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Abstract In this paper we develop a new model for 
the simulation of the mechanical behavior of rayon 
twisted yarns, at macroscopic level. A yarn with its 
continuous filaments is represented by an equivalent 
three-dimensional solid of cylindrical shape, discre-
tized by finite elements, with properly defined local 
anisotropic material properties. The new constitu-
tive model, inspired by experimental results on rayon 
untwisted yarns, is formulated in the framework of 
the thermodynamics of irreversible processes and 
includes visco-elastic and visco-plastic dissipation 
mechanisms. The effect of twist is taken into account 
by including the direction of the fibers in the free 

energy definition. The overall model is validated 
comparing numerical and experimental results on 
twisted rayon yarns.

Keywords Yarns · Fibrous materials · Anisotropy · 
Fiber orientation · Generalized standard materials · 
Constitutive model · Visco-plasticity · Visco-
elasticity · Rayon · Textile materials

1 Introduction

Polymeric yarns made of hundreds of filaments (or 
fibers) twisted together exhibit very high flexural flex-
ibility while having high stiffness and strength in the 
longitudinal direction. Yarns (of the same or different 
filament materials) are often twisted together to form 
multi-ply yarns, also known as cords.

Polymer-based yarns and cords are extensively 
used as reinforcement in composite materials and, 
more specifically, in rubber composites. The lat-
ter materials are employed in various products, with 
tires, belting systems and hoses being the most nota-
ble examples [1]. The textile constituent combined 
with the elastomer matrix results in a structure that 
exhibits high stiffness in the direction of the rein-
forcement and high flexibility in the perpendicular 
plane [2].

Textile reinforcements (unidirectional or in the 
form of fabric) are very versatile and are employed 
in diverse contexts, for instance in concrete structural 
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elements, in architectural membranes, and as pre-
forms for composites. They have also been used for 
artificial implants: in [3] a knit of yarns is combined 
with a silicon-based matrix to create an aortic valve 
with sufficient mechanical stiffness.

For rubber composites, different reinforcement 
materials have been employed, the most impor-
tant ones being cotton, rayon, polyamides, polyester 
(PET), aramids and polyethylene naphthalate (PEN). 
These materials are selected depending on the appli-
cation envisaged. Rayon is a good choice for passen-
ger car tires, because of its low heat shrinkage, high 
modulus and good adhesion properties (see e.g. [4] 
for a review on the main properties of this material). 
The reinforcements play a fundamental role to sup-
port the loads and contain the air pressure, providing 
the axial and lateral rigidity for acceleration, braking 
and cornering [5]. The accuracy in predicting the per-
formance of a tire is thus strongly dependent on the 
validity of the material models chosen to describe the 
mechanical behavior of the reinforcement component.

Experimental tests carried out in [6] on bundles of 
straight rayon fibers (untwisted rayon yarns), under 
monotonic and cyclic loading, were aimed at charac-
terizing the material nonlinearity of rayon and gave 
evidence of an elastic-visco-plastic behavior.

For twisted yarns and cords, the knowledge of 
the actual filament trajectories in a textile specimen 
subjected to a tensile test represents an important 
piece of information, as the orientation of the fib-
ers strongly influences the mechanical response of 
the reinforcement and hence should be represented 
with good accuracy in a numerical model to be used 
for simulations. To gain such knowledge, different 
experimental techniques can be employed. In [7], the 
so-called “fiber tracer technique” was first developed 
to determine the path of some fibers. This method 
is not able to provide a full geometric description of 
the reinforcement, as only a few fibers can be traced. 
More recently, an X-ray microtomography and image 
processing technique has been developed in [8] to 
accurately reconstruct the geometry of single- and 
multi-ply yarns.

Based on the knowledge of the material behav-
ior and the orientation of the fibers, the study and 
modeling of polymeric yarns and cords have been 
addressed at different scales in the literature.

Micromechanical approaches try to model the tex-
tile reinforcements at the level of each elementary 

component, which is considered to be one filament 
or a bundle of a few filaments together. Typically, 
a finite element (FE) method is developed where 
each elementary component is modeled either with 
rod elements, as in [9], or beam elements, as in [10, 
11]. Contact and nonlinear material behavior can 
be accounted for with this approach. These models 
are useful to gain information on the local interac-
tions between the different filaments, for instance to 
determine the initial configuration of the fibers [12]. 
Nevertheless, these methods require a considerable 
modeling effort. They are thus limited to small-size 
problems, to check the validity of the assumptions 
and hypotheses used for the upper scales.

At a macroscopic scale, the analyses of fiber-
reinforced rubber structures rely mainly on numeri-
cal methods. Structural reinforcements are gener-
ally modeled using two approaches. In the first one 
the entire structure is considered as a continuum 
and the modeling is based on the composite materi-
als theory, see e.g. [13]. In the second one the rub-
ber matrix and the yarns/cords are considered sepa-
rately and the reinforcements are modeled using the 
so-called “rebar” elements. The basic idea is to insert 
special bar elements with their own material proper-
ties into volume elements that should be strengthened 
[14–16]. This latter technique is especially used for 
tires.

To feed the macroscopic models with a feasi-
ble description of the textile (rebar) components, 
an intermediate scale is necessary where the global 
behavior of yarns and cords is considered. The 
early approaches relied on an energy-based theory, 
first developed in [17] for single-ply yarns and later 
improved to account for more complex fibers trajecto-
ries, see e.g. [18]. These methods generally allow for 
the prediction of the monotonic uniaxial stress–strain 
response only. More efficient models based on the 
continuum theory have thus been developed. In [19, 
20], a one-dimensional thermodynamically consistent 
viscoelastoplastic phenomenological model is devel-
oped for flax twisted yarns embedded in an epoxy 
matrix. This model does not account explicitly for the 
geometric effects caused by the torsion of the fibers 
composing the yarns. The same composites are also 
analyzed in [21], where matrix and fibers are modeled 
separately and a thermodynamically consistent ani-
sotropic elastoplastic constitutive model for the flax 
fibers is considered; the reinforcement in this case 
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is composed of unidirectional non-twisted fibers. In 
[22], a hyperelastic anisotropic constitutive model is 
developed for multi-ply yarns. The inelastic effects 
are nevertheless disregarded and the phenomenologi-
cal approach is built starting directly from the twisted 
yarns, i.e. without a fitting of the experimental curves 
valid for the fibers.

Yarns can also be arranged in woven fabrics, with 
further geometric complexity. Again with reference to 
the elastic behavior only, in [23], the effective proper-
ties of a fabric are obtained by numerical analyses of 
a unit cell at varying weaving patterns.

There is a need for a global three-dimensional 
model that, starting from the material behavior at the 
level of the fibers and including material inelastic 
effects together with geometric effects, can effectively 
predict the behavior of rayon yarns and cords in any 
stress condition. In the present work, we aim to con-
tribute in this direction by developing a new approach 
integrating material inelastic effects and geometrical 
ones. The result is a novel phenomenological material 
model for twisted yarns and cords made up of poly-
meric fibers. We treat the textile reinforcements as a 
continuum, characterized by a viscoelastic and visco-
plastic transversely-isotropic behavior, with material 
directions locally defined and depending on the fila-
ments twist level. More precisely, we approximate the 
complex geometry of the twisted single-ply yarns as 
a bundle of filaments arranged as concentric helices, 
directed along the unit vector a(x, t) , and we replace 
the real geometry of the yarns by an equivalent three-
dimensional continuum of cylindrical shape, made of 
a material modeled by the non-isotropic constitutive 
law here developed. As cords are made up of single-
ply yarns, the same material model could also be 
applied to them, with a proper definition of the mate-
rial directions. Figure 1 schematically shows the defi-
nition of material directions on a rayon yarn with a 

linear density of 1840 dtex and 480 twists per meter 
and the equivalent representation through a contin-
uum cylinder with anisotropic properties. The blue 
and red lines are helices representing an external fiber 
(at the maximum radius) and an internal fiber (at an 
intermediate radius), respectively.

The paper is organized as follows. In Sect.  2, we 
experimentally characterize the rayon fibers and 
describe the main features of their mechanical behav-
ior. In Sect. 3, we present the geometrical modeling 
of the twisted yarns, to explicitly take into account the 
fibers’ directions. In Sect. 4, we develop a novel ani-
sotropic elasto-viscoplastic model in the thermody-
namic framework. Section 5 traces a strategy for the 
identification of the material parameters. In Sect.  6 
we describe the model implementation in a finite 
element (FE) analysis procedure and compare the 
experimental results on untwisted and twisted yarns 
with those obtained from three-dimensional (3D) FE 
simulations. Some conclusions and future prospects 
are finally given in Sect. 7.

Notation: Throughout this work, normal-face let-
ters (a) stand for scalars, while boldface letters ( a ) 
can denote both vectors and tensors. In general, we 
drop everywhere the dependence from the space and 
time variables (x, t).

2  Experimental evidences

Polymeric twisted yarns are the basic constituents 
of the cords which are often used as reinforcing ele-
ments in tires, as a lighter alternative to steel cords. 
An extended experimental campaign has been 
recently carried out at the Pirelli laboratory (in Milan) 
on rayon yarns to obtain essential information for the 
development of a proper constitutive law at the mac-
roscopic level.

Fig. 1  Microscopic image of a rayon yarn (480 twists per 
meter) with the definition of the fiber direction a and yarn 
equivalent representation through a homogeneous cylinder: 

the blue and red lines are helices representing an external and 
internal fiber, respectively
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Rayon yarns consisting of approximately 1000 fila-
ments, with a linear density of 1840 dtex (1840 g per 
10,000 m) are considered in this study. To distinguish 
between the material behavior of the filaments and 
the effects induced by twist, experimental tests were 
first carried out on untwisted yarns, here denoted as 
yarn Y0; successively, tests on twisted yarns were 
performed with two different twist levels (with 
Z-twist direction), 380 and 480 twists per meter, here-
after called yarn Y38 and Y48, respectively. In this 
section, we only comment on the results obtained on 
yarn Y0, which are the basis for the development of 
the constitutive model. Tests on yarns Y38 and Y48 
will be presented in Sect. 6.2 together with the model 
predictions.

The aim of the experimental work is to obtain a 
complete characterization for rayon, tested under dif-
ferent conditions.

Since rayon fibers are strongly affected by the level 
of moisture, experimental tests were carried out both 
in “Dry conditions” (denoted by “D”), with the sam-
ple kept into an oven at 100◦C for at least two hours 
before the test, and in “Humid conditions” (denoted 
by “H”), with the sample conditioned for 24  h in 
the same climatic room where the experiments take 
place, at 20◦C and 65% of relative humidity. These 
tests were carried out according to the procedures 
prescribed by the BISFA guidelines [24].

Uniaxial tensile tests, under monotonically 
increasing displacement, were thus performed on 
greige yarns specimens, both in dry and humid condi-
tions. Bollard grips were used in the tests to prevent 
specimen breakage in the clamping area. The adopted 
gauge length is 500 mm. The strain rate of the tests 
in dry conditions is fixed at 0.017 s−1 to maintain 
approximately the same Moisture Content (MC) dur-
ing each test. This can be checked by considering 
Fig.  2, where the humidity gain in time is reported 
starting from dry conditions during the first 130 min. 
Even though the humidity gain is rather fast in the 
first phase, for a strain rate of 0.017 s−1 and a maxi-
mum strain of about 9% , the total duration of the test 
is approximately of 5.3 s; and the variation of mois-
ture content can be considered negligible in such time 
interval.

Adopting a strain rate of 0.017 s−1 , the influence 
of humidity on the material behavior is shown in 
Fig. 3a, where the experimental response for yarn Y0 
in dry conditions (in red) is compared to that obtained 

in humid conditions (in blue). The shaded regions 
contain the stress–strain curves obtained from test-
ing 20 nominally identical specimens and the dashed 
curves represent the averages. Although the actual 
experimental results are obtained in terms of meas-
ured force, axial stress appears on the ordinates of 
Fig. 3a, b. Such stress has been computed assuming a 
uniform distribution and a cross-section area equal to 
0.17 mm2 based on the microscopy images in Fig. 5. 
The mean values and the standard deviation of the 
experimental force at nominal strains of 1% , 3% 5% , 
and 7% are reported in Table 1.

The material was then tested in humid conditions 
at various strain rates, namely of 0.017 s−1 , 0.01 s−1 , 
0.003 s−1 , 0.0017 s−1 and 0.0003 s−1 . Figure 3b shows 
the results obtained in terms of measured stress versus 
nominal strain. The material exhibits a rate-dependent 
behavior. From Fig. 3a, b, it appears that the material 
response is linear for small values of applied load, but 
becomes nonlinear for higher values.

Further insight into the material response can 
be obtained from non-monotonic tensile tests. The 
adopted strain rate value is ± 0.003 s−1 for increas-
ing and decreasing elongation. Five specimens were 
tested. Figure 4 shows the imposed strain history and 
the corresponding stress–strain response for one of 
the 5 specimens.

Upon unloading permanent strains are recorded 
and hysteresis loops during unloading and reloading 
are visible.

From the described experimental results, we can 
interpret the material response as elasto-visco-plastic 
at the scale of the filaments constituting the yarn.

Fig. 2  Percentage of moisture content (MC) versus time for a 
specimen of yarn Y0. The measurement starts from dry condi-
tions and stops when saturation is almost reached



797Meccanica (2024) 59:793–810 

1 3
Vol.: (0123456789)

3  Geometrical model of twisted single‑ply yarns

The linear and nonlinear behavior of twisted yarns is 
strongly dependent on the local fiber orientation, in 
particular on the angle each fiber forms with the yarn 
axis.

In defining the geometry of a single yarn, the 
model usually adopted is that of coaxial-helixes (see 
e.g. [25]). The assumed idealized helical (Z-twist) 
yarn geometry is illustrated in Fig.  5a. Each fiber 
follows a helical path around one of the concentric 
cylinders forming the yarn. All the helical fibers (of 
equal or different radii) have the same pitch h (defined 
as the length along the yarn axis of one turn of twist). 
The following notation is adopted: R = yarn radius; 
� = radius of internal fiber; a = unit vector tangent 

to filament trajectory; {x1, x2, x3} = Cartesian coordi-
nates, with x3 taken along the yarn axis; � (or � ) = 
angle between a(R) (or a(�) ) and the yarn axis; N = 
yarn twist = turns per unit length (with N = 1∕h).

The aforementioned geometric model implies:

The unit tangent vector at each point a(x) hence reads

(1)tan � =
�

R
tan �, tan � = 2�RN.

(2)a =
1�

�2 + (
1

2�N
)2

⎧
⎪⎨⎪⎩

−x2
x1

1∕2�N

⎫
⎪⎬⎪⎭
.

Table 1  Mean values and 
standard deviation of the 
force at different strain 
levels for untwisted yarns at 
0.017 s

−1 strain rate

Humid yarn Y0 Dry yarn Y0

Strain 1% 3% 5% 7% 1% 3% 5% 7%

Mean force [N] 19.25 29.83 39.34 49.14 26.22 52.29 63.29 73.47
Std Dev [N] 0.64 0.87 0.83 3.11 0.62 1.42 1.47 1.59

Fig. 3  Tensile response 
of untwisted yarns (Y0). 
Shaded regions contain the 
experimental data from the 
different tests. a Compari-
son between dry (red) and 
humid conditions (blue) at 
a strain rate of 0.017 s−1 . 
b Experimental results in 
humid conditions at various 
strain rates. (Color figure 
online)

Fig. 4  Cyclic test on 
untwisted yarns at 0.003s−1 : 
a strain history; b stress 
versus strain response
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As recently discussed in [8], the determination of 
the real trajectories would require experimental meas-
urements, e.g. by ad-hoc micro tomography analyses. 
The experimental measures performed in that work 
on nylon yarns show that the inclination angle cor-
responding to the maximum density is a bit lower 
than the one predicted by the helix model (1) and that 
some fibers are more inclined than � in (1). However, 
the patterns of bivariate histograms of the orienta-
tion fiber combined with the radial position, indicate 
a preferential orientation which follows relation (1). 
For the above reason and since micro tomography 
data are not available for the rayon yarns here consid-
ered, the expression (2) will be used.

Furthermore, upon tensile loads, the fiber direc-
tions change and one should consider in general time 
dependent directions a = a(x, t) . In the present work, 
for the sake of simplicity, we will neglect this effect 
and we will refer to the initial directions, only related 
to the initial twist N and to the initial radius R. This 
latter is determined as the radius of a circle of area 
equal to that obtained from the microscopic measure-
ment of the yarn cross-section area shown in Fig. 5b. 
This information is fundamental for the determina-
tion of the stress from the force history obtained from 
the strain-driven experimental tests. We use a radius 
R = 0.233 mm (area A = 0.17 mm2 ) for all the yarns 
considered.

4  Anisotropic elasto‑viscoplastic model

From the experimental tests described in Sect.  2 one 
can draw the following indication for a proper consti-
tutive model: (i) there is an initial linear behavior that 
can be described by linear elasticity; (ii) the subsequent 
phase can be interpreted as elastoplastic, characterized 
by permanent strains; (iii) the yield limit initially grows 
nonlinearly and then almost linearly with the strain, 
suggesting nonlinear hardening, asymptotically tend-
ing to a linear one; (iv) the hardening response is rate-
dependent, showing a visco-plastic behavior; (v) there 
are viscous effects also in the elastic regime as shown 
by the presence of hysteresis loops in the unloading-
reloading cycles. To interpret all these phenomenologi-
cal aspects, in [26] we proposed the one-dimensional 
six-parameter rheological model depicted in Fig. 6.

The model consists of a linear spring (E) in series 
with a Kelvin unit ( ̃E,�̃� ) and with a Bingham viscoplas-
tic unit comprising three elements in parallel: a fric-
tional device ( �y ), a possibly nonlinear hardening spring 
(H) and a viscous dash-pot ( � ). Based on this rheologi-
cal model, the total strain is hence the sum of three con-
tributions: elastic, viscoelastic and viscoplastic:

The generalization of the 1D model to a three-dimen-
sional continuum context is dealt with in Sect.  4.2, 

(3)� = �e + �ve + �vp

Fig. 5  a Definition of 
yarn axis, trajectory of an 
external and internal fiber 
for a Z-twist, and geometric 
parameters; b cross section 
of rayon yarn embedded in 
rubber: definition of equiva-
lent radius R 
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while Sect. 4.1 summarizes the main assumptions and 
limitation of the model .

4.1  Basic assumptions

In order to obtain a 3D material model that can 
describe the yarn behavior in structural analyses of 
rubber composites, we make several simplifying 
assumptions that define the applicability domain. 
Some restrictions could be removed without particu-
lar difficulties, at the price of additional complexity. 

1. The filament or fiber direction a is known from 
the yarn construction at each material point;

2. The yarn deforms in small strain regime; thus the 
fiber directions do not vary with time;

3. Isothermal conditions;
4. The activation of the plastic behavior only 

depends on the stress component acting on the 
fiber direction;

5. The fibers have a very low stiffness when com-
pressed and to account for the differences of 
behavior in tension and compression, one should 
adopt piecewise elasticity in the formulation with 
additional material parameters (see e.g. [27]). 
This is not done here, as in this work we only 
consider numerical simulations of tensile tests.

4.2  Thermodynamic formulation

Let us consider a material composed of a single 
family of fibers, directed along the unit vector a(x) 
in the reference configuration, undergoing small 
strains, under isothermal conditions. Unlike in the 
case of a composite, in which the fibers are embed-
ded in a matrix, here only the fibers are present, 
twisted together to form a single yarn and we use 

the formulation to define an equivalent continuous 
anisotropic material. The model is developed in the 
framework of the thermodynamics of irreversible 
processes with internal variables, and one can refer 
to [28] for a general treatment.

As in the one dimensional case (see Fig. 6), the 
total strain � is expressed through strain additivity 
as the sum of the elastic �e , viscoelastic �ve and vis-
coplastic �vp strains:

As the response of the material depends on the fib-
ers orientation, we assume that the Helmholtz free-
energy (per unit of mass) � depends on the unit vec-
tor a . We postulate a decoupled representation of the 
Helmholtz free-energy density � into “elastic” and 
“inelastic” contributions, respectively denoted as �e 
and �i . Adopting the classic formalism of thermody-
namics with internal variables, � is thus a function of 
state and can be written as follows:

where Vk denotes a set of internal (scalar, vector or ten-
sor) variables, which in the present model describe the 
material hardening. Specifically, in our case, we choose 
to define two internal variables �

�
 and �n� , associ-

ated respectively to a linear and a nonlinear kinematic 
hardening. The observable variables are the total strain 
� and the fiber direction a , while �ve and �vp play the 
role of internal variables. Note that, following the small 
strain hypothesis, a remains fixed in time and thus is a 
space dependent material parameter for our problem.

In relation (5), the elastic contribution �e is 
related to the spring E in the 1D rheological model, 
while the inelastic contribution �i comes from the 
deformation of the viscolelastic Kelvin element, 
with the spring Ẽ in parallel to the dash-pot �̃� , and 
of the viscoplastic Bingham element, composed of a 
slider with yield limit �y in parallel with a spring H 
and a dash-pot � . The inelastic term is thus further 
split into two contributions:

where �ve is the viscoelastic contribution, while the 
term �vp represents the energy locked in the material 
due to microscopic rearrangements related to harden-
ing. The current state of �vp is assumed to be inde-
pendent of the material orientation a.

(4)� = �
e + �

ve + �
vp.

(5)
� = �(�, �ve, �vp,Vk;a) = �e(�

e;a) + �i(�
ve,Vk;a),

(6)�i(�
ve,Vk;a) = �ve(�

ve;a) + �vp(��
,�n�),

Fig. 6  One-dimensional visco-elastic-visco-plastic rheological 
model (six-parameter model)
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As detailed in [29], since the sense of a is immate-
rial, both the elastic and viscoelastic contributions of 
� , respectively �e and �ve , must be even functions of 
a . Accordingly, they can be expressed as functions of 
the second order tensor a⊗ a . Moreover, as the free 
energy must be unmodified if the material and its fib-
ers undergo a rotation, then both �e and �ve must be 
scalar-valued isotropic functions of their arguments 
and can thus be written in terms of the five independ-
ent invariants respectively of �e and a , and of �ve and 
a . Considering a generic second order symmetric ten-
sor S , representing either the elastic strain �e or the 
viscoelastic strain �ve , the five invariants are given by:

where tr(∙) is the trace of ∙.
To obtain linear stress–strain relations, both �e and 

�ve must be positive definite quadratic forms of the 
strain. From relations (7), they will thus only depend 
on the four invariants (I1, I2, I4, I5) , as I3 is of third 
order in its argument S , representing a strain tensor.

For the elastic free energy ��e ( � being the mass 
density), the most general quadratic form in �e reads

and depends on five material parameters: �L,�P are 
the shear moduli respectively along the fibers direc-
tion a (index L) and in the plane of isotropy (orthog-
onal to a , index P), and �, �, � are three material 
constants that can be derived from the more usual 
engineering elastic constants EL , EP , �P , and �PL , as 
shown in “Appendix”. These 5 constants come from 
the generalization to 3D of the spring E. The isotropic 
contribution1 indicated in relation (8) is added to the 
anisotropic contribution which is due to the presence 
of the fibers.

The viscoelastic free-energy is defined similarly to 
(8) as:

(7)

I1(S) = tr(S), I2(S) = tr(S2), I3(S) = tr(S3),

I4(S, a) = tr{S ⋅ a⊗ a} = a ⋅ Sa,

I5(S, a) = tr{S2 ⋅ a⊗ a} = a ⋅ S
2
a,

(8)

��
e
(�e;a) =

1

2
�I2

1
(�e) + �

P
I2(�

e)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

isotropic

contribution

+ �I4(�
e, a)I1(�

e) + 2(�
L
− �

P
)I5(�

e, a) +
1

2
�I2

4
(�e, a)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

anisotropic

contribution

,

1 Note that, in an isotropic material, this would be the only 
term in the Helmholtz free-energy.

where �̃�L, �̃�P, �̃�, �̃�, 𝛽  are five constants representing 
the generalization to 3D of the spring Ẽ.

The viscoplastic contribution ��vp is assumed to 
be a quadratic form in �

�
 and �n�:

with H
�
 and Hn� being positive scalars.

The Clausius-Duhem inequality under isothermal 
conditions can be written as:

or, equivalently, as

(9)

𝜌𝜓ve(�
ve;a) =

1

2
�̃�I2

1
(�ve) + �̃�PI2(�

ve) + �̃�I4(�
ve, a)I1(�

ve)

+ 2(�̃�L − �̃�P)I5(�
ve, a) +

1

2
𝛽I2

4
(�ve, a),

(10)��vp =
1

2
(H

�
�
�
∶ �

�
+ Hn� �n� ∶ �n�),

(11)

� ∶ �̇ − 𝜌

(
𝜕𝜓

e

𝜕�e
∶ �̇

e +
𝜕𝜓

ve

𝜕�ve
∶ �̇

ve

+
𝜕𝜓

vp

𝜕�
�

∶ �̇
�
+

𝜕𝜓
vp

𝜕�
n�

∶ �̇
n�

)
≥ 0.

As relation (12) must hold for any process and the 
strain rate �̇ can be chosen arbitrarily, we have:

(12)

(
� − 𝜌

𝜕𝜓
e

𝜕�e

)
∶ �̇ + 𝜌

(
𝜕𝜓

e

𝜕�e
−

𝜕𝜓
ve

𝜕�ve

)
∶ �̇

ve

+ 𝜌
𝜕𝜓

e

𝜕�e
∶ �̇

vp − 𝜌
𝜕𝜓

vp

𝜕�
�

∶ �̇
�
− 𝜌

𝜕𝜓
vp

𝜕�
n�

∶ �̇
n�

≥ 0

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� = 𝜌
𝜕𝜓

e

𝜕�e

𝜌

�
𝜕𝜓

e

𝜕�e
−

𝜕𝜓
ve

𝜕�ve

�
∶ �̇

ve + 𝜌
𝜕𝜓

e

𝜕�e
∶ �̇

vp

−𝜌
𝜕𝜓

vp

𝜕�
�

∶ �̇
�
− 𝜌

𝜕𝜓
vp

𝜕�
n�

∶ �̇
n�

≥ 0
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The first condition defines the state law for the stress 
tensor � , that is given by:

with C being the elastic stiffness of the material:

where I is the second order unit tensor, I is the fourth 
order unit tensor, and A is a fourth order tensor whose 
components are given by:

The second condition in (13) expresses the require-
ment of non-negativeness of the dissipation and 
defines the thermodynamic forces associated to the 
viscoelastic strain �ve and to the internal variables �

�
 

and �n� . Specifically, one has:

with the latter two representing the current back-
stresses. From the first of relations (17), accounting 
for relation (9), one has:

with

Finally, from the last two relations in (17), using rela-
tions (10) one finds

corresponding to linear relations between the internal 
variables describing the kinematic hardening behav-
ior, and their associated thermodynamic forces.

To automatically fulfill the Clausius-Duhem ine-
quality (12), we adopt the hypothesis of generalized 
normality and we postulate the existence of a non-
negative convex and zero at the origin dissipation 
potential Φ , defined as follows:

(14)� = C ∶ �
e,

(15)
C = 𝜆I⊗ I + 2𝜇PI + 𝛼(a⊗ a⊗ I + I⊗ a⊗ a)

+ 2(𝜇L − 𝜇P)A + 𝛽a⊗ a⊗ a⊗ a

(16)Aijkl =
1

2
(akai�jl + aial�jk + ajak�il + ajal�ik).

(17)
�
ve ∶= �

(
��e

��e
−

��ve

��ve

)
, X

�
∶= �

��vp

��
�

,

Xn� ∶= �
��vp

��n�

,

(18)�
��ve

�𝜺ve
= C̃ ∶ 𝜺

ve,

(19)
C̃ = �̃�I⊗ I + 2�̃�PI + �̃�(a⊗ a⊗ I + I⊗ a⊗ a)

+ 2(�̃�L − �̃�P)A + 𝛽a⊗ a⊗ a⊗ a.

(20)X
�
= H

�
�
�
, Xn� = Hn� �n� ,

In particular, assuming a linear viscoelastic material 
response, the dissipation potential Φve must be a posi-
tive definite quadratic form of �̇ve , while the depend-
ence on the fiber direction is introduced again through 
the invariants defined by relations (7), such that:

with ��L
 , ��P

 , �� , �� , �� being characteristic retardation 
times, and �̃�L, �̃�P, �̃�, �̃�, 𝛽  being the five material con-
stants used for the viscoelastic free-energy (9).

The derivation of Φve gives the thermodynamic force 
�
ve defined in (17) and associated with �ve , such that:

with

By combining relations (17), (18), (13) and (23), one 
has:

The viscoplastic contribution to the dissipation pro-
cess is more easily described in terms of the dual 
potential Φvp∗ , obtained through the Legendre-
Fenchel transform of the dissipation potential Φvp . 
Accordingly, one has:

To consider an elastic domain, the dissipation poten-
tial must depend on the positive part ⟨�⟩ of the acti-
vation (or yield) function � . Furthermore, to account 
for a nonlinear kinematic hardening in the framework 
of generalized standard materials, it is necessary to 
introduce an additional “recall term” depending on 
Xn� and the internal variables �n� in the expression 
of the potential (see [30–32]), considering it as a 
parameter.

(21)
Φ = Φ(�̇ve, �̇vp, �̇

�
, �̇

n�
;a,�

n�
)

= Φve(�̇ve;a) + Φvp(�̇vp, �̇
�
, �̇

n�
;a,�

n�
).

(22)

Φve(�̇ve;a) =
1

2
𝜃𝜆�̃�I

2
1
(�̇ve) + 𝜃𝜇P

�̃�PI2(�̇
ve) + 𝜃𝛼�̃�I4(�̇

ve, a)I1(�̇
ve)

+ 2(𝜃𝜇L
�̃�L − 𝜃𝜇P

�̃�P)I5(�̇
ve, a) +

1

2
𝜃𝛽𝛽I

2
4
(�̇ve, a)

(23)𝝈
ve =

�Φve

��̇�ve
= � ∶ �̇�

ve,

(24)

� = 𝜃𝜆�̃�I⊗ I + 2𝜃𝜇P �̃�P
I + 𝜃𝛼�̃�(a⊗ a⊗ I + I⊗ a⊗ a)

+ 2(𝜃𝜇L �̃�L
− 𝜃𝜇P �̃�P

)A + 𝜃𝛽𝛽a⊗ a⊗ a⊗ a.

(25)�̇�
ve = �

−1 ∶ (𝝈 − C̃ ∶ 𝜺
ve).

(26)

�̇
vp =

𝜕Φvp∗

𝜕�
, �̇

�
= −

𝜕Φvp∗

𝜕X
�

, �̇n� = −
𝜕Φvp∗

𝜕Xn�

.
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Different expressions for the dual dissipation 
potential can be assumed. A common choice, here 
adopted to reduce the number of material param-
eters, is to define a quadratic potential, leading to a 
3D extension of the Bingham model (with nonlinear 
kinematic hardening):

where B is a positive scalar material parameter. Note 
that the term added to � in (27) vanishes when the 
second of the hardening laws (20) is fulfilled.

As proposed in [21], it can be accepted that plas-
tic deformations start when the stress in the fib-
ers direction exceeds a certain value. Accordingly, 
we choose the following expression of the yield 
function

where the equivalent stress �eq represents the modu-
lus of the projection of the over-stress (� − X

�
− Xn�) 

along the fibers, with �y being the initial yield stress 
in tension of the filament material. Note that a yield 
function similar to the one above (relation (28)) 
was also used in [33, 34] to describe the anisotropic 
elasto-plastic behavior of paper and paperboard.

The (associative) flow rule for the viscoplastic 
strain thus becomes:

where sign(∙) gives the sign of ∙ . The term ⟨�⟩
�

 gives 
the magnitude of the visco-plastic strains and hence 
represents the visco-plastic multiplier. Similarly, the 
evolution laws for the kinematic internal variables are 
obtained from the second of (26) with Φvp∗ defined by 
(27) and read

(27)

Φvp
∗
(�,X� ,Xn� ;a,�n�)

=
1

2�

⟨
�(�,X� ,Xn� ;a) +

B

2

(
1

H
n�

X
n� ∶ X

n� − �
n� ∶ �

n�

)⟩2

,

(28)

𝜑 = 𝜑(�,X
�
,Xn�;a) =

||(� − X
�
− Xn�) ∶ (a⊗ a)||

�������������������������������������
𝜎eq

−𝜎y,

(29)

�̇
vp =

⟨𝜑⟩
𝜂

sign((� − X
�
− Xn�) ∶ (a⊗ a))(a⊗ a),

(30)

⎧⎪⎨⎪⎩

�̇
�
= −

𝜕Φvp∗

𝜕X
�

= �̇
vp,

�̇n� = −
𝜕Φvp∗

𝜕Xn�

= �̇
vp −

⟨𝜑⟩
𝜂

B

Hn�

Xn� .

The nonlinear kinematic hardening here described 
was initially introduced by Armstrong and Freder-
ick [35], and then further developed by other authors 
[36]. The non-negativeness of the dissipation can be 
proved, as shown e.g. in [30]. One can easily retrieve 
a linear kinematic hardening by setting the scalar B 
equal to 0.

Remark 1 The associated flow rule (29) assumes 
that no plastic deformations are present in the plane 
of isotropy of the transversely isotropic material. In 
the absence of experimental data, this is the simplest 
choice. Accordingly, one can define a plastic Pois-
son’s coefficient giving the ratio between lateral and 
axial plastic deformations, that is null for the present 
associative model. If this was not the case, then one 
could consider a non-associative model to correctly 
account for the volumetric deformations during the 
plastic phase.

Remark 2 With the above model, the current state 
of the microscopic rearrangements interpreted as kin-
ematic hardening is considered to be independent of 
the material direction a , whereas their evolution is con-
sidered to be active only in the material direction. This 
is due to the particular choice for the yield function �.

5  Parameters identification

The presented model has a total of 20 material 
parameters. These are 5 constants �L,�P, �, �, � (or 
�L,�P,EL,EP, �PL ) governing the instantaneous elas-
tic behavior, 10 constants �̃�L, �̃�P, �̃�, �̃�, 𝛽  and ��L

 , ��P
 , 

�� , �� , �� describing the visco-elastic response of 
the material, 1 initial yield stress �y , 1 visco-plastic 
parameter � , and the 3 scalars H

�
 , Hn� and B describ-

ing the kinematic hardening.
Due to the anisotropic characteristic of the con-

stitutive model, the identification of 15 independent 
visco-elastic material constants is unfeasible if based 
solely on the uniaxial tensile tests. Several assump-
tions can be made in order to reduce the number of 
these parameters. We here describe a possible sim-
plifying strategy. The idea is that the non-isotropic 
effects are due to the fiber-inclination and hence are 
similar for the elastic and visco-elastic behavior. 
In particular one can assume that the 5 constants 
�̃�L, �̃�P, �̃�, �̃�, 𝛽  be proportional to the corresponding 
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�L,�P, �, �, � through a single scalar parameter C̃ 
which can be interpreted as the ratio of the spring 
stiffness Ẽ

E
 of the 1D model. Namely:

Similarly for the viscous effect, a single characteris-
tic retardation time � , which can be interpreted as the 
ratio �̃�∕Ẽ , can be postulated:

With the above assumptions the independent visco-
elastic parameters are reduced to 7. Note that often 
two characteristic times are introduced even in the 
isotropic case to be identified with tension and shear 
creep tests. Of course this could also be done in the 
present case, but due to lack of experimental data we 
keep the previously described simplification.

The total number of free parameters of the material 
model for multi-filament yarns is hence reduced to 
12. Their identification is performed in several steps.

First, the uniaxial tests performed at different strain 
rates on conditioned yarn Y0 specimens are considered. 
The stresses are obtained from the experimental data by 
dividing the force by an area of 0.17 mm2 as shown in 
Fig. 3b. The initial elastic slope allows to fix a condi-
tion for EL and ẼL ; the elastic limit at low strain rate 
gives �y ; the slope of the hardening phase depends on 
H

�
 , while Hn� modifies the initial nonlinear inelastic 

phase; the difference between the almost parallel hard-
ening curves obtained at different strain rates gives the 
viscoplastic coefficient �.

It should be noted that, even though the identifica-
tion procedure on the basis of the uniaxial tests is not 
unique, the above described steps can be used as a 
guideline in the procedure.

Four independent elastic constants governing the 
transversal multiaxial instantaneous material behavior 
remain to be determined. These are, for instance, EP , 
�P , �LP and �L . As the stress–strain curves for yarn Y0 
are independent of these parameters, other tests, e.g. 
those on twisted yarns, have to be considered.

Actually, due to the fiber inclination, the uniaxial 
force applied to twisted yarns produces normal stresses 
in the fibers’ direction and in the transversal direction, 
together with shear stresses between the fibers. Accord-
ingly, all elastic constants influence the reinforce-
ment behavior. The Poisson’s coefficients, due to the 

(31)
�̃�L

𝜇L

=
�̃�p

𝜇p

=
�̃�

𝜆
=

�̃�

𝛼
=

𝛽

𝛽
= C̃

(32)��L
= ��P

= �� = �� = �� = �.

discontinuous nature of a fiber bundle and for the sake 
of simplicity, are assumed to be zero. Different pairs 
of EP and �L values can be identified to obtain a good 
agreement with the uniaxial experiments on twisted 
yarns.

Remark 3 The available experimental data are 
not sufficient to ensure the uniqueness of the param-
eter identification. Other multiaxial tests would be 
required to carry out a more accurate parameter iden-
tification. A sensitivity analysis quantifying the influ-
ence of each material parameter on the final output, as 
those performed in elastic regime e.g. in [37], could 
give further guidance in the parameter identification 
process. This study is however outside the scope of 
this work and will be pursued elsewhere.

6  Numerical analyses

6.1  Implementation of the model

The non-linear elasto-viscoplastic model proposed in 
the present work has been implemented as a user rou-
tine UMAT in the finite element code ABAQUS.

The algorithm is based on the standard elastic pre-
dictor/plastic corrector format. The classic implicit 
backward difference scheme is assumed for time inte-
gration of the constitutive law. Let us consider a time 
interval [tn, tn+1] at a generic Gauss point of the finite 
element mesh. Given the incremental strain Δ� , and 
the values �,�ve,�vp,�

�
,�n� at time tn , the algorithm 

computes the updated quantities at time tn+1 . Rela-
tions (14), (25), (29), (20), (30), and (28) govern the 
viscoelastic-viscoplastic rate constitutive law. The 
backward difference integration procedure gives the 
equations of the finite step:

(33)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝝈n+1 = 𝝈n + C ∶ (Δ𝜺 − Δ𝜺ve − Δ𝜺vp)

Δ𝜺ve = �
−1 ∶ (𝝈n+1 − C̃ ∶ 𝜺

ve
n+1

)Δt

Δ𝜺vp =
⟨𝜑n+1⟩

𝜂
sign((𝝈n+1 − X

�n+1
− Xn�n+1

) ∶ (a⊗ a))(a⊗ a)Δt

X
�n+1

= H
�
(𝜶

�n
+ Δ𝜶

�
)

Xn�n+1
= Hn� (𝜶n�n

+ Δ𝜶n�)

Δ𝜶
�
= Δ𝜺vp

Δ𝜶n� = Δ𝜺vp −
⟨𝜑n+1⟩

𝜂

B

Hn�n+1

Xn�Δt

𝜑n+1 =
���(𝝈n+1 − X

�n+1
− Xn�n+1

) ∶ (a⊗ a)
��� − 𝜎y

.
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In the first phase (predictor) the numerical integra-
tion algorithm evaluates the elastic trial state, assum-
ing the increment to be purely viscoelastic. The next 
phase (corrector) is a check for plastic consistency. 
If the assumption made during the trial step is cor-
rect, then � and �ve are updated at time tn+1 , while �vp, 
�
�
, �n� are kept constant from time tn . Otherwise, a 

return mapping step is applied and all the values �, 
�
ve, �vp , �

�
, �n� are updated at time tn+1.

The single yarn is then modeled as a solid with a 
cylindrical shape, discretized by 3D finite elements.

The local fiber direction a , depending on the yarn 
twist and on  the distance between the considered 
point and the yarn axis according to relation (2), 
is assigned at each Gauss point, once for all, at the 
beginning of the analysis.

In practical engineering applications, as in the case 
of rubber-reinforced composites where multiple yarns 
are present, the association of the correct fiber direc-
tion to each Gauss point of a yarn FE discretization 
can still be performed. In fact, assuming the yarn axis 
geometry as known, the distance of each Gauss point 
in a yarn from the pertinent axis would still be com-
putable, thus allowing the determination of the local 
fiber direction.

6.2  Finite element simulations

The available uniaxial experimental tests on 
untwisted and twisted yarns have been considered. 
First the material parameters are identified using the 
strategy explained in Sect. 5 and then used to simu-
late all tests.

For this, a 2 mm long fiber-reinforced cylindri-
cal bar with circular cross-section was modeled in 
Abaqus (see Fig. 7). The nodes at the bottom face of 

the bar were restrained in tangential and longitudi-
nal directions, but not in radial direction. The nodes 
at the top face were subjected to an imposed longitu-
dinal displacement (equal value for all nodes) while 
being restrained in the tangential direction and free 
in the radial direction. Twenty-noded solid elements 
with reduced integration (C3D20R in Abaqus) were 
used. The new material model, implemented in a 
UMAT, was assigned to the solid and fiber inclination 
was given at each Gauss point.

The results of the model are compared in Fig.  8 
with some of the experimental results.

In Fig.  8a the experimental (dashed lines) and 
numerical (continuous lines) results for monotonic 
tests on yarn Y0 in humid conditions are plotted 
for different strain rates. Note that the experimental 
curves representing average values (relevant to 20 
specimens) are the same already shown in Fig. 3b.

Figure  8b contains a comparison between the 
experimental data (shaded regions) and the numerical 
results (continuous curves) for the monotonic uniax-
ial tensile tests of yarns Y0 and Y48 in humid condi-
tions (respectively Y0H and Y48H), at a strain rate of 
0.017 s−1.

The values of the 12 parameters of the model iden-
tified and used for the simulations of humid rayon are 
reported in Table 2.

The results for twisted yarns are given in terms of 
force versus strain as, in contrast with the result valid 
for the untwisted yarn, the cross-sectional axial stress 
for the twisted yarns is no more uniform. This can be 
seen in Fig.  9a, showing the axial stress in the yarn 
Y48H, for a total axial strain �̄� = 0.1 . In particular, the 
axial stress is higher when moving towards the core of 
the yarn, as the fibers get more and more aligned with 
the yarn axis (and thus with the direction of loading). 

Fig. 7  Finite element 
discretization of yarn Y48; 
the red arrows represent the 
directions of the fibers
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This response results in higher visco-plastic deforma-
tions around the core of the yarn, as shown in Fig. 9a, 
containing a contour plot of the equivalent visco-plas-
tic strain �eq , measured up to the total axial strain �̄� 
and defined as the integral in time of ||�̇vp||.

Tomographic measurements of the radius vari-
ation of a yarn Y48 during a uniaxial tensile test 
were performed in the Pirelli laboratory. The experi-
mental data are reported in Fig.  10. More specifi-
cally, Fig.  10a shows the microscopic images of 
the yarn Y48H cross-section during the test, cap-
tured at 3 levels of axial strain. The tomography 
gives an initial value of the radius R0 = 0.24 mm, in 

reasonable agreement with, but slightly higher than 
the one obtained for the area measured through the 
microscopy reported in Fig. 5 ( R0 = 0.233 mm) and 
used in the simulations. The variation of the radius, 
normalized with the initial value, for varying imposed 
axial strain is reported in Fig. 10b (markers), together 
with the numerical results (continuous curve). The 
model is able to capture, at least qualitatively, the 
experimentally observed radius variation.

As apparent from Fig.  10b, the model predicts a 
nonlinear radial contraction during a uniaxial test. As 
pointed out also in [21], this is due to the chosen flow 
potential (27). In particular, the (associative) flow rule 
(29), derived from the flow potential, depends on the 
backstress. This causes a nonlinear relation between 
the strain along the direction of reinforcement and the 
strain in the plane perpendicular to it (plane of isot-
ropy). The backstress tensor is indeed dependent on 
the viscoplastic strain tensor �vp (as can be checked 
by using relations (20) and (30)). During a tensile 

Fig. 8  Uniaxial tensile tests of yarns in humid conditions a 
untwisted yarn Y0H: comparison between experimental data 
(dashed curves) and numerical results (continuous curves) 
at strain rates 0.017 s−1 , 0.01 s−1 , 0.003 s−1 , 0.0017 s−1 and 

0.0003 s−1 ; b yarns Y0H and Y48H at strain rates of 0.017 s−1 : 
comparison between experimental data (shaded regions) and 
numerical results (continuous curves)

Table 2  Identified material constants (humid conditions)

E
P
 [MPa] E

L
 [MPa] �

P
 [–] �

LP
 [–] �

L
 [MPa] C̃ [–]

450 13000 0 0 10 5.5

� [s] �
y
 [MPa] H

�
[MPa] H

n�
 [MPa] B [–] � [s MPa]

2.80 50 3570 40000 1000 3000

Fig. 9  Contour plots from 
the numerical simulation 
of yarn Y48H, at the axial 
strain �̄� = 0.1 : a axial stress 
( �

3
 ) in MPa; b equivalent 

(visco-)plastic strain ( �eq ). 
(Color figure online)
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test on a bundle of parallel fibers, the evolution of the 
plastic strain components in the plane of isotropy will 
thus depend on their instantaneous values, generating 
a nonlinear radial/axial strain relation.

To check the validity of the presented model, dif-
ferent loading conditions, twist and moisture levels 
have been considered.

In particular the non-monotonic test on yarn Y0 
of Fig.  4 has been simulated: the numerical predic-
tion (shown by a continuous line in Fig. 11) is in good 
agreement with the experimental results obtained for 
five specimens (dashed lines).

In Fig.  12, we show a comparison between 
experimental data (shaded regions) and numerical 
results for a tensile uniaxial test of a yarn Y48H, 
carried out at strain rates of 0.017 s−1 , 0.003 s−1 , 
and 0.0003 s−1.

The material model is able to predict the strain rate 
dependence that is particularly visible in the elastic-
viscoplastic range.

The yarns were also tested in dry conditions (c.f. 
Sect.  2). With reference to such conditions, Fig.  13 
compares the experimental and numerical curves at 
different twist levels.

The numerical curves are obtained by assuming a 
linear dependence of a generic material constant p on 
the degree of saturation Sr:

where pd = p(0) and ph = p(1) are the values of 
the parameter in dry and fully saturated conditions, 
respectively (see e.g. [6]). The fixed material con-
stants in dry conditions are collected in Table 3.

The experimental responses, see Fig. 13, show that 
the twisting makes the yarns more compliant, with 

(34)p(Sr) = pd(1 − Sr) + phSr

a significant decrease of the initial modulus. This is 
captured fairly well by the geometrical model used 
for the numerical simulations.

Fig. 10  Radial contraction 
during a uniaxial tensile test 
of yarn Y48H: a micro-
tomography images; b 
comparison of radius versus 
axial strain from experi-
mental tests (markers) and 
numerical result (continu-
ous)

Fig. 11  Uniaxial non-monotonic test on yarn Y0H at strain 
rate 0.003 s−1 : comparison between experimental data (dashed 
curves) and numerical results (continuous curves)

Fig. 12  Tensile response of yarn Y48H at strain rates 0.017 
s
−1 , 0.003 s−1 , and 0.0003 s−1 . Comparison of the experimental 

(shaded regions) and numerical (continuous) responses
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Remark 4 In Fig. 12, the inelastic response of the 
yarn Y48 in humid conditions is characterized by a 
nonlinear behavior showing a self-stiffening response, 
which becomes more evident at large strains. We 
interpret the hardening effect as a reorientation of the 
fibers along the direction of the stretch, as it is typi-
cally observed in polymeric bulky materials due to 
the alignment of the polymer network [38]. This par-
ticular behavior seems to take place only in humid 
conditions, as it is absent in the experimental curves 
in dry conditions shown in Fig. 13 for twisted yarns.

Remark 5 The knowledge of the local fiber incli-
nation is essential for the proposed modeling. As dis-
cussed in Sect. 3 the coaxial helices model correctly 
reproduces the radial dependence for a given twist, 
but direct experimental measures show that there is 
a variation around this value. Furthermore, the actual 
twist of the yarn can be different from the nominal 
one. To see the sensitivity of the numerical results 
with respect to this parameter, we performed simula-
tions of yarn Y48H (humid conditions) by changing 

the twist of ± 3% . Figure  14 shows that the result-
ing variation of the force is around 3% as well, with 
higher axial force for smaller twist values.

Remark 6 To check the overall consistency of the 
proposed procedure, three different meshes have been 
used for discretizing the cylindrical body representing 
yarn Y48H. These meshes, shown in Fig. 15, are char-
acterized by a different structure in the cross-section 
and different element sizes. The three corresponding 
FE analyses produce global force-strain curves which 
are indistinguishable. The distributions of normal 
longitudinal stresses are in very good agreement as 
shown by the contour maps of Fig. 15 relevant to an 
imposed strain of �̄� = 0.13 . A more detailed exami-
nation of such stresses at the Gauss points nearest to 
the yarn axis shows a maximum relative difference of 
1.3% for three adopted discretizations.

7  Conclusions

In this paper, a new anisotropic viscoelastic-visco-
plastic constitutive model for materials composed of 
a single family of continuous fibers with different ori-
entations has been developed. In particular, the model 
is conceived to describe at the macro-scale the com-
plex mechanical behavior of yarns and cords made of 
thousands of micrometric fibers of rayon. The pecu-
liar geometry of twisted yarns is taken into account by 
prescribing at any point the fiber direction. The cho-
sen continuum theory is based on the additive decom-
position of the strain tensor into elastic, viscoelastic 

Fig. 13  Tensile response of yarns with different twist levels at 
a strain rate of 0.017 s−1 in dry conditions. Comparison of the 
experimental (dashed) and numerical (continuous) responses

Table 3  Identified material constants (dry conditions)

E
P
 [MPa] E

L
 [MPa] �

P
 [–] �

LP
 [–] �

L
 [MPa] C̃ [–]

800 17617 0 0 10 6.7871

� [s] �
y
 [MPa] H

�
 [MPa] H

n�
 [MPa] B [–] � [s MPa]

1.67 80.9 4500 73839 492.27 3000

Fig. 14  Numerical response of yarn Y48H under given mono-
tonically increasing strain for ± 3% variation of twist level
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and viscoplastic parts. The approach here developed 
allows to include, in a unified manner, the effect of 
the peculiar geometry of the yarns and the non-linear, 
dissipative behavior of the single fibers.

The elastic part of the deformation is described 
by an anisotropic Helmholtz free-energy function, 
which is written using a fixed global system of refer-
ence. The main advantage of using this method is that 
no local reference systems have to be defined, as the 
stiffness can be written at a material point concerning 
the fixed global reference system.

The yield surface initiating the viscoplas-
tic behavior is modeled by employing the stress 
measured along the fiber’s direction. The material 
parameters needed by the model are obtained by fit-
ting uniaxial force versus strain data on untwisted 
and twisted yarns. In this work, we focused on the 
development of a model to be used for yarns sub-
jected to different loading conditions, twists and 
moisture levels. With the fitted parameters, the 
model was shown to be able to reproduce the over-
all behavior of the experimental responses.

The model allows us to interpret the effects of 
twist experimentally observed on the macroscopic 
uniaxial response, namely, by increasing the twist, 
(i) the overall elastic stiffness decreases; (ii) the 
limit force of the linear elastic behavior decreases; 
(iii) the change of slope between elastic and elasto-
viscoplastic parts is more gradual. The experimen-
tal evidence (i) is interpreted as a combined effect 
of transverse isotropy (with higher stiffness in fiber 

direction) and fiber inclination inside the yarn (fib-
ers with higher inclination giving a lower contribu-
tion to the overall axial stiffness). The experimental 
evidences (ii) and (iii) can be explained by the non-
uniform inclination of fibers and hence a non-uni-
form state of stress inside the yarn. The fibers close 
to the axis, which are less inclined, are subject to 
higher stress and hence enter into the plastic regime 
first, for lower values of the overall force, then grad-
ually also more external fibers reach the yield limit 
progressively.

Even though in this work explicit reference is 
always made to polymeric yarns, the new transver-
sally isotropic viscoelastic-viscoplastic model can 
also be employed for other materials characterized 
by a single family of continuous fibers.

The proposed model can be improved in at least 
two directions: by considering large deformations, 
and/or by introducing a reorientation of the fibers. 
This latter extension of the model will be pursued 
as a next step.

Albeit the aforementioned developments could 
improve the predictions, the current model can 
already form the basis of a three-dimensional vis-
coelastic-viscoplastic continuum mechanical model 
to be used in finite element procedures for the simu-
lation of the mechanical behavior of yarn-reinforced 
rubber composites. A similar approach can also 
be used for multi-ply yarns, provided that the cor-
rect geometrical description of fiber trajectories is 
inserted into the model.

Fig. 15  Numerical response for three different FE discretizations for yarn Y48H (polar mesh, orthogonal mesh and unstructured 
mesh) at a strain of �̄� = 0.13. (Color figure online)
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Appendix: elastic constants

We report in the following the relations between the 
engineering constants EL , EP , �PL , �P , and the coef-
ficients � , � , � , �P of the invariant-based approach 
used to define the free-energy (5):

with

and

In the above relations, EL is the Young’s modulus 
along the direction of reinforcement, �LP is the Pois-
son’s coefficient governing the deformation in the 
plane of isotropy due to a stress along the direction of 
reinforcement, �PL is the Poisson’s coefficient govern-
ing the deformation in the direction of reinforcement 
due to a stress in the plane of isotropy, EP and �P are 
respectively the Young’s modulus and Poisson’s coef-
ficient in the plane of isotropy.

Relations (35) can be found by expressing the 
material stiffness tensor first with the engineering 
constants EL , EP , �PL , �P , �L and then with the coef-
ficients � , � , � , �L , �P , fixing a certain direction of 
reinforcement a . Since both stiffnesses describe the 
same transversely isotropic material, their compo-
nents must be equal.
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