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Abstract  Thick origami structures are consid-
ered here as assemblies of polygonal panels hinged 
to each other along their edges according to a cor-
responding origami crease pattern. The determina-
tion of the internal actions in equilibrium with the 
external loads in such structures is not an easy task, 
owing to their high degree of static indeterminacy, 
and the likelihood of unwanted self-balanced inter-
nal actions induced by manufacturing imperfections. 
Here, we present a method for reducing the degree of 
static indeterminacy which can be applied to several 
thick origami structures to make them isostatic. The 
method utilizes sliding hinges, which allow relative 
translation along the hinge axis, to replace conven-
tional hinges. After giving the analytical description 
of both types of hinges and describing a rigid folding 
simulation procedure based on the integration of the 
exponential map, we present the static analysis of a 
series of noteworthy examples based on the Miura-ori 

pattern, the Yoshimura pattern, and the Kresling pat-
tern. Our method, based on kinematic-static duality, 
provides a novel design paradigm that can be applied 
for the design and realization of thick origami struc-
tures with adequate strength to resist external actions.

Keywords  Thick origami structures · Rigid 
folding · Isostatic structures · Sliding hinges · Self-
stressed structures

1  Introduction

Structures realized as or inspired by origami inter-
ested several researchers in different fields  [1]. 
For example, architectural applications were pre-
sented in  [2–4], including smart origami-based solar 
facades [5, 6], while metamaterial applications were 
described in  [7–9]. In addition, light-activated ori-
gami folding was proposed in [10–12], and actuation 
by uniform heating was achieved in [13].

For this reason, the exploration of design princi-
ples and form-finding methodologies for origami-
inspired structures has garnered significant attention 
within the engineering community [14, 15], as con-
firmed by recent contributions. To name a few, Lu 
et  al. [16] developed an algorithmic method for the 
spatial form finding of four-fold origami structures; 
Chen et  al. [17] introduced a unified inverse design 
and optimization workflow tailored for origami struc-
tures, specifically focusing on ring-shaped origamis; 
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Sareh [18] explored the least symmetric crystallo-
graphic derivative of the developable double corruga-
tion surface.

The physical realization of transformable origami-
like structures requires, in addition to kinematical 
considerations for the folding/deploying process, 
reliable predictions regarding stiffness and strength 
under external loads, as well as taking into account the 
effect of imperfections. Numerous studies addressed 
these tasks for thin origami structures [19], i.e., those 
obtained by folding a thin continuum layer of material: 
simulation procedures for rigid and non-rigid origami 
folding were proposed by several authors [20–24], 
while mechanical models adopting various stick-and-
spring idealizations [25] were proposed in [7, 26–31].

In order to apply origami design principles to 
load-bearing structures, thickness cannot be ignored. 
In contrast to thin origami structures, thick origami 
structures are assembled from a certain number of 
polygonal panels, hinge-connected to each other along 
their edges, according to a given crease pattern. Thick 
origami structures are typically overconstrained, that 
is, they are statically indeterminate structures, or, in 
other words, they possess several self-stress states. 
This poses the problem of the likelihood of unwanted 
self-balanced internal actions induced by manufac-
turing imperfections. At the same time, the choice of 
constitutive relations for the internal actions associ-
ated with well-defined strain measures is a nontrivial 
issue. For these reasons, the structural design of these 
systems is a challenging task.

In this work, we detail a strategy for reducing the 
degree of static indeterminacy of thick origami struc-
tures, possibly bringing it down to zero, in order to 
make them isostatic structures. We take advantage 
of the introduction of sliding hinges, in addition to 
conventional door hinges, in a rigid origami model. 
Sliding hinges provide an additional degree of free-
dom with respect to door hinges, in that they permit 
the relative translation between adjacent panels along 
the shared hinge axis, other than the relative rotation 
between the two panels about the same axis. The lit-
erature on the use of sliding hinges in thick origami 
is scarce. We are aware of just one application, pro-
posed in [32], and reported in [33], for accommodat-
ing thickness in physical realizations. The point we 
wish to stress here is that by replacing a door hinge 
by a sliding hinge, either one degree of static inde-
terminacy is removed or one degree of kinematic 

indeterminacy is added. This fact is indeed reflected 
in our findings: we identified several noteworty cases 
in which the present strategy is successful in making 
a thick origami structure isostatic, so that the internal 
actions can be uniquely computed for any choice of 
the external loads. Preliminary result of our procedure 
were presented in [34] for the case of a Yoshimura 
crease pattern. Here, other than providing the details 
of the modeling equations and the simulation algo-
rithm, we present results concerning the statics of 
thick Miura-ori, Yoshimura, and Kresling origami.

In the following, after recalling useful counting 
rules for the degrees of kinemaic and static indeter-
minacy (Sect.  2), we give an exact finite kinematic 
description of the motion of rigid origami structures 
with door hinges and sliding hinges, together with 
the infinitesimal counterpart (Sects. 3.1–3.3). Fold-
ing/deployment simulations can then be performed 
by numerical integration of the exponential map, by 
the procedure outlined in Sect. 3.4. The equilibrium 
equations relating external loads and internal actions 
are obtained by duality (Sect.  4.1). Afterward, the 
equilibrium equations are solved numerically for 
selected examples to demonstrate the effectiveness 
of our method (Sect. 4.2). We close by discussing the 
obtained results and future extensions (Sect. 5).

2 � Counting mechanisms and self‑stress states

In this section, some handy results on the number of 
internal mechanisms and self-stress states of rigid ori-
gami structures, which corresponds respectively to 
the degrees of kinematic and static indeterminacy, are 
reviewed for later use (cf. [34]).

A starting point is provided by the convex trian‑
gulated polyhedron theorem [35]. The theorem states 
that a pin-jointed bar framework constructed on a 
convex triangulated polyhedron, by placing the bars 
and pins of the framework on the edges and verti-
ces of the polyhedra, is isostatic. Then, by removing 
one edge from such a framework, an internal mecha-
nism is produced, while the four edges surrounding 
the removed edge form the boundary of a so-called 
hole [36]. Next, by removing one of those four edges, 
a bigger five-edge hole is formed and another inter-
nal mechanism is introduced. Hence, the number 
of mechanisms introduced by a hole bounded by Eb 
edges is Eb − 3 . By observing that a origami with a 
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triangulated crease pattern has the same edge-vertex 
connectivity of a convex triangulated polyhedron pos-
sessing one hole with a number of boundary edges 
equals to the number of boundary edges of the ori-
gami, one can conclude that a pin-jointed framework 
constructed on a triangulated origami crease pattern, 
in a non-singular configuration, has Eb − 3 independ-
ent internal mechanism.

In order to determine the number of self-stress states, 
one can consider again a framework built on a convex 
triangulated polyhedron and add one edge between the 
two distant vertices of two adjacent triangles. In this 
case, the four vertices of the two adjacent triangles form 
a so-called block, and the framework acquires one self-
stress state. By matching the polygonal panels of the 
origami with the blocks of the pin-connected frame-
work, it is easy to see that each polygonal panel of the 
origami with V vertices corresponds to V − 3 independ-
ent self-stress states in the framework.

By considering the kinematics of a panel-hinge 
model, in which only the relative rotation about the 
common edge between adjacent panels is permit-
ted, one can arrive at the same conclusions of the 
bar framework model. However, the predictions 

regarding the statics differ in the two models. In fact, 
it is easy to see that the panel-hinge model gives a 
higher number of self-stress states. In particular, it 
was shown in [34] that SPH = SBF + 3Vi , with SPH 
and SBF the degree of static indeterminacy computed 
according to the panel-hinge and bar-framework 
models, respectively, and Vi the number of the inter-
nal vertices of the origami. Figure 1 illustrates these 
quantities for the square twist origami.

We conclude this section by observing that, in 
principle, prestressing can confer first-order geo-
metric stiffness to the mechanisms of the structure 
[37]; however, to determine whether this is feasible 
or not, a second-order analysis is required. As such 
analysis fall outside the scope of this study, we will 
leave it as the object of future work.

3 � Kinematics

In this section, we first derive the exact constraint 
equations for sliding hinges and door hinges between 
adjacent panel-shaped bodies, together with the cor-
responding linearized versions. Then we give them an 

Fig. 1   The square twist origami a and the corresponding bar 
framework idealization b. There are P = 9 panels, H = 12 
hinge edges (solid light gray lines), and Eb = 8 boundary edges 
(solid black lines). Each of the five quadrilateral panels is tri-
angulated with one additional edge (dashed light gray line) 

and transformed into a block by adding one more edge (dashed 
black line). There are Vi = 4 internal vertices (black dots). The 
bar framework model of this origami has SBF = 1 self-stress 
state, and the panel-hinge model has SPH = 13 , while M = 1 in 
both models
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equivalent description by composition of point slider 
and spherical hinge constraints. After that we pre-
sent an integration procedure of the kinematic equa-
tions based on the Newton–Raphson algorithm. In 
the following, we consider the motion of a body B in 
the Euclidean space with respect to a fixed reference 
frame as described by the rigid motion g = (R,u) in 
terms of a rotation tensor R ∈ Orth+ and a translation 
vector u ∈ V .

Let B1 and B2 be two bodies connected to each 
other by a hinge with axis r in the reference configu-
ration, and let r1 and r2 the images of r in the rigid 
motions g1 = (R1, u1) and g2 = (R2, u2) of B1 and B2 
respectively:

with p is the position vector of a point P on r, and t is 
the unit vector parallel to r.

3.1 � Sliding hinges

In case of a sliding hinge, we have that r1 = r2 , that 
is, ∀s1 ∈ ℝ,∃s2 ∈ ℝ , or ∀s2 ∈ ℝ,∃s1 ∈ ℝ , such that

that is

or

with s1 ↦ s2(s1) and s2 ↦ s1(s2) and s1◦s2 the iden-
tity. By differentiating with respect to the parameter 
s1 the first of these two equivalent relations, we get 
s�
2
R2t − R1t = 0, so that s2� = ±1 and R2t = ±R1t . 

Assuming that at time t0 , R2(t0)t = R1(t0)t , the conti-
nuity of the motion implies that

with � an arbitrary vector. Then, substitution in (1) 
yields

where p1 and p2 denote the image of the position 
vector p under the rigid motios g1 and g2 of the two 
bodies:

r1 = {R1(p + s1t) + u1, s1 ∈ ℝ} ,

r2 = {R2(p + s2t) + u2, s2 ∈ ℝ} ,

(1)R1(p + s1t) + u1 = R2(p + s2t) + u2 ,

s2(s1)R2t − s1R1t + R2p + u2 − R1p − u1 = 0,

s2R2t − s1(s2)R1t + R2p + u2 − R1p − u1 = 0,

R2t = R1t = �,

� × (p2 − p1) = 0,

The constraints (1) can be realized, for example, by 
the scalar equations

or, by the scalar equations,

where n,m are two linearly independent unit vectors 
orthogonal to t.

We choose as constraint equations the arithmetic 
mean of equations of the two groups. Consequently, 
the constraint functions are

with mi = Rim , ni = n , ti = Rit , i = 1, 2 . The time 
derivatives of the constraints functions have the 
expressions

To obtain these expressions we have used the differ-
entiation rules

p1 = R1p + u1, p2 = R2p + u2.

R2t ⋅ R1m = 0 , R2t ⋅ R1n = 0 ,
(p2 − p1) ⋅ R1m = 0 , (p2 − p1) ⋅ R1n = 0 ,

R1t ⋅ R2m = 0 , R1t ⋅ R2n = 0 ,
(p2 − p1) ⋅ R2m = 0 , (p2 − p1) ⋅ R2n = 0 ,

c1 =
1

2
(t1 ⋅m2 + t2 ⋅m1),

c2 =
1

2
(t1 ⋅ n2 + t1 ⋅ n2),

c3 =
1

2
((p2 − p1) ⋅m1 + (p2 − p1) ⋅m2),

c4 =
1

2
((p2 − p1) ⋅ n1 + (p2 − p1) ⋅ n2),

(2)

ċ1 =W1t1 ⋅m2 + t1 ⋅W2m2 +W2t2 ⋅m1 + t2 ⋅W1m1

=(W1 −W2)t1 ⋅m2 + (W2 −W1)t2 ⋅m1,

ċ2 =W1t1 ⋅ n2 + t1 ⋅W2n2 +W2t2 ⋅ n1 + t2 ⋅W1n1

=(W1 −W2)t1 ⋅ n2 + (W2 −W1)t2 ⋅ n1,

ċ3 =(W2p2 −W1p1 + w2 − w1) ⋅m1 + (p2 − p1) ⋅W1m1

+ (W2p2 −W1p1 + w2 − w1) ⋅m2 + (p2 − p1) ⋅W2m2,

=(W2 −W1)p2 ⋅m1 + (W2 −W1)p1 ⋅m2 + (w2 − w1) ⋅ (m1 +m2),

ċ4 =(W2p2 −W1p1 + w2 − w1) ⋅ n1 + (p2 − p1) ⋅W1n1

+ (W2p2 −W1p1 + w2 − w1) ⋅ n2 + (p2 − p1) ⋅W2n2,

=(W2 −W1)p2 ⋅ n1 + (W2 −W1)p1 ⋅ n2 + (w2 − w1) ⋅ (n1 + n2).

ṗi = Wipi + wi , ṫi = Witi , ṁi = Wimi

, ṅi = Wini , i = 1, 2 ,
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with Wi = ṘiR
T
i
 and wi = u̇i −Wiui . By introducing 

the angular velocities �i as the axial vectors of Wi , 
i = 1, 2 , (2) are expressed as follows

Then, the first order approximation of the constraint 
system in the neighborhood of the configuration 
(R1 , u1 ,R2 , u2) , has the expression

with c = (c1, c2, c3, c4) , c0 = c(R1 , u1 ,R2 , u2) , 
� = (��1 , �w1 , ��2 , �w2) , and

3.2 � Door hinges

For door hinges we start with the condition

With the notation used in the previous section,

Then the constraint function are

The time derivatives of the constraints functions have 
the expressions

or, in terms of angular velocities,

ċ1 =(t1 ×m2 + t2 ×m1) ⋅ (�2 − �1),

ċ2 =(t1 × n2 + t2 × n1) ⋅ (�2 − �1),

ċ3 =(p2 ×m1 + p1 ×m2) × (�2 − �1) + (w2 − w1) ⋅ (m1 +m2),

ċ4 =(p2 × n1 + p1 × n2) × (�2 − �1) + (w2 − w1) ⋅ (n1 + n2).

(3)c0 + C� = 0,

(4)

C =
1

2

⎛⎜⎜⎜⎝

−(t1×m2+t2×m1)
T 0 (t1×m2+t2×m1)

T 0

−(t1×n2+t2×n1)
T 0 (t1×n2+t2×n1)

T 0

−(p2×m1+p1×m2)
T −(m1+m2)

T (p2×m1+p1×m2)
T (m1+m2)

T

−(p2×n1+p1×n2)
T −(n1+n2)

T (p2×n1+p1×n2)
T (n1+n2)

T

⎞⎟⎟⎟⎠
.

∀s ∈ ℝ, R1(p + st) + u1 = R2(p + st) + u2.

t2 − t1 = 0 (as in the case of a sliding hinge) ,

p2 − p1 = 0 .

c1 =(t1 ⋅m2 + t2 ⋅m1),

c2 =(t1 ⋅ n2 + t1 ⋅ n2),

c3 =p2 − p1.

ċ1 =W1t1 ⋅m2 + t1 ⋅W2m2 +W2t2 ⋅m1 + t2 ⋅W1m1

=(W1 −W2)t1 ⋅m2 + (W2 −W1)t2 ⋅m1,

ċ2 =W1t1 ⋅ n2 + t1 ⋅W2n2 +W2t2 ⋅ n1 + t2 ⋅W1n1

=(W1 −W2)t1 ⋅ n2 + (W2 −W1)t2 ⋅ n1,

ċ3 =(W2p2 + w2 −W1p1 − w1),

Then, the first order approximation of the the con-
straint system in the neighborhood of the configura-
tion (R1 , u1 ,R2 , u2) , has the expression

with c = (c1, c2, c3) , c0 = c(R1 , u1 ,R2 , u2) , 
� = (��1 , �w1 , ��2 , �w2) , and

with ∗ pi the axial tensors of pi , i = 1, 2 , and I the 
identity tensor.

3.3 � Point constraints

We express here the hinge constraint between two 
bodies in terms of point constraints, that is, a slid-
ing hinge is obtained with two sliders located on the 
hinge axis, a door hinge is obtained as a fixed point 
and a slider located on the hinge axis.

3.3.1 � Single point slider

Let the axis of the guide be described in the reference 
configuration by the line r solidal to B1 that passes 
through the points O + p and O + q ; and let O + q 
be the point of B2 constrained to slide on the guide. 
Under the motion of the two bodies the vector posi-
tions p , q are transported to the vectors

and the line r to the lines

with t = vers(q − p) and i = 1, 2 . The constraint 
imposes that the point p2 be the position vector of a 
point of r1 , that is

ċ1 =(t1 ×m2 + t2 ×m1) ⋅ (�2 − �1),

ċ2 =(t1 × n2 + t2 × n1) ⋅ (�2 − �1),

ċ3 =�2 × p2 + w2 − �1 × p2 − w1.

(5)c0 + C� = 0 ,

(6)C =
1

2

⎛
⎜⎜⎝

−(t1×m2+t2×m1)
T 0 (t1×m2+t2×m1)

T 0

−(t1×n2+t2×n1)
T 0 (t1×n2+t2×n1)

T 0

∗p1 −I −∗p2 I

⎞
⎟⎟⎠
,

pi = Rip + ui ,

qi = Riq + ui ,

(7)ri = {O + Ri(p + st) + ui , s ∈ ℝ} ,

p2 − p1 || r1.



	 Meccanica

1 3
Vol:. (1234567890)

It follows that the constraint equations are

with m1 = R1m and n1 = R1n . The derivatives with 
respect to time of these functions have the expressions

Then, the first order approximation of the constraint 
equations in the neighborhood of the configuration 
(R1 , u1 ,R2 , u2) , has the expression

with c = (c1, c2) , c0 = c(R1 , u1 ,R2 , u2) , 
� = (��1 , �w1 , ��2 , �w2) , and

3.3.2 � Sliding hinge as a double point slider

With the notation introduced previously, the con-
straint imposes that the points p2 and q1 be the posi-
tion vector of a point of r1 and r2 , respectively; then

It follows that the constraint equations are

with mi = Rim and ni = Rin , i = 1, 2 . The time deriv-
atives of these functions have the expressions

c1(R1, u1,R2, u2) =(p2 − p1) ⋅m1,

c2(R1,u1,R2,u2) =(p2 − p1) ⋅ n1,

ċ1 =(W2p2 + w2 −W1p1 − w1) ⋅m1 + (p2 − p1) ⋅W1m1

=
(
(W2 −W1)p2 + w2 − w1

)
⋅m1

=
(
(W2 −W1)p2 + w2 − w1

)
⋅m1

=p2 ×m1 ⋅ (�2 − �1) +m1 ⋅ (w2 − w1),

ċ2 =(W2p2 + w2 −W1p1 − w1) ⋅ n1 + (p2 − p1) ⋅W1n1

=
(
(W2 −W1)p2 + w2 − w1

)
⋅ n1

=
(
(W2 −W1)p2 + w2 − w1

)
⋅ n1

=p2 × n1 ⋅ (�2 − �1) + n1 ⋅ (w2 − w1).

(8)c0 + C� = 0 ,

C =

(
−(p2×m1)

T −mT
1

(p2×m1)
T mT

1

−(p2×n1)
T −nT

1
(p2×n1)

T nT
1

)
.

(9)p2 − p1 || r1,

(10)q1 − q2 || r2.

c1(R1, u1,R2, u2) =(p2 − p1) ⋅m1,

c2(R1, u1,R2, u2) =(p2 − p1) ⋅ n1,

c3(R1, u1,R2, u2) =(q1 − q2) ⋅m2,

c4(R1,u1,R2,u2) =(q1 − q2) ⋅ n2,

Then, the first order approximation of the the con-
straint equations in the neighborhood of the configu-
ration (R1 , u1 ,R2 , u2) , has the expression

with c = (c1, c2, c3, c4) , c0 = c(R1 , u1 ,R2 , u2) , 
� = (��1 , �w1 , ��2 , �w2) , and

3.3.3 � Spherical hinge

For a spherical hinge we start with the conditions

or, with the notation used in the previous section,

Then, the constraint function is

with derivatives with respect to time

or, in terms of angular velocities,

Thus, the corresponding form of the C operator is

3.3.4 � Door hinge as a point slider and a spherical 
hinge

The operators corresponding to a point slider and to 
a spherical hinge can be composed together to give 
that of a door hinge:

ċ1 =p2 ×m1 ⋅ (�2 − �1) +m1 ⋅ (w2 − w1),

ċ2 =p2 × n1 ⋅ (�2 − �1) + n1 ⋅ (w2 − w1),

ċ3 =q1 ×m2 ⋅ (�1 − �2) +m2 ⋅ (w1 − w2),

ċ4 =q1 × n2 ⋅ (�1 − �2) + n2 ⋅ (w1 − w2).

(12)c0 + C� = 0 ,

(13)C =

⎛⎜⎜⎜⎝

−(p2×m1)
T −mT

1
(p2×m1)

T mT
1

−(p2×n1)
T −nT

1
(p2×n1)

T nT
1

−(q1×m2)
T −mT

2
(q1×m2)

T mT
2

−(q1×n2)
T −nT

2
(q1×n2)

T nT
2

⎞⎟⎟⎟⎠
.

R1p + u1 = R2p + u2,

p2 − p1 = 0.

c = (R1 − R2)p + u1 − u2,

ċ = W1p1 −W2p2 + w1 − w2.

ċ = −p1 × �1 + p2 × �2 + w1 − w2.

(14)C =
(
− ∗ p1 I ∗ p2 −I

)
.
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3.4 � Integration of the kinematic‑compatibility 
equations

Let E be the Euclidean group. The elements of E 
are the pair (R,u) with R ∈ Orth+ the rotation and 
u ∈ V  the translation. The group operation on E is 
defined by

the inverse of (R,u) is (R−1
,−R−1

u) , and the unit ele-
ment of the group is the pair (I, 0) . This makes E the 
semidirect product of Orth+ and V.

The Lie algebra � of E is given by the semi-
direct product of the Lie algebras Skw and V. The 
exponential map exp ∶ � → E transforms the pair 
(W,w) ∈ � in the pair (R,u) ∈ E , with

here � denotes the norm of the axial � of W and A the 
operator

Let G be the direct product group of N copies of 

E, that is G =

N−times

⏞⏞⏞⏞⏞⏞⏞⏞⏞
E ×⋯ × E . In components, the ele-

ments g of G are written (g1, g2,… , gN) , with 
gi = (Ri, ui) ∈ E . The i-th component gi of g defines 
the rigid transport of the i-th body. Then the Lie alge-
bra � of G is the direct product of N copies of the Lie 
algebra � of E, and the exponential map exp ∶ � → G 
is the map that transforms v = (v1, v2,… , vN) ∈ � in 
g = (g1, g2,… , gN) ∈ G , with gi the image of vi under 
the exponential map of the Euclidean group E.

(15)C =

⎛
⎜⎜⎝

−(q1×m2)
T −mT

2
(q1×m2)

T mT
2

−(q1×n2)
T −nT

2
(q1×n2)

T nT
2

−∗p1 I ∗p2 −I

⎞
⎟⎟⎠
.

(16)(R,u)◦(R�, u�) = (RR�,Ru� + u) ,

(17)R =I + sin(�)W +
(1 − cos(�))

�2
W2,

(18)u =Aw,

(19)A = I +
(1 − cos(�))

�2
W +

1

�2
(1 −

sin(�)

�
)W2 .

3.4.1 � Newton–Raphson method on ℝn

To introduce the notation adopted, we briefly recall 
here the well-known Newton–Raphson method on ℝn . 
Given a map f ∶ ℝ

n
→ ℝ

m , we consider the problem 
of solving the nonlinear equation

The iteration of the Newton–Raphson method for 
solving this equation is defined by

Let pxn the function defined by pxn (�x) = xn + �x , and 
let f̂  the composed function f̂ = f◦pxn . Then

as ∇pxn = I ; in particular, for �x = 0 , we have

It follows that the Newton–Raphson iteration can be 
rewritten in the form

3.4.2 � Newton–Raphson method on Lie groups

Let G be a Lie group. For every h ∈ G , the right 
translation is the map Rgn

∶ G → G defined by

Given a map f ∶ G → ℝ
m , we consider the problem 

of solving the nonlinear equation

in which g is the collection of rotations and transla-
tions of all bodies, (Ri, ui) , i = 1,… ,N , and f is 
the collection of all constraint functions c that we 

(20)f (x) = 0 .

(21)f (xn) + ∇f (xn)�x = 0,

(22)xn+1 = xn + �x.

(23)
f̂ (v) = f (xn + �x) ,
∇f̂ (�x) = ∇f (xn + �x)∇pxn(�x) = ∇f (xn + �x) ,

(24)
f̂ (0) = f (xn) , ∇f̂ (0) = ∇f (xn)∇pxn (0) = ∇f (xn) .

(25)f̂ (0) + ∇f (xn)∇pxn (0)𝛿x = 0,

(26)xn+1 = pxn (�x).

(27)Rgn
(h) = h gn .

(28)f (g) = 0 ,
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detailed in the previous subsections for each type of 
constraint.

Let f̂  be the composed function 
f̂ = f◦Rgn

◦ exp(v) , with exp ∶ � → G the exponen-
tial map. Then f̂ (v) = f (exp(v) gn) and

because the exponential of 0 ∈ � is the identity e ∈ G , 
and the differential of the exponential map at zero is 
the identity of �,

we have

It follows the Newton–Raphson iteration on Lie group

(29)∇f̂ (v) = ∇f (exp(v)gn)◦∇Rgn
(exp(v)◦∇ exp(v) ;

(30)exp(0) = e , ∇ exp(0) = I ,

(31)f̂ (0) = f (gn) , ∇f̂ (0) = ∇f (gn)◦∇Rgn
(e) .

in which �v is the collection of all the increments 
(��i, �wi) , i = 1,… ,N.

3.4.3 � Folding example

As the present work is mainly focused on the study 
of isostatic thick origami structures, we present just 
one folding example. We apply the above-described 
procedure to fold the triangular portion of Yoshimura 
pattern shown in Fig. 2a.

This triangulated origami structure is composed 
by isosceles triangles with a long side of 1.8 units 
and two equal angles of 22.5 degrees. The assem-
bly has P = 30 panels with H = 35 hinge lines. 

(32)f̂ (0) + ∇f (gn)◦∇Rgn
𝛿v = 0,

(33)gn+1 = Rgn
◦ exp(�v) = exp(�v)gn,

Fig. 2   Folding of a triangular portion of Yoshimura origami. a Initial configuration in the x − z plane. b Partially folded configura-
tion. c Snapshot of the folding process
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The number of edges on the boundary is Eb = 20 . 
Hence, the number of internal independent mecha-
nisms is M = Eb − 3 = 17 . We consider all hinges 
to be door hinges. The folding process is prescribed 
by imposing the relative angular velocities at the 
15 vertical hinges to be equal to 0.005  rad/s, while 
maintaining vertex 6 fixed in space, the vertices 
2, 4, 8, 10, 12, 13, 14, 15, 16 moving only along the x 
axis, and the motion of vertex 14 blocked along the x 
and y direction.

Figure  2b shows the configuration reached after 
200 s of simulation time. Figure 2c shows snapshots 
of the folding process taken every 100 s of simulation 
time.

It is worth remarking that, in order to exclude sin-
gularities and path bifurcations, we have verified that 
the rank of the kinematic-compatibility operator does 
not decrease during the folding process. In any case, 
should a bifurcation occur along the path, it is pos-
sible to switch to a different fold-angle parameter to 
select a particular branch.

To keep our treatment simple, in the examples 
we consider, we assume that hinge lines intersect at a 
single point. This assumption is suitable for thick ori-
gami made using tapered panels [33], assembled as in 
Fig.  3, which are foldable to a certain degree. Never-
theless, our numerical procedure can also be applied to 

situations where hinge lines do not converge at a single 
point, such as in some fully-foldable origami structures 
[38].

4 � Static analyses

In this section, we first list the internal constraint reac-
tions for each type of constraint, and then we report our 
analyses regarding the Miura-ori, the Yoshimura, and 
the Kresling crease patterns.

4.1 � Internal constraint reactions

We recall that in Sect. 3, the first-order approximation 
of the internal constraint equation were obtained in the 
form

with c0 the constraint functions, � the increment of 
angular and translational velocities, and C an operator 
whose form depend on the considered constraint.

By assuming the constraints to be ideal, the vector 
r = (m1 , f 1 ,m2 , f 2) of the reactive internal actions at 
hinges, with mi, f i , i = 1, 2 , the internal couple and the 
internal force exchanged at a hinge and reduced to the 
origin of the reference frame, is given by

with � the vector of internal actions expressed as 
Lagrange multipliers and B = CT . We detail below 
the form of the B operator for each constraint type.

For a sliding hinge, from (4), we have 
� = (�1 , �2 , �3 , �4) and

for a sliding hinge as a double point slider, from (13), 
we have instead

For a door hinge, from (6), we have � = (�1 , �2 ,�3) 
and

c0 + C� = 0 ,

(34)r = B� ,

B = 1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(t1×m2+t2×m1) −(t1×n2+t2×n1) −(p2×m1+p1×m2) −(p2×n1+p1×n2)

0 0 −(m1+m2) −(n1+n2)

t1×m2+t2×m1 t1×n2+t2×n1 p2×m1+p1×m2 p2×n1+p1×n2

0 0 m1+m2 n1+n2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

;

B =

⎛⎜⎜⎜⎝

−(p2×m1) −(p2×n1) −(q1×m2) −(q1×n2)

−m1 −n1 −m2 −n2

(p2×m1) (p2×n1) (q1×m2) (q1×n2)

m1 n1 m2 n2

⎞⎟⎟⎟⎠
.

Fig. 3   Hypothesis of thickness accommodation by utilizing 
paired panels, with panel edges offset on the valley side. a 
Connection between two panels in flat and partially folded con-
figuration. b Front and back views of a portion of a Yoshimura 
pattern, solid lines correspond to mountain lines, dotted lines 
to valley lines
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for a door hinge as a point slider and a spherical 
hinge, from (15), we have instead

B =
1

2

⎛⎜⎜⎜⎝

−(t1×m2+t2×m1) −(t1×n2+t2×n1) − ∗p1

0 0 −I

t1×m2+t2×m1 t1×n2+t2×n1 ∗p2

0 0 I

⎞⎟⎟⎟⎠
;

B =

⎛⎜⎜⎜⎝

−(q1×m2) −(q1×n2) ∗p1

−m2 −n2 I

(q1×m2) (q1×n2) − ∗p2

m2 n2 −I

⎞⎟⎟⎟⎠
.

The equilibrium equations of the whole origami 
structure are obtained by imposing, for each body, the 
resultant of all the internal constraint reaction and the 
external loads applied to it, and the resultant moment 
of the same with respect to a fixed pole, to be null.

4.2 � Examples

In order to report the results of the static analyses, we 
reduce the constraints reactions to the mid points of the 
corresponding edges shared by adjacent panels, and 

Fig. 4   Two panels con-
nected by a door hinge 
a and by a sliding hinge 
b. Representations of the 
internal actions applied to 
a panel edge. The parallel 
moment MP is always null; 
the parallel shear force TP is 
null for sliding hinges

Fig. 5   A four-panel ori-
gami ring a and a represen-
tation of its three self-stress 
states b, c, d 
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project them along the directions of a right-handed local 
frame {n, t,m} attached to one of the two panels, with 
n the outward normal to the edge in the panel plane, t 
the tangent to the edge, and m the normal to the panel. 
In this way, the internal force and couple applied to a 
panel by the adjacent one are described by the triplets 
(N, TP, TO) and (MT ,MP,MO) , respectively, with N the 

normal force, TP the parallel shear force, TO the orthogo-
nal shear force, MT the twisting moment, MP the parallel 
moment, and MO the orthogonal moment, as illustrated 
in Fig. 4. The parallel moment is always null, while the 
parallel shear force is null for sliding hinges.

We introduce our gallery of examples by 
describing the simple case of a panel ring formed 

Fig. 6   Left: a single-vertex Miura-ori origami with null degree 
of static indeterminacy. There are three sliding hinges and 
one door hinge (dashed line). Right: sequential assembly of 

isostatic Miura-ori origami. There is just a single door hinge 
(dashed line), all the other hinges are sliding hinges. At each 
step, two panels and three sliding hinges are added

Fig. 7   An isostatic Miura-
ori cantilever loaded at 
the tip. Flat configuration 
before folding a. Cantile-
vered structure b 
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Fig. 8   A Yoshimura 
origami wedge shaped as 
a cantilevered arch loaded 
at the tip. Door hinges are 
denoted by dashed white 
lines, the rest of them are 
sliding hinges

Fig. 9   Two different versions of a Kresling module with tri-
angular base. All hinges are door hinges in both (dashed white 
lines). Configuration a is singular with one infinitesimal mech-

anism and one self-stress state; configuration b is isostatic. 
Configuration b is simply supported on the ground, and sub-
jected to vertical unit forces
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by four rectangular panels connected by four door 
hinges, which is shown in Fig.  5a. The kinemat-
ics of this assembly is analogous to that of a pla-
nar four-bar linkage and therefore there is just one 
internal mechanisms, M = 1 . Since there are no 
internal vertices, the number of self-stress states 
is S = 3 , according to both the bar-framework 
model and the panel-hinge model. In addition, it is 
easy to check by straightforward equilibrium cal-
culations that the internal actions N and TO must 
be null for all panel hinges. Then, by taking as 
parameters the parallel shear force, the twisting 
moment, and the orthogonal moment at one hinge, 
one can compute explicitly the internal actions for 
the three self-stress states, which are represented 
in Fig.  5b–d. It is easy to check that panel rings 
with more than four panels, P > 4 , always have 
S = 3 and M = P − 3.

It is worth noticing that by replacing door hinges 
by sliding hinges it is only possible to eliminate 
the self-stress state with nonzero parallel shear T 
(Fig. 5b). The introduction of more than one sliding 

hinge would generate additional internal mechanisms 
without affecting the other two independent self-
stress states.

4.2.1 � Miura‑ori patches

Similar to the case of the four-panel ring, the single-
vertex Miura-ori origami shown in Fig.  6(left) has 
M = 1 and SPH = 3 , when all the four hinges are door 
hinges. However, by performing numerical calcula-
tions with the proposed formulation, we checked that 
at non-singular configurations the replacement of any 
three door hinges with three sliding hinges makes the 
degree of static indeterminacy equal to zero.

Regular Miura-ori origami structures always pos-
sess just one internal mechanisms, no matter the 
number of panels they are composed of. Therefore, 
the degree of static indeterminacy always increases 
with the size of the Miura-ori patch. We found in 
our analyses that that there is a class of Miura-ori 
patches whose degree of static indeterminacy can be 
made equal to zero. The elements of this class can be 

Fig. 10   Two isostatic Kres-
ling towers with two a and 
three b modules. Six hinges 
on one of the modules are 
door hinges (dashed white 
lines)
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constructed sequentially, by starting from a single-
vertex Miura-ori analogous to the one just described, 
and by iteratively adding two panels and three sliding 
hinges, as indicated in Fig. 6(right).

We now give an example of calculation of inter-
nal actions for the case of the cantilevered Miura-ori 
beam shown in Fig. 7. Each panel has the shape of a 
right trapezoid with height of 2 units, and bases of 1 
and 2 units. The configuration in Fig. 7b is obtained 
by folding the initially flat configuration in Fig. 7a so 
that the angle between the normals to panels 2 and 
3 is equal to 27.4◦ . Table 1 in the Appendix reports 
the corresponding vertex coordinates. In the config-
uration of Fig.  7b, two corner vertices on the short 
side of the assembly are pinned to the ground , and 
the middle vertex on the same side is constrained 
not to move along the longitudinal direction. At the 
other end of the assembly, a vertical point loads of 
unit magnitude is applied. The assembly has one 
door hinge (dashed line in Fig. 7), and the remaining 
hinges are sliding hinges. The resulting internal and 
external constraint reactions are shown in Tables  2 
and  3 in the Appendix, respectively.

4.2.2 � Yoshimura wedges

We pass now to the Yoshimura origami structure 
described in Sect.  3.4.3. We consider the configu-
ration shown in Fig.  2b and reassign vertex con-
straints as follows. All base vertices, those on the 
plane z = 0 , are fixed in the y and z direction, with 
vertex 6 constrained also in the x direction. We 
checked that with this set of vertex constraints, 
there are no internal mechanisms, M = 0 . This 
origami structure has 6 internal vertices. When all 
hinges are door hinges, the degree of static inde-
terminacy is SPH = 3Vi = 18 . We verified that by 
replacing three door hinges at each internal ver-
tex with three sliding hinges (cf. Fig. 8) a isostatic 
structure is obtained. We considered the case of a 
vertical unit load applied to the tip of the structure, 
as shown in Fig.  8. Table  4 in the Appendix lists 
the nodal coordinates of the analyzed configuration, 
while Tables 5 and  6 report the internal and exter-
nal reactions, respectively.

We checked that it is possible to obtain similar 
isostatic Yoshimura wedges with any number of 
base elements in an anologous way by constraining 
all base vertices in the transversal (y) and vertical 

(z) directions, with one of them constrained also 
in the folding direction (x), and by replacing three 
door hinges with sliding hinges at each internal 
vertex.

4.2.3 � Kresling columns

We now pass to consider multimodular Kresling col-
umns with triangular base. Each module of a Kresling 
column is composed by P = 6 triangular panels con-
nected by H = 6 door hinges in a three-fold cyclic-
symmetric configuration, as shown in Fig.  9. The 
bottom and top horizontal bases of a module appear 
rotated relatively to each other by a certain twist 
angle � ∈ (�∕3,�) . We remark that given the panels 
of a Kresling module, it is possible to assemble them 
into two distinct configurations with opposite handed-
ness, mirror image of each other.

A one-module assembly has no internal ver-
tices, and we found that it is always isostatic 
( M = 0, S = 0 ), except for values of the twist angle 
equal to �

6
 , or to − 5

6
� . These angles determine two 

mirror-symmetric configurations, both of which are 
singular and admit one internal mechanism and one 
self-stress state ( M = 1, S = 1 ). Figure 9a shows the 
configuration of a Kresling module with height 20 
units, bases inscribed in a circle with diameter of 20 
units, and twist angle � =

�

6
 . The corresponding ver-

tex coordinates are listed in Table 7 in the Appen-
dix. We computed the values of the internal actions 
in the self-stress state reported in Table 8. Figure 9b 
shows a (isostatic) configuration with same height 
and base dimensions, and � =

�

9
 , simply supported 

at the bottom base, and subjected to three verti-
cal unit loads applied to the top vertices. Table  9 
in the Appendix lists the vertex coordinates, while 
Tables 10 and  11 reports the internal and external 
reactions, respectively.

A two-module column obtained by juxtaposition 
of two modules with same dimensions and opposite 
handedness is shown in Figure  10  (a). In addition 
to the hinges belonging to each individual module, 
three more hinges realize the junction between the 
two modules. This origami structure possesses three 
internal vertices and therefore has SPH = 9 degrees 
of static indeterminacy in non-singular configura-
tions, while M = 0 . We checked that by realizing all 
hinges as sliding hinges, except for those belonging 
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to one of the two modules, realized as door hinges, 
the assembly is isostatic. Isostatic multimodular 
Kresling columns can be obtained in a similar way. 
Figure 10b shows the case of a three-module tower. 
Tables  12 and 13 in the Appendix show the inter-
nal actions of the simply supported structures in 
Fig. 10a and b, respectively, resulting from a verti-
cal loading by three unit forces on the top vertices.

We remark that polygonal-base columns of this 
type were found to exhibit multistability properties 
[39, 40], and to share the geometry of assemblies 
of tensegrity and tensegry-like prisms [41, 42]. We 
expect that, in analogy with tensegrity prisms, Kres-
ling modules in singular configuration realize a first-
order infinitesimal mechanism [43], and that their 
self-stress state, depending on its sign, may impart 
positive or negative stiffness to the mechanism.

5 � Conclusions

We presented a design strategy aimed at obtaining 
isostatic thick origami structures by making use of 
sliding hinges to replace conventional hinges. This 
strategy can effectively reduce the degree of static 
indeterminacy, and in many cases it can successfully 
make certain types of origami structures isostatic. We 
provided exact and linearized kinematic constraint 
equations and a numerical procedure to simulate the 
folding process by controlling the relative angular 
velocities at some creases of the origami. Equilibrium 
equations relating the external loads to the internal 
actions exchanged by adjacent panels were obtained 
by duality. We analyzed a series of noteworthy exam-
ples of isostatic thick origami structures. We showed 
that Miura-ori crease patterns in a certain class admit 
an isostatic realization. We found that Yoshimura 
wedges can always be made isostatic. Finally, we 
demonstrated isostatic multimodular Kresling ori-
gami, and determined the self-stress of a Kresling 
module in its singular configuration. The present 
method can be employed to discover, investigate, and 
design other types of isostatic thick origami struc-
tures and aid in the determination of self-stress states 
when this is not possible.
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Appendix

In this appendix we gather the relevant numerical 
data for the presented examples (See Tables 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12).

Table 1   Nodal coordinates for the Miura-ori cantilever in 
Fig. 7b

Vertex x y z

1 1.1407e−01 1.9321e−01 −8.576664e−01
2 1.1405e−01 2.0000e+00 1.298076e−04
3 1.1406e−01 2.9037e+00 −4.283182e−01
4 2.0570e+00 −1.0121e−02 −4.291978e−01
5 2.0570e+00 8.9329e−01 4.229811e−04
6 2.0571e+00 2.7007e+00 −8.567885e−01
7 4.0000e+00 1.9317e−01 −8.575398e−01
8 4.0000e+00 2.0000e+00 2.918110e−12
9 4.0000e+00 2.9037e+00 −4.281852e−01
10 5.9430e+00 −1.0162e−02 −4.290680e−01
11 5.9430e+00 8.9325e−01 2.931740e−04
12 5.9430e+00 2.7006e+00 −8.566587e−01
13 7.8860e+00 1.9313e−01 −8.574100e−01
14 7.8860e+00 2.0000e+00 −1.298071e−04
15 7.8860e+00 2.9036e+00 −4.280554e−01
16 9.8289e+00 −1.0203e−02 −4.289382e−01
17 9.8289e+00 8.9321e−01 1.633668e−04
18 9.8290e+00 2.7006e+00 −8.565289e−01
19 1.1772e+01 1.9309e−01 −8.572739e−01
20 1.1772e+01 1.9999e+00 −2.596132e−04
21 1.1772e+01 2.9036e+00 −4.279319e-01
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Table 2   Internal actions in the origami structure in Fig. 7b

Hinge Panel MT MP MO N TP TO

1 1 1.1261e+00 −7.3184e−18 2.0638e+00 2.4004e−01 7.2964e−05 −1.3053e−01
2 1 2.8615e−01 1.1102e−16 −2.3319e+00 −2.0083e−04 −5.5511e−17 5.6919e−01
3 2 −5.7049e−01 3.3307e−16 2.3304e+00 −8.2821e−06 −5.5511e−17 5.7038e−01
4 3 −1.1309e+00 8.2345e−17 −2.0748e+00 4.7603e−04 −1.2365e−08 3.6941e−05
5 3 1.5807e+00 2.2204e−16 −4.1433e+00 −2.6260e−01 2.7756e−17 5.0514e−01
6 4 8.2005e−01 0.0000e+00 4.5364e+00 2.6263e−01 −2.7756e−17 5.0596e−01
7 5 1.2698e+00 −4.5103e−17 2.3295e+00 3.3092e−04 −5.2939e−09 1.1381e−05
8 5 −7.8788e−01 4.4409e−16 −6.7351e+00 −5.2445e−04 2.7756e−17 5.6931e−01
9 6 −1.6445e+00 −4.4409e−16 6.7323e+00 3.7505e−04 −2.7756e−17 5.7034e−01
10 7 −1.1338e+00 1.0300e−18 −2.0803e+00 4.0871e−04 2.2862e−08 −7.9568e−05
11 7 2.6573e+00 −1.3323e−15 −8.5520e+00 −2.6291e−01 −2.7756e−17 5.0498e−01
12 8 1.8928e+00 4.4409e−16 8.9448e+00 2.6291e−01 −2.7756e−17 5.0590e−01
13 9 1.2683e+00 −3.1225e−17 2.3271e+00 2.6350e−04 2.6437e−08 −7.1372e−05
14 9 −1.8630e+00 −8.8818e−16 −1.1141e+01 −8.3424e−04 5.5511e−17 5.6939e−01
15 10 −2.7190e+00 0.0000e+00 1.1138e+01 7.4514e−04 −2.7756e−17 5.7032e−01
16 11 −4.1820e+00 −1.2295e−16 −7.6601e+00 −4.9841e+00 1.2588e+01 2.7246e+00

Table 3   Reaction forces at supports, and panels which they 
are applied to, for the origami structure in Fig. 7b

Vertex Panel Fx Fy Fz

11 19 −6.8092e+00 1.0571e+00 5.0081e−01
11 20 2.0423e+01 0.0000e+00 0.0000e+00
12 21 −1.3614e+01 −1.0571e+00 4.9919e−01

Table 4   Nodal coordinates for the Yoshimura wedge in Fig. 8

Vertex x y z

1 2.2806e−01 −1.7867e−01 8.760393e−05
2 5.5537e−01 −2.2498e−04 5.584535e−08
3 8.8252e−01 −1.7896e−01 8.795992e−05
4 1.2096e+00 −1.1246e−04 −2.770419e−09
5 1.5368e+00 −1.7874e−01 3.583811e−07
6 1.8640e+00 −1.2845e−13 9.233695e−15
7 2.1911e+00 −1.7874e−01 3.584869e−07
8 2.5182e+00 1.1253e−04 4.181614e−10
9 2.8454e+00 −1.7853e−01 −1.375840e−06
10 3.1725e+00 2.2495e−04 7.539000e−10
11 3.4996e+00 −1.7872e−01 −1.750372e−06
12 5.5537e−01 2.1689e−04 8.999997e−01
13 1.2097e+00 1.0814e−04 9.000000e−01
14 1.8640e+00 7.0238e−13 9.000000e−01
15 2.5182e+00 1.0816e−04 9.000000e−01
16 3.1725e+00 2.1686e−04 8.999997e−01
17 8.8263e−01 5.0949e−01 1.663227e+00
18 1.5369e+00 5.0929e−01 1.663310e+00
19 2.1910e+00 5.0929e−01 1.663314e+00
20 2.8453e+00 5.0915e−01 1.663456e+00
21 1.2099e+00 1.2717e+00 2.173996e+00
22 1.8640e+00 1.2718e+00 2.173735e+00
23 2.5182e+00 1.2714e+00 2.174276e+00
24 1.5368e+00 2.1716e+00 2.353834e+00
25 2.1915e+00 2.1713e+00 2.354493e+00
26 1.8647e+00 3.0718e+00 2.177855e+00
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Table 5   Internal actions in the origami structure in Fig. 8

Hinge Panel MT MP MO N TP TO

1 1 7.4076e−14 −1.7347e−18 −1.2872e+01 1.0685e−13 3.4528e+01 −9.4104e−14
2 3 −5.6336e−01 1.6805e−17 4.8222e+00 −3.0428e+00 −2.9397e+01 −1.2519e+00
3 5 5.4213e+00 1.0022e−15 3.4251e+00 −9.2377e+00 6.5325e+00 1.2047e+01
4 7 7.3332e−01 −1.4565e−15 −1.8128e+01 4.8039e+01 −1.7113e+01 1.6296e+00
5 9 5.4272e+00 −4.1278e−15 −9.9242e+00 −6.5908e+00 1.3330e+00 1.2060e+01
6 11 1.0424e+01 0.0000e+00 −7.6836e+00 6.3231e+00 3.9569e+00 −1.1582e+01
7 13 −3.5769e+00 1.5543e−15 −4.9466e+00 2.0936e+00 −4.6705e+00 2.2284e+00
8 15 −3.9950e+00 −8.8818e−16 −2.2732e+01 2.6003e+01 −1.7988e+01 −5.7561e+00
9 17 2.8175e+00 −8.8818e−16 −1.1869e+01 −5.1371e+00 2.7349e+01 9.4049e+00
10 19 −1.6165e+00 −2.2204e−16 −4.4764e+00 2.7492e+00 −1.1102e−16 1.7961e+00
11 21 1.1450e+01 6.2172e−15 −9.5570e+00 2.5956e+01 0.0000e+00 −9.3528e+00
12 23 5.0135e+00 −3.5527e−15 −4.8249e+01 −4.9428e+01 1.7764e−15 9.4320e−01
13 25 −1.9465e+00 −1.7764e−15 −7.6578e+00 −4.4980e+00 −2.2204e−16 2.1628e+00
14 27 −6.7125e+00 7.1054e−15 −2.7835e+01 −2.8757e+01 1.7764e−15 1.0843e+01
15 29 −5.0427e−01 −3.6499e−15 −1.8494e+01 −1.8938e+01 1.7347e−17 1.4389e+00
16 2 −5.8588e+00 0.0000e+00 −9.6630e+00 −6.6011e+00 1.2360e+00 −1.2028e+01
17 3 −5.4813e+00 1.9984e−15 −2.7681e+00 −4.1040e+00 4.4409e−16 −1.3757e+01
18 4 2.4904e+00 −4.4409e−16 3.9431e+00 −1.0157e+00 −1.1102e−16 5.1129e+00
19 5 −4.2331e+00 −4.4409e−16 4.1806e+00 1.1984e+01 8.8818e−16 1.5404e+01
20 6 6.6230e+00 −5.3291e−15 −3.2485e+00 5.1667e+00 0.0000e+00 1.3598e+01
21 7 8.6430e−01 2.7200e−15 −2.1780e+01 −4.9983e+01 3.5527e−15 5.0337e+00
22 8 −1.7673e+01 4.4409e−15 −1.1856e+01 3.1501e+01 1.7764e−15 −3.6284e+01
23 9 −1.1982e+01 −8.8818e−16 −1.1818e+01 1.0996e+01 2.7234e+01 −4.7865e−01
24 12 −5.4276e+00 −8.8818e−16 −1.9876e+00 2.7980e+00 −1.0520e+00 −1.3596e+00
25 13 1.1686e+00 −7.7716e−16 −4.8261e+00 −7.2353e+00 −4.4409e−16 6.5330e−01
26 14 5.4303e+00 −6.4393e−15 −2.1667e+00 −4.4747e+00 8.8818e−16 −1.8479e+01
27 15 −3.2319e+00 −8.8818e−15 −1.0783e+01 −3.7577e+01 3.5527e−15 −1.6830e+01
28 16 −3.1680e+01 3.5527e−15 −1.5370e+01 −1.8526e+01 −1.3323e−15 1.6389e+01
29 17 −6.4497e+00 1.7764e−15 −2.6942e+01 4.8428e+01 −9.9149e+00 −7.0609e−01
30 20 −5.4470e+00 8.8818e−16 −1.7826e+00 −9.9605e−02 1.7214e+00 4.6837e+00
31 21 4.3794e−02 8.8818e−16 −1.3275e+01 −1.4048e+01 −4.4409e−16 3.4600e+00
32 22 −2.1003e+01 5.3291e−15 −6.7778e+00 3.3121e+00 −1.7764e−15 1.4138e+01
33 23 1.3449e+00 7.1054e−15 −1.5962e+01 2.9198e+01 −2.4477e+00 9.2751e+00
34 26 −9.2472e+00 5.1070e−15 −4.5523e+00 −7.4792e+00 7.1545e+00 1.5605e+01
35 27 −1.0991e+00 −9.7700e−15 −1.0132e+01 1.8937e+01 −3.3732e+00 1.1280e+00
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Table 6   Reaction forces at supports, and panels which they 
are applied to, for the origami structure in Fig. 8

Vertex Panel Fx Fy Fz

1 1 0.0000e+00 −1.6952e−02 −3.4528e+01
2 2 0.0000e+00 −1.3689e+01 3.5919e+01
3 3 0.0000e+00 1.4258e+01 2.7823e+01
4 4 0.0000e+00 3.6695e+00 −2.9009e+01
5 5 0.0000e+00 −3.8246e+00 −1.9461e+00
6 6 −4.0523e−14 −7.7983e−01 4.5555e+00
7 7 0.0000e+00 −3.8797e+00 −2.0152e+00
8 8 0.0000e+00 3.7173e+00 −2.9168e+01
9 9 0.0000e+00 1.4289e+01 2.8036e+01
10 10 0.0000e+00 −1.3744e+01 3.5913e+01
10 11 0.0000e+00 3.1084e−04 −3.4580e+01

Table 7   Vertex coordinates for the Kresling module in singu-
lar configuration in Fig. 9a

Vertex x y z

1 1.0000e+01 0.0000e+00 0
2 −5.0000e+00 8.6603e+00 0
3 −5.0000e+00 −8.6603e+00 0
4 −8.6603e+00 5.0000e+00 20
5 −0.0000e+00 −1.0000e+01 20
6 8.6603e+00 5.0000e+00 20

Table 8   Internal actions in the self-stress state of the Kresling module in singular configuration shown in Fig. 9a)

Only the values at two hinges are shown, the remaining hinges feature the same values according to the three-fold cyclic symmetry 
of the assembly

hinge panel MT MP MO N TP TO

1 1 −1.3517e−01 0.0000e+00 5.2110e−01 3.3945e−03 −5.2234e−02 −1.3086e−02
2 2 1.8194e−01 5.5511e−17 6.7783e−02 −3.5127e−02 −3.8808e−02 −1.3086e−02

Table 9   Vertex coordinates for the Kresling module in Fig. 9b

Vertex x y z

1 1.0000e+01 0.0000e+00 0
2 −5.0000e+00 8.6603e+00 0
3 −5.0000e+00 −8.6603e+00 0
4 −7.6604e+00 6.4279e+00 20
5 −1.7365e+00 −9.8481e+00 20
6 9.3969e+00 3.4202e+00 20



Meccanica	

1 3
Vol.: (0123456789)

Table 10   Internal actions for the Kresling module in Fig. 9b

Only the values at two hinges are shown, the remaining hinges feature the same values according to the three-fold cyclic symmetry 
of the assembly

Hinge Panel MT MP MO N TP TO

1 1 −1.8587e+00 −2.2204e−16 1.0327e+01 6.5668e−02 −1.1204e+00 −1.8313e−01
2 2 4.7229e+00 −4.4409e−16 −8.5253e+00 −1.4225e+00 −1.5574e+00 −3.4417e−01

Table 11   Reaction forces at supports, and panels which they are applied to, for the Kresling module in Fig. 9b

Vertex Panel Fx Fy Fz

1 1 0.0000e+00 0.0000e+00 1.0000e+00
3 2 2.5530e−14 −0.0000e+00 1.0000e+00
5 3 7.5384e−15 −1.8445e−14 1.0000e+00

Table 12   Internal actions for the Kresling two-module assembly in Fig. 10a

Only the values at five hinges are shown, the remaining hinges feature the same values according to the three-fold cyclic symmetry 
of the assembly

Hinge Panel MT MP MO N TP TO

1 1 6.2104e+01 4.4409e−15 2.0815e+01 −9.6760e−01 −3.2260e+00 6.1189e+00
2 2 −7.5479e+01 −7.1054e−15 −4.1662e+01 9.9233e−01 −3.8436e+00 −6.1888e+00
7 2 1.3951e+00 −3.1530e−14 8.5471e+00 −8.6786e−01 4.4409e−16 −1.1528e+01
10 7 7.0726e+01 −6.2172e−15 1.9183e+00 1.1567e+00 −2.2204e−16 −6.6462e+00
11 8 7.8295e+01 2.8422e−14 5.2011e+01 4.5028e+00 2.2204e−16 −5.3394e+00

Table 13   Internal actions for the Kresling three-module assembly in Fig. 10b

Only the values at eight hinges are shown, the remaining hinges feature the same values according to the three-fold cyclic symmetry 
of the assembly

Hinge Panel MT MP MO N TP TO

1 1 −6.7456e+01 −9.3259e−15 −7.4600e−01 1.1567e+00 6.6613e−16 −6.6462e+00
2 2 8.2715e+01 1.4211e−14 3.3745e+01 −4.5028e+00 −6.6613e−16 5.3394e+00
7 2 −1.3951e+00 −1.6431e−14 −8.5472e+00 2.8418e+00 −4.4409e−16 1.1206e+01
10 7 −4.4184e+00 2.0872e−14 1.2322e+01 −4.3479e+00 2.3759e+00 1.2125e+01
11 8 −1.6417e+02 −1.4211e−14 −3.9722e+01 −2.4649e+00 3.9435e+00 −5.9641e−01
16 13 1.3945e+00 2.4425e−14 8.5472e+00 −2.8418e+00 −2.6645e−15 −1.1206e+01
19 14 −6.7457e+01 −3.9968e−15 −7.4586e−01 1.1567e+00 4.4409e−16 −6.6462e+00
20 15 −8.2715e+01 7.1054e−15 −3.3745e+01 4.5028e+00 4.4409e−16 −5.3394e+00
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