as 
Euler–Lagrange equations does not exist. As stated 
before, this is related to the fact that it is not possible to 
find an elastic potential Û from which to derive suitable 
Eqs. (33) to recover Eqs. (93) and (94).

If we relax the request and naïvely assume that there 
is some Ũ that allows the axial force and the bending 
moment to be derived similarly to Eqs. (74) and (75), 
i.e.

and

what would the equations of motion look like? How 
do they differ from Eqs. (93) and (94)?

The answers to these questions are found by 
replacing Û with Ũ in Eqs.  (106) and  (107) and then 
making use of Eqs.  (112) and  (113). Therefore, after 
some algebra, we achieve

(111)
Δkg S
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�Û
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�Ũ

�Δkg
= M̃,

(114)

(

�NS�
𝜕𝜀

𝜕x�
− �M�

𝜕Δkg

𝜕x��
+ �M

(

3
𝜕Δkg

𝜕x��
S��

S�
+

d

dz

𝜕Δkg

𝜕x��

))�

+ q̂x = 0,

(115)

(

�NS�
𝜕𝜀

𝜕y�
− �M�

𝜕Δkg

𝜕y��
+ �M

(

3
𝜕Δkg

𝜕y��
S��

S�
+

d

dz

𝜕Δkg

𝜕y��

))�

+ q̂y = 0,



Meccanica	

1 3
Vol.: (0123456789)

having inserted Ũ and Eqs. (43) in Eq. (42).
A direct comparison between Eq.  (93) and 

Eq. (114), and between Eq. (94) and Eq. (115), shows 
the differences. In particular, M̂ cannot be written 
in terms of M̃, because of �Δkg∕�x�� in the former 
comparison and �Δkg∕�y�� in the latter. Therefore, as 
expected, the two sets of equations cannot be made 
equivalent.

9 � Conclusions

This work is devoted to understanding what 
conditions must be satisfied by the constitutive 
relations in order for the equations of motion obtained 
by the Newton approach to be obtained also by the 
variational Euler–Lagrange approach.

Indeed, in the scientific literature, two different 
notions of curvature are adopted, sometimes without 
making explicit the reasons behind the choice. With 
the aim of unraveling the problem on a definitional 
basis (i.e., from definitions and nomenclature), the 
balance equations of beams satisfying the Euler-
Bernoulli assumptions and with a generic initial 
configuration are written using the Newton approach 
before introducing the constitutive assumptions. 
Then, the equations are particularized to the two 
cases of the bending moment as a function of the 
mechanical or the geometrical curvature, i.e. the 
derivative of the cross-sectional rotation with 
respect to the reference length and the arc length, 
respectively. By means of the Helmholtz conditions, 
the two systems of differential equations have been 
checked to see if they are variational or not.

It has been found that the equations based on 
the constitutive assumption relating the bending 
moment to the mechanical curvature satisfy the 
Helmholtz conditions and therefore can be derived 
from a Lagrangian. In such a case, an example of 
Lagrangian, among the infinitely many, has been 
constructed as well. In particular, such a Lagrangian 
is of the natural type, i.e. it can be expressed in terms 
of the difference between the kinetic and the potential 
energy of the system.

On the other hand, it has been argued that the 
equations containing the geometrical curvature do 
not allow the Helmholtz conditions to be satisfied, 
nullifying the possibility that there is a Lagrangian 
that allows such equations to be derived. To 

emphasize such a fact, we proceeded ignoring it and 
naïvely derived a natural Lagrangian, essentially 
based on what one would straightforwardly expect 
from a mechanical system. This led us to clearly see 
the ineradicable differences between Newtonian and 
variational set of equations in this case.

We finally observe that, while the evaluation of the 
quantitative effect of using one or the other curvature 
are not considered here, with some comments 
found in the cited literature, the obtained results are 
definitely important from the theoretical standpoint. 
Furthermore, we remark that we considered a direct 
1D approach, where the constitutive laws can be 
freely chosen (and we provided conditions on them 
for the existence of the Lagrangian). Actually, it is 
possible to derive them from a 3D approach, i.e. 
considering the beam as a 3D body, along the lines 
developed in [41]. Of course, the generality of the 3D 
constitutive law will give the generality of the derived 
1D constitutive law.
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	58.	 Kotůlek J (2003) Z historie inverzního variačního prob-
lému: Odvození podmínek silné variačnosti. (in Czech). 
In: Pokroky matematiky, fyziky a astronomie 48.3, pp. 
222–238

	59.	 Lenci S, Clementi F, Rega G (2017) Reply to the Discus-
sion on ‘A comprehensive analysis of hardening/softening 
behavior of shearable planar beams with whatever axial 
boundary constraint’, by D. Genovese. In: Meccanica 
52.11, pp. 3005–3008. ISSN: 1572-9648. https://​doi.​org/​
10.​1007/​s11012-​016-​0614-9

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

https://doi.org/10.1016/j.jsv.2008.04.019
https://doi.org/10.1007/s00707-008-0085-8
https://doi.org/10.1080/13873954.2010.537512
https://doi.org/10.1002/nme.6820
https://doi.org/10.1002/nme.7133
https://doi.org/10.1016/j.ijmecsci.2017.03.031
https://doi.org/10.1016/j.ijmecsci.2017.03.031
https://doi.org/10.1016/j.proeng.2017.09.382
https://doi.org/10.1177/10812865211000790
https://doi.org/10.1177/10812865211000790
https://doi.org/10.1016/j.piutam.2017.03.006
https://doi.org/10.1016/j.piutam.2017.03.006
https://doi.org/10.2140/jomms.2009.4.475
https://doi.org/10.1103/PhysRevE.53.1890
https://doi.org/10.1103/PhysRevE.53.1890
https://doi.org/10.1007/s00707-013-1004-1
https://doi.org/10.1007/s00707-013-1004-1
https://doi.org/10.1007/BFb0093439
https://doi.org/10.1007/BFb0093439
https://doi.org/10.1142/4309
https://doi.org/10.1142/4309
https://doi.org/10.1515/crll.1887.100.137
https://doi.org/10.1515/crll.1887.100.137
https://doi.org/10.1515/crll.1900.121.124
https://doi.org/10.1007/s11012-016-0614-9
https://doi.org/10.1007/s11012-016-0614-9

	Newton vs. Euler–Lagrange approach, or how and when beam equations are variational
	Abstract 
	1 Introduction and motivation
	2 The exact kinematics and the strain measures
	2.1 Additional remarks on kinematics
	2.2 Nesting between nonlinear strains

	3 The balance with Newton approach
	4 The constitutive relations
	5 Equations of motion
	5.1 The variational problem

	6 Conditions for the existence of a Lagrangian
	7 The mechanical curvature as bending strain
	7.1 Symmetry conditions
	7.2 Construction of the internal energy density
	7.3 Some further remarks
	7.4 An example of Lagrangian density
	7.4.1 The potential energy density
	7.4.2 The equations from Newton and Lagrange approaches


	8 The geometrical curvature as bending strain
	8.1 An additional observation
	8.2 An alternative verification
	8.2.1 A naïve derivation of the equations of motion


	9 Conclusions
	Acknowledgements 
	References


