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Abstract  This paper presents a novel and system-
atic approach for obtaining the angular acceleration 
vector of a moving rigid body. The novelty of the 
proposed method lies in the particular form of writ-
ing the pose of the moving rigid body, as well as in 
the procedure to compute its time derivatives. The 
derivation process goes directly to the very founda-
tions of rotational motion and exploits the phenom-
enological connection between orientation, angular 
velocity, angular acceleration, and spatial motion of 
a rigid body. Hence, as a remarkable result, a sym-
bolic expression for the angular acceleration vector 
arises naturally without the need to solve the inverse 
acceleration problem. The novel and general expres-
sion of the angular acceleration vector involves rela-
tionships between the position, velocity, and accelera-
tion vectors of three non-collinear points of the body, 
which can be easily understood and physically inter-
preted without particular knowledge of specialized 

techniques or advanced mathematical tools. Due to 
its vector nature, the expression for the angular accel-
eration vector proposed in this paper is relatively sim-
ple, as well as, it is very robust against computational 
singularities. Two fully detailed case studies demon-
strate the robustness of the proposed angular acceler-
ation vector compared with other expressions appear-
ing in the literature.

Keywords  Angular acceleration vector · Spatial 
motion · Rigid body · Non-collinear points

1  Introduction

There is a phenomenological connection between ori-
entation, angular velocity, and angular acceleration, 
which are strongly associated with the spatial motion 
of a rigid body. The formal study of rigid body rota-
tions may be traced to 1775 when Euler published 
his seminal work [1], which was rediscovered inde-
pendently by Rodrigues [2] in 1840. Since then, any 
number of discoveries [3–6] have flowed continu-
ously from one author to the next, all of them add-
ing something new to the results obtained by their 
predecessors.

A systematic formulation of the dynamic model of 
a mechanical system is needed to predict and under-
stand its behavior. The effectiveness in formulating 
the equations of motion depends primarily on the 
ability to construct simple and correct mathematical 
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expressions for kinematic quantities such as angular 
velocities and accelerations of rigid bodies, as well 
as, velocities and accelerations of points of moving 
rigid bodies [7]. For example, Euler’s second law 
requires a proper formulation of the angular velocity 
vector and angular acceleration vector of each rigid 
body composing a spatial mechanical system moving 
in a three-dimensional space [8]. One difficulty with 
the study of the angular velocity vector, and the angu-
lar acceleration vector, is that it becomes increasingly 
difficult to formulate as the complexity of the motion 
of the rigid body increases, such as occurs with the 
links of spatial parallel manipulators [9], flight simu-
lators [10], and complex machines, e.g., the turbula 
machine [11], or the human head [12].

A fundamental problem in rigid body kinematics is 
the inverse acceleration problem [13]. This is a very 
challenging problem for spatial motion that consists 
of the determination of the angular acceleration vec-
tor in terms of the position, velocity, and accelera-
tion vectors of three non-collinear points of a moving 
rigid body. As far as we know, very few attempts have 
been reported to solve this problem. Among these 
investigations, regarding vector-based approaches, it 
is fair to highlight the contributions of Condurache 
and Matcovschi [13], Field and Ziwet [14], Soutas-
Little and Inman [15], and Wittenburg [16, 17]. On 
the other hand, Angeles [18–20], and Condurache and 
Matcovschi [21] address the same problem, but with 
a matrix-based approach.

All the derivations [13–21] for the angular accel-
eration vector have much in common and, to a greater 
or lesser extent, all of them follow a general pattern: 
(a) Start from classical and well-known equations 
related to the acceleration state of a rigid body, (b) It 
is required to solve the inverse acceleration problem, 
(c) They do not provide further details about the intrin-
sic nature of the angular acceleration, (d) Involve the 
angular velocity, which, in turn, comes from the veloc-
ity state of a moving rigid body, (e) The denominators 
of the resulting expressions are prone to computa-
tional singularities, and (f) Suffer from a rather heavy 
computational burden associated with all the required 
matrix computations, which significantly obscures the 
geometrical nature of the angular acceleration vector. 
Hence the motivation to devise an alternative and more 
comprehensive approach that overcomes the shortcom-
ings (a)-(f) mentioned above. Furthermore, the objec-
tive is to exploit the fact that angular acceleration is a 

kinematic property related to the acceleration state of 
a moving rigid body, which arises naturally when a 
proper description of the spatial motion of a rigid body 
is carried out.

2 � Description of the spatial motion of a moving 
rigid body

To start with, it is reasonable to think that to obtain a 
good mathematical model of the angular acceleration, 
one must first make a careful description and analysis 
of both, the orientation and the angular velocity of the 
body. On the other hand, a moving rigid body may be 
translating and rotating simultaneously in a general spa-
tial motion. Hence, it is important to correlate the angu-
lar motion of the body with the translational motion of 
any point of the moving body. In this regard, we take 
some ideas from previous investigations [22], which 
deal with the angular velocity of a rigid body in motion.

2.1 � The pose of a moving rigid body

Consider the rigid body shown in Fig. 1, which may be 
moving in any manner with respect to a fixed reference 
frame XYZ. The body has three arbitrary and non-col-
linear points, namely, points 1, 2, and 3, whose location 
with respect to the origin O of the fixed frame XYZ is 
given by position vectors, p1 , p2 , and p3 , respectively.

The pose of the rigid body shown in Fig. 1 can be 
described in terms of the location and orientation of the 
moving frame UVW, fixed to the body, with respect to 
the fixed frame XYZ. On one hand, the location of the 
origin of the moving frame UVW may be defined by 
the position vector of point 1, namely, p1 . On the other 
hand, the orientation of the body is completely deter-
mined once the set of coordinate axes UVW has been 
oriented relative to the fixed reference frame XYZ. Both 
requirements may be stated in terms of the position 
vectors p1 , p2 , and p3 , of the three non-collinear points 
1, 2, and 3, respectively, which are shown in Fig. 1. To 
this end, we define the following unit vectors:

(1)u ≡
p2 − p1√

(p2 − p1) ⋅ (p2 − p1)
=

p2 − p1

L12

(2)m ≡
p3 − p1√

(p3 − p1) ⋅ (p3 − p1)
=

p3 − p1

L13
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where the scalar parameter:

is graphically depicted in Fig. 1.
It is important to remark that unit vectors u , v , and 

w are directed along the axes U, V, and W, respec-
tively, and they are used to describe the relative orien-
tation between frames UVW and XYZ. Furthermore, 
unit vectors u , and m are directly related to the the 
position vectors, p1 , p2 , and p3 , whereas unit vectors 
v , and w can be computed in terms of unit vectors u , 
and m.

We may interpret the pose of a body as a way to 
know about the position of all the points of the body 
in the space. In this regard, consider a typical point 
P, fixed in the body, which is shown in Figs.  1 and 
2. Thus, one may state that the position of point P, 
as seen from XYZ, equals the position of point 1, as 
seen from XYZ, plus the position of point P relative to 
point 1, that is:

where position vector r is used to represent the posi-
tion of an arbitrary point P of the moving body with 
respect to the origin of the moving frame UVW. Thus, 
position vector r maintains a constant magnitude and 
orientation in the UVW frame, that is, its coordinates 
u, v, and w remain fixed even if the body rotates. 

(3)
v ≡

m − (m ⋅ u)u

�
= k1 m − k2 u, k1 ≡

1

�
, k2 ≡

m ⋅ u

�
.

(4)
w ≡ u × v

(5)� ≡
√
{m − (m ⋅ u)u} ⋅ {m − (m ⋅ u)u}

(6)rP∕O = p1 + r

However, its Cartesian coordinates (measured in the 
fixed frame XYZ), namely, x, y, and z, are continu-
ously changing, whereas rotational motion occurs. In 
this way, the position vector r can be expressed with 
respect to the moving frame as follows:

Finally, substitution of Eq. (7) into Eq. (6) yields the 
following result:

which is a vector equation1 related to an arbitrary 
pose of the moving rigid body depicted in Figs. 1, and 
2. This equation clearly shows that position vector p1 , 
and unit vectors u , v , and w can be used to locate all 
the points of the body in space. Moreover, the Eq. (8) 
is the key equation to correlate the angular motion of 
the body, which is represented by rotating unit vectors 
u , v , and w , with the translational motion of any point 
of the moving body. Furthermore, as will be seen 
later, this equation will lead to a clear, simple, and 
systematic way to obtain the velocity and acceleration 
state of the rigid body in motion.

2.2 � The first time derivative of body pose

Since the body-fixed UVW frame translates and 
rotates relative to the XYZ frame, the position vec-
tor p1 , as well as unit vectors u , v and w will change 

(7)
r = u u + v v + ww

(8)rP∕O = p1 + u u + v v + ww.

Fig. 1   Fixed (XYZ) and 
moving (UVW) frames used 
for describing the pose of a 
rigid body

1  It should be noted that Eq. (8) can be equivalently written 
as r

P∕O = p1 + Rr , where the (3 × 3) matrix R ≡ [u v w] 
describes the orientation of the rigid body with respect to ref-
erence frame XYZ, and r ≡ (u, v,w)T.



92	 Meccanica (2024) 59:89–106

1 3
Vol:. (1234567890)

through time, and they may be considered as func-
tions of time, denoted by the symbol t. Therefore, this 
section starts by taking the first time derivative of the 
vector Eq. (6), which is given by:

where (d∕dt)XYZ is used to denote the time derivative 
as seen from XYZ.

On the one hand, the first two terms of Eq. (9) have 
a direct physical interpretation. The time rate change 
of rP∕O , as seen from XYZ, represents the veloc-
ity vector of point P with respect to fixed point O, 
namely, vP∕O , whereas the time rate change of p1 with 
respect to fixed point O, as seen from XYZ, represents 
the velocity vector of point 1, namely, v1∕O . Thus, we 
can express the foregoing statements as follows:

On the other hand, the second term appearing on the 
left-hand side of the Eq. (9) deserves special treat-
ment. To this end, and recalling Eq. (7), we have that:

since the components u, v and w do not change 
through the time. Moreover, when it is clear from 
the discussion what frame is involved for a time 

(9)
(
d rP∕O

d t

)

XYZ

=

(
d p1

d t

)

XYZ

+

(
d r

d t

)

XYZ

(10)vP∕O ≡

(
d rP∕O

d t

)

XYZ

, v1∕O ≡

(
d p1

d t

)

XYZ

.

(11)
(
d r

d t

)

XYZ

= u u̇ + v v̇ + w ẇ

derivative, we will use a dot over a parameter to 
indicate a time derivative of that parameter, e.g., 
d a∕d t ≡ ȧ.

Next, by projecting each time derivative of the 
involved unit vectors onto the axes of the UVW frame, 
we may write:

Furthermore, unit vectors must satisfy the following 
relationships:

as well as:

Then, time differentiation of Eqs. (13) and (14) leads 
to:

Thus, Eq. (12) become:

Substituting Eq. (17) into Eq. (11) we find that:

By resorting to the definition of the cross product 
between two vectors, one may notice that Eq. (18) can 
be written as follows:

Thus, from Eqs. (7) and (16), Eq. (19) becomes:

where first time derivatives of unit vectors, u̇ , v̇ and 
ẇ , can be computed by taking the first time derivative 
of Eq. (1)–(4), respectively, thus yielding:

(12)

u̇ = (u̇ ⋅ u)u + (u̇ ⋅ v)v + (u̇ ⋅ w)w

v̇ = (v̇ ⋅ u)u + (v̇ ⋅ v) v + (v̇ ⋅ w)w

ẇ = (ẇ ⋅ u)u + (ẇ ⋅ v)v + (ẇ ⋅ w)w

(13)u ⋅ u = 1, v ⋅ v = 1, w ⋅ w = 1.

(14)u ⋅ v = 0, u ⋅ w = 0, v ⋅ w = 0.

(15)u̇ ⋅ u = 0, v̇ ⋅ v = 0, ẇ ⋅ w = 0,

(16)u̇ ⋅ v = −u ⋅ v̇, u̇ ⋅ w = −u ⋅ ẇ, v̇ ⋅ w = −v ⋅ ẇ.

(17)

u̇ = −(u ⋅ v̇)v + (u̇ ⋅ w)w

v̇ = +(v̇ ⋅ u)u − (v ⋅ ẇ)w

ẇ = −(u̇ ⋅ w)u + (v ⋅ ẇ)v

(18)
ṙ = {v(v̇⋅u)−w(u̇⋅w)}u+{w(v⋅ẇ)−u(u⋅v̇)}v

+{u(u̇⋅w)−v(v⋅ẇ)}w

(19)
ṙ = −{(v⋅ẇ)u + (u̇⋅w)v + (u⋅v̇)w} × {u u + v v + ww}

(20)ṙ = {(v̇⋅w)u − (u̇⋅w)v + (u̇⋅v)w} × r

Fig. 2   Orientation of moving frame UVW with respect to fixed 
frame XYZ 
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where it is important to remark that unit vectors u̇ , 
and ṁ are directly related to the velocity vectors of 
points 1, 2, and 3, namely, ṗ1 , ṗ2 , and ṗ3 , whereas 
vectors v̇ , and ẇ can be computed in terms of vectors 
u̇ , and ṁ.

Finally, from Eqs. (10), and (20), Eq. (9) becomes:

which may be considered as the vector equation rep-
resenting the first-time derivative of the body pose 
illustrated in Fig.  1. This equation is closely related 
to the velocity state [23] of the rigid body since it pro-
vides enough information to find the velocity of any 
point of the moving rigid body.

2.3 � The second time derivative of body pose

Both sides of the vector Eq. (25) may be differenti-
ated with respect to time to obtain the acceleration 
equation, which is given by:

where

represents the acceleration vector of point P with 
respect to fixed point O, and the acceleration vector 
of point 1 with respect to fixed point O, respectively, 
whereas the second term of the left-hand side of Eq. 
(26) deserves special treatment, that is:

where, we have that:

(21)u̇ =
ṗ2 − ṗ1

L12

(22)ṁ =
ṗ3 − ṗ1

L13

(23)v̇ =k1ṁ − k2u̇

(24)ẇ =u̇ × v + u × v̇

(25)
vP∕O = v1∕O + {(v̇⋅w)u − (u̇⋅w) v + (u̇⋅v)w} × r.

(26)aP∕O = a1∕O + aP∕1

(27)aP∕O ≡

(
d vP∕O

d t

)

XYZ

, a1∕O ≡

(
d v1∕O

d t

)

XYZ

.

(28)aP∕1 ≡

(
d ṙ

d t

)

XYZ

= ṅ × r + n × ṙ.

and the second time derivative of unit vectors, 
namely, ü , v̈ , and ẅ , can be computed by taking the 
first time derivative of Eqs. (21)–(24), respectively, 
thus yielding:

where it is important to remark that unit vectors ü , 
and m̈ are directly related to the acceleration vectors 
of points 1, 2, and 3, namely, p̈1 , p̈2 , and p̈3 , whereas 
vectors v̈ , and ẅ can be computed in terms of vectors 
ü , and m̈.

Equation (30) involves unit vectors u , v , w , as 
well as, their first, and second time derivatives, 
and it is composed of nine vector terms denoted as 
ṅ1, ṅ2,⋯ ṅ9 . In order to improve the readability of the 
article, a detailed computation of each term is pre-
sented in Appendix 1. As shown in that appendix, the 
general idea is to include only u , u̇ , ü , m , ṁ , and m̈ , 
since these vectors are directly related to the position, 
the velocity, and the acceleration of the three non-col-
linear points of the moving rigid body under analysis.

3 � The angular acceleration vector

We are now in a position to derive the expression for 
the angular acceleration vector. To this end, the gen-
eral Eq. (26) is combined with Eqs. (20), (28), and 
(29), thus leading to:

(29)n ≡ (v̇⋅w)u − (u̇⋅w)v + (u̇⋅v)w.

(30)

ṅ = (v̈⋅w)u + (v̇⋅ẇ)u + (v̇⋅w)u̇ − (ü⋅w)v − (u̇⋅ẇ)v − (u̇⋅w)v̇

+ (ü⋅v)w + (u̇⋅v̇)w + (u̇⋅v)ẇ.

ṅ ≡ ṅ1 + ṅ2 + ṅ3 − ṅ4 − ṅ5 − ṅ6 + ṅ7 + ṅ8 + ṅ9.

(31)ü =
p̈2 − p̈1

L12

(32)m̈ =
p̈3 − p̈1

L13

(33)v̈ = k1m̈ − k2ü

(34)ẅ = ü × v + 2 u̇ × v̇ + u × v̈.

(35)aP∕O = a1∕O + ṅ × r + n × (n × r).
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which is an equation closely related to the accelera-
tion state [23] of the moving rigid body since it pro-
vides enough information to find the acceleration of 
any point of the moving rigid body.

A dimensional analysis reveals that Eq. (35) has 
the dimensions of acceleration, and vector ṅ has the 
same units as the angular acceleration. Moreover, 
vector ṅ is indeed the angular acceleration vector, 
whereas vector n is the angular velocity vector. Fur-
thermore, the angular acceleration vector is usually 
denoted by the bold Greek symbol � . Hence, from 
this point, ṅ ≡ � . Thus, a careful collection of all 
the nine terms shown in Eq. (30) yields the follow-
ing result:

where we have the following scalar parameters:

as well as the following vectors:

whose detailed derivations are presented in Appendix 
1.

It is important to remark that Eq. (36) is a novel 
and general expression for computing the angular 
acceleration vector of a rigid body moving in space. 
As far as we know, this equation and its detailed 
derivation have not been reported previously in the 
literature. This equation has remarkable features, 
such as: 

(a)	 This is a result that arose naturally, without the 
need to solve the inverse acceleration problem.

(36)
� = k

2

1
{�1 + �2 + �3 + �4 + �5 + �6 + �7} − k1k2 {�8 + �9}.

(37)

k1 ≡
�
1

�

�
, k2 ≡

�
m ⋅ u

�

�
,

� ≡
√
{m − (m ⋅ u)u} ⋅ {m − (m ⋅ u)u}.

(38)

�1 ≡ (m̈×u)×(u×m)

�2 ≡ ü × {(u ×m) ×m}

�3 ≡ {ṁ ⋅ (u̇ ×m)}u

�4 ≡ {ṁ ⋅ (u ×m)}u̇

�5 ≡ u̇×
{
(u×m)×ṁ

}
�6 ≡ u̇×

{
(u̇×m)×m

}
�7 ≡ u̇×

{
(u×ṁ)×m

}
�8 ≡ (ü⋅u)(u×m)

�9 ≡ (u̇⋅u̇)(u×m)

(b)	 It involves only the position, velocity, and accel-
eration of three non-collinear points of a moving 
rigid body.

(c)	 It does not require the computation of the angu-
lar velocity vector of the moving body. All the 
expressions for the angular acceleration reported 
in [14, 15, 17, 20], require a previous computa-
tion of the corresponding angular velocity vector 
of the moving body.

(d)	 Its denominator is given by a simple scalar 
parameter, namely, �2 , see Eqs. (3), and (5). 
Moreover, it can be proved that � = sin � , where 
� is the angle formed by unit vectors u , and m , 
see Fig. 1. Hence, the parameter � only vanishes 
when the three given points, 1, 2, and 3, are col-
linear, i.e., � = 0◦ , or � = 180◦ , which is not the 
general case treated in this paper. Therefore, it is 
very robust against computational singularities.

(e)	 It has a simple mathematical structure since only 
basic principles of vector calculus were used in 
its formulation.

4 � Representations of the angular acceleration 
vector

In reviewing the literature we found five typical repre-
sentations for the angular acceleration vector, which are 
different from the one given by the Eq. (36). All those 
representations are required to solve the inverse accel-
eration problem in rigid body kinematics [13], and they 
are briefly presented next for completeness purposes.

4.1 � First representation of the angular acceleration 
vector

A first representation of the angular acceleration vector 
is due to Field, and Ziwet [14], which is given by:

(39)

�
FW

=

(
�

FW
⋅ q̈

�
FW

⋅ (p × q)

)
p −

(
�

FW
⋅ p̈

�
FW

⋅ (p × q)

)
q

+

(
(�

FW
⋅ p)(�

FW
⋅ q)

�
FW

⋅ (p × q)

)
�

FW
−

−

(
(�

FW
⋅ �

FW
)(p ⋅ q)

�
FW

⋅(p×q)

)
�

FW
−

(
p ⋅ q̈

�
FW

⋅(p×q)

)
�

FW
.

�
FW

≡ s1 − s2 + s3 − s4 − s5.
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where

is the angular velocity vector of the moving rigid 
body, and p ≡ p2 − p1 , q ≡ p3 − p1 , ṗ ≡ ṗ2 − ṗ1 , 
q̇ ≡ ṗ3 − ṗ1 , p̈ ≡ ṗ2 − p̈1 , and q̈ ≡ p̈3 − p̈1.

4.2 � Second representation of the angular acceleration 
vector

A second representation for the angular acceleration 
vector has been proposed by Soutas-Little and Inman 
[15]. The corresponding formula is as follows:

where

and �SLI denotes the angular velocity vector, which is 
given by:

being:

4.3 � Third representation of the angular acceleration 
vector

Professor Wittenburg proposed a third representation of 
the angular acceleration vector [17]. The corresponding 
formula is as follows:

where

(40)�FW =
ṗ × q̇

ṗ ⋅ q

(41)�SLI =
qB∕A × qC∕A

qB∕A ⋅ rC∕A
, for qB∕A ⋅ rC∕A ≠ 0.

(42)qB∕A ≡ p̈2 − p̈1 − �SLI × {�SLI × (p2 − p1)}.

(43)qC∕A ≡ p̈3 − p̈1 − �SLI × {�SLI × (p3 − p1)}.

(44)rC∕A ≡ p3 − p1.

(45)�SLI =
vB∕A × vC∕A

vB∕A ⋅ rC∕A
, for vB∕A ⋅ rC∕A ≠ 0.

(46)vB∕A ≡ ṗ2 − ṗ1, vC∕A ≡ ṗ3 − ṗ1.

(47)�W1 =
q1∕3 × q2∕3

r3∕1 ⋅ q2∕3
, for r3∕1 ⋅ q2∕3 ≠ 0.

(48)q1∕3 ≡ p̈1 − p̈3 − �W × (ṗ1 − ṗ3).

However, when the denominator of Eq. (47) equals 
zero, in [17] it is proposed the following alternative 
formula:

where

The corresponding angular velocity vector, namely, 
�W , is given by:

where

4.4 � Fourth representation of the angular acceleration 
vector

A fourth representation of the angular acceleration vec-
tor was developed by Angeles [20], and the correspond-
ing formulas are given by:

where

(49)q2∕3 ≡ p̈2 − p̈3 − �W × (ṗ2 − ṗ3).

(50)r3∕1 ≡ p3 − p1.

(51)
�
W2 = �1(p1 − p2) + �2(p2 − p3), for r3∕1 ⋅ q2∕3 = 0.

(52)

𝜇1 ≡

(
1

� ⋅ �

)
{ � ⋅ [ p̈3 − p̈2 − �W × (ṗ3 − ṗ2) ] }.

(53)

𝜇2 ≡

(
1

� ⋅ �

)
{ � ⋅ [ p̈1 − p̈2 − �W × (ṗ1 − ṗ2) ] }.

(54)� ≡ (p1 − p2) × (p3 − p2).

(55)
�W1 =

(ṗ1 − ṗ3) × (ṗ2 − ṗ3)

(p3 − p1) ⋅ (ṗ2 − ṗ3)
,

for (p3 − p1) ⋅ (ṗ2 − ṗ3) ≠ 0,

(56)
�W2 = �3(p1 − p2) + �4(p2 − p3),
for (p3 − p1) ⋅ (ṗ2 − ṗ3) = 0.

(57)
�3 ≡

(

1
� ⋅ �

)

{ � ⋅ (ṗ3 − ṗ2) },

�4 ≡
(

1
� ⋅ �

)

{ � ⋅ (ṗ1 − ṗ2) }.

(58)�A1 = D−1
vec (P̈ −�

2

1
P), for tr(P) ≠ 0.
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and tr(P) denotes the trace of a (3 × 3) matrix P , and I 
is the (3 × 3) identity matrix.

On the other hand, when the denominator of Eq. 
(58) equals zero, the author of [20] proposes an alter-
native formula:

where

and �2

2
≡ �2�2.

4.5 � Fifth representation of the angular acceleration 
vector

A fifth representation of the angular acceleration vec-
tor has been reported by Condurache and Matcovschi, 
[13, 21], and the corresponding formulation is given 
by:

where

D−1 = 𝛼1 I − 𝛽 P2
, 𝛼1 ≡

2

tr(P)
, 𝛽 ≡

4

tr(P)(tr(P2) − tr2(P))
,

P ≡
�
p1 − c p2 − c p3 − c

�
,

Ṗ ≡ [ṗ
ij
] =

�
ṗ1 − ċ ṗ2 − ċ ṗ3 − ċ

�
, P̈ ≡

�
p̈1 − c̈ p̈2 − c̈ p̈3 − c̈

�
,

c ≡
p1 + p2 + p3

3
, ċ ≡

ṗ1 + ṗ2 + ṗ3

3
, c̈ ≡

p̈1 + p̈2 + p̈3

3
,

vec(Ṗ) ≡
1

2

⎡
⎢⎢⎣

ṗ32 − ṗ23

ṗ13 − ṗ31

ṗ21 − ṗ12

⎤
⎥⎥⎦
, �

A1 ≡

⎡
⎢⎢⎣

𝜔1

𝜔2

𝜔3

⎤
⎥⎥⎦
= D−1

vec(Ṗ),

�1 ≡

⎡⎢⎢⎣

0 − 𝜔3 𝜔2

𝜔3 0 − 𝜔1

−𝜔2 𝜔1 0

⎤⎥⎥⎦
.

(59)�A2 = 2 J−1 vec (P̈PT −�
2

2
R), for tr(P) = 0.

J = tr(R) I − R, R ≡ PP
T
, ṖP

T
≡ [q̇

ij
].

vec(ṖPT ) ≡
1

2

⎡⎢⎢⎣

q̇32 − q̇23

q̇13 − q̇31

q̇21 − q̇12

⎤⎥⎥⎦
, �

A2 ≡

⎡⎢⎢⎣

𝜔1

𝜔2

𝜔3

⎤⎥⎥⎦
= 2 J

−1
vec(ṖPT ), �2 ≡

⎡⎢⎢⎣

0 − 𝜔3 𝜔2

𝜔3 0 − 𝜔1

−𝜔2 𝜔1 0

⎤⎥⎥⎦
.

(60)
�CM =

(
1

2

){
r∗
1
× (p̈1 − p̈Q) + r∗

2
× (p̈2 − p̈Q) + r∗

3
× (p̈3 − p̈Q)

}

and position vector pQ denotes the location of an 
arbitrary point Q (a fourth point) of the moving rigid 

body which must be non-coplanar with points 1, 2, 
and 3. Hence, we arbitrarily defined it as follows:

(61)

p̈Q = [ p̈1 ⋅(p1−pQ) + (ṗ1−ṗQ)⋅(ṗ1 − ṗQ) ] r
∗
1

+ [ p̈2 ⋅ (p2−pQ) + (ṗ2−ṗQ)⋅(ṗ2−ṗQ) ] r
∗
2
+

+ [ p̈3 ⋅(p3−pQ) + (ṗ3−ṗQ)⋅(ṗ3 − ṗQ) ] r
∗
3
.

(62)
ṗQ = [ ṗ1 ⋅ (p1−pQ) ] r

∗
1
+ [ ṗ2 ⋅ (p2−pQ) ] r

∗
2

+ [ ṗ3 ⋅ (p3−pQ) ] r
∗
3

(63)

r∗
1
=

(p2−pQ) × (p3−pQ)

�
, r∗

2
=

(p3−pQ) × (p1−pQ)

�
,

r∗
3
=

(p1−pQ) × (p2−pQ)

�
.

(64)� ≡ (p1−pQ) ⋅ [(p2−pQ) × (p3−pQ)].
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Here it is important to note that the formulation of 
Condurache and Matcovschi, [13, 21], is the only 
one that explicitly involves a fourth point of the rigid 
body, which is not the centroid of the set of points 1, 
2, and 3.

5 � First case study

The objective of this section is to show the applica-
tion details of the different approaches to obtain the 
angular acceleration vector. To this end, consider a 
representative example taken from [20]. This exam-
ple provides the position vectors, the velocity vectors, 
and the acceleration vectors of three non-collinear 
points of a moving rigid body:

The goal of this first case study is to obtain the angu-
lar acceleration vector of the corresponding rigid 
body using those approaches shown previously.

5.1 � Angular acceleration of the first representation

Equation (39) is the angular acceleration vector of 
the first representation. The computation of the corre-
sponding angular velocity vector (40) for the numeri-
cal data of this first case study fails from the begin-
ning since the denominator vanishes, that is:

(65)

pQ ≡

�
1

3

��
p1+p2+p3

�
+

(p2−p1) × (p3−p1)

�
,

� ≡
√
{(p2−p1) × (p3−p1)} ⋅ {(p2−p1) × (p3−p1)}, ∀ � ≠ 0.

(66)

p1 =

⎡⎢⎢⎣

1∕2

−
√
3∕6

0

⎤⎥⎥⎦
, p2 =

⎡⎢⎢⎣

0√
3∕3

0

⎤⎥⎥⎦
, p3 =

⎡⎢⎢⎣

−1∕2

−
√
3∕6

0

⎤⎥⎥⎦
,

(67)

ṗ1 =
4 −

√
2

4

⎡
⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎦
, ṗ2 =

4 −
√
3

4

⎡
⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎦
, ṗ3 =

4 +
√
2

4

⎡
⎢⎢⎢⎣

0

0

1

⎤
⎥⎥⎥⎦
,

(68)p̈1 =
1

24

⎡
⎢⎢⎢⎣

−6 + 4
√
3

12 − 3
√
2

0

⎤
⎥⎥⎥⎦
, p̈2 = −

1

24

⎡
⎢⎢⎢⎣

8
√
3 + 3

√
6

3
√
3

0

⎤
⎥⎥⎥⎦
, p̈3 =

1

24

⎡
⎢⎢⎢⎣

6 + 4
√
3

−12 + 3
√
2

0

⎤
⎥⎥⎥⎦
.

and therefore, Eq. (40) fails to compute the angu-
lar velocity vector. However, this vector is required 
to compute the corresponding angular acceleration 
vector. Hence, Eq. (39) is not valid for the particular 
numerical data of this first case study.

5.2 � Angular acceleration of the second 
representation

Equation (41) represents the angular acceleration vec-
tor for the second representation. However, the com-
putation fails from the beginning for the numerical 
data of this first case study since the denominator of 
the corresponding angular velocity vector (45) van-
ishes, that is:

and therefore, Eq. (45) fails to compute the angu-
lar velocity vector. However, this vector is required 
to compute the corresponding angular acceleration 
vector. Hence, Eq. (41) is not valid for the particular 
numerical data of this first case study.

5.3 � Angular acceleration of the third representation

For the angular acceleration vector of the third rep-
resentation, we have two choices, namely, Eqs. (47) 
or (51). However, we need to compute the angular 
velocity vector first. To this end, we observe that 
the denominator of the angular velocity vector �W1 , 
Eq. (55), vanishes for the numerical data of this 
first case study. Hence, we resort to the alternative 
angular velocity vector �W2 , given by Eq. (56), thus 
yielding:

(69)ṗ =
1

4

⎡
⎢⎢⎣

0

0√
2 −

√
3

⎤
⎥⎥⎦
, q =

⎡
⎢⎢⎣

−1

0

0

⎤
⎥⎥⎦
, ṗ ⋅ q = 0.

(70)

v
B∕A =

1

4

⎡
⎢⎢⎢⎣

0

0√
2 −

√
3

⎤
⎥⎥⎥⎦
, r

C∕A =

⎡
⎢⎢⎢⎣

−1

0

0

⎤
⎥⎥⎥⎦
, v

B∕A ⋅ rC∕A = 0.
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Now, since r3∕1 ⋅ q2∕3 ≠ 0 , the angular acceleration 
vector can be computed by the formula (47), which 
yields the following numerical results:

therefore, we see that the final result is given by:

5.4 � Angular acceleration of the fourth representation

The corresponding angular acceleration vector is 
given by Eq. (58). We readily obtain the following 
numerical results for the particular data of the first 
case study:

(71)�W2 =
1

2

⎡
⎢⎢⎣

−1√
2

0

⎤
⎥⎥⎦
.

(72)

q1∕3 =
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

, q2∕3 =
1
2

⎡

⎢

⎢

⎣

−
√

3
1
0

⎤

⎥

⎥

⎦

,

r3∕1 =
⎡

⎢

⎢

⎣

−1
0
0

⎤

⎥

⎥

⎦

, r3∕1 ⋅ q2∕3 =
√

3
2

.

(73)�W1 =

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
rad/s

2
.

P =
1

6

⎡
⎢⎢⎣

3 0 − 3

−
√
3 2

√
3 −

√
3

0 0 0

⎤
⎥⎥⎦
, tr(P) =

1

2
+

√
3

3
, Ṗ =

1

12

⎡
⎢⎢⎣

0 0 0

0 0 0√
3 − 3

√
2 − 2

√
3
√
3 + 3

⎤
⎥⎥⎦
,

�
A1 =

1

2

⎡⎢⎢⎣

−1√
2

0

⎤⎥⎥⎦
, P̈ =

1

24

⎡⎢⎢⎢⎣

−6 + 4
√
3 +

√
6 − 8

√
3 − 2

√
6 6 + 4

√
3 +

√
6

12 − 3
√
2 +

√
3 − 2

√
3 − 12 + 3

√
2 +

√
3

0 0 0

⎤⎥⎥⎥⎦
,

D
−1 =

⎡⎢⎢⎢⎢⎣

6(
√
3+2)

3+2
√
3

0 −
6
√
3

3+2
√
3

−
2
√
3(
√
3+2)

3+2
√
3

4
2
√
3(
√
3−2)

3+2
√
3

0 0
12

3+2
√
3

⎤⎥⎥⎥⎥⎦
, 𝛼1 =

12

3 + 2
√
3

, 𝛽 = −
24

√
3

3 + 2
√
3

.

thus resulting the following angular acceleration 
vector:

5.5 � Angular acceleration of the fifth representation

The corresponding angular acceleration vector is given 
by Eq. (60). In this case there are obtained the follow-
ing numerical results:

which produce the following angular acceleration 
vector:

(74)�A1 =

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
rad/s

2
.

pQ =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

, � = −

√

3
2

, r∗1 =
⎡

⎢

⎢

⎢

⎣

1
−

√

3
3

− 1
3

⎤

⎥

⎥

⎥

⎦

,

r∗2 =
⎡

⎢

⎢

⎢

⎣

0
2
√

3
3
− 1

3

⎤

⎥

⎥

⎥

⎦

, r∗3 =
⎡

⎢

⎢

⎢

⎣

−1
−

√

3
3

− 1
3

⎤

⎥

⎥

⎥

⎦

,

ṗQ =

⎡

⎢

⎢

⎢

⎣

√

2
21
2

1 −
√

3
12

⎤

⎥

⎥

⎥

⎦

, p̈Q =

⎡

⎢

⎢

⎢

⎣

−
√

6
24

−
√

3
24

− 3
4

⎤

⎥

⎥

⎥

⎦

.

(75)�CM =

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
rad/s

2
.
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5.6 � Angular acceleration of the formula proposed in 
this paper

Equation (36) represents the angular acceleration vec-
tor proposed in this paper. The corresponding terms 
for the numerical data of this first case study are the 
following:

which produce the following angular acceleration 
vector:

5.7 � Remarks on the first case study

A careful analysis of the numerical results related to 
previous computations shows that: 

(a)	 The formula proposed in this paper and the for-
mulas that appear in [13, 17], and [20] were 
able to compute the correct numerical value 
of the angular acceleration vector correspond-
ing to the numerical data of this first case study. 
All the formulas produced the same numerical 
result.

L12 = 1, L13 = 1, u =
1

2

⎡
⎢⎢⎣

−1√
3

0

⎤
⎥⎥⎦
, m =

⎡
⎢⎢⎣

−1

0

0

⎤
⎥⎥⎦
, 𝜆 =

√
3

2
, k1 =

2
√
3

3
, k2 =

√
3

3
,

u̇ =
1

4

⎡
⎢⎢⎣

0

0√
2 −

√
3

⎤
⎥⎥⎦
, ṁ =

⎡
⎢⎢⎣

0

0√
2∕2

⎤
⎥⎥⎦
, ü =

1

8

⎡
⎢⎢⎢⎣

2 −
√
6 − 4

√
3

−4 +
√
2 −

√
3

0

⎤
⎥⎥⎥⎦
, m̈ =

1

4

⎡
⎢⎢⎣

2√
2 − 4

0

⎤
⎥⎥⎦
,

�1 =

⎡⎢⎢⎣

0

0

0

⎤⎥⎥⎦
, �2 =

√
3

16

⎡⎢⎢⎣

0

0√
6 + 4

√
3 − 2

⎤⎥⎥⎦
, �3 =

⎡⎢⎢⎣

0

0

0

⎤⎥⎥⎦
, �4 =

√
6

16

⎡⎢⎢⎣

0

0√
2 −

√
3

⎤⎥⎥⎦
,

�5 =

⎡⎢⎢⎣

0

0

0

⎤
⎥⎥⎦
, �6 =

⎡⎢⎢⎣

0

0

0

⎤
⎥⎥⎦
, �7 =

⎡⎢⎢⎣

0

0

0

⎤
⎥⎥⎦
, �8 =

√
3

32

⎡⎢⎢⎣

0

0

2
√
6 − 5

⎤
⎥⎥⎦
, �9 =

√
3

32

⎡⎢⎢⎣

0

0

(
√
3 −

√
2)2

⎤
⎥⎥⎦
.

(76)� =

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
rad/s

2
.

(b)	 The basic equations reported in [14] and [15] 
failed to compute the angular acceleration vector 
corresponding to the numerical data of this first 
case study.

6 � Second case study

The second case study considers a very representa-
tive example taken from [15]. This example pro-
vides the position vectors, the velocity vectors, 
and the acceleration vectors of three non-collinear 
points of a moving rigid body, namely:

which are given in millimeters, millimeters per sec-
ond, and millimeters per second squared, respectively. 

(77)p1 =

⎡⎢⎢⎣

100

100

0

⎤⎥⎥⎦
, p2 =

⎡⎢⎢⎣

300

300

0

⎤⎥⎥⎦
, p3 =

⎡⎢⎢⎣

220

180

0

⎤⎥⎥⎦
,

(78)ṗ1 =

⎡⎢⎢⎣

600

−400

100

⎤⎥⎥⎦
, ṗ2 =

⎡⎢⎢⎣

200

0

0

⎤⎥⎥⎦
, ṗ3 =

⎡⎢⎢⎣

440

−160

40

⎤⎥⎥⎦
,

(79)p̈1 =

⎡⎢⎢⎣

850

1200

−240

⎤⎥⎥⎦
, p̈2 =

⎡⎢⎢⎣

200

200

0

⎤⎥⎥⎦
, p̈3 =

⎡⎢⎢⎣

420

760

−140

⎤⎥⎥⎦
.
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The objective of this second case study is to obtain 
the angular acceleration vector of the moving rigid 
body using all five formulas shown previously.

6.1 � Angular acceleration of the first representation

Equation (39) represents the angular accelera-
tion vector of the first representation. This formula 
requires the following numerical computations:

which produce the following numerical result for the 
angular acceleration vector:

6.2 � Angular acceleration of the second 
representation

The corresponding angular acceleration vector is 
given by Eq. (41). The numerical values associated 
with this formula are the following:

and we get the following angular acceleration vector:

p =

⎡
⎢⎢⎣

200

200

0

⎤
⎥⎥⎦
, q =

⎡
⎢⎢⎣

120

80

0

⎤
⎥⎥⎦
, ṗ =

⎡
⎢⎢⎣

−400

400

−100

⎤
⎥⎥⎦
, q̇ =

⎡
⎢⎢⎣

−160

240

−60

⎤
⎥⎥⎦
, p̈ =

⎡
⎢⎢⎣

−650

−1000

240

⎤
⎥⎥⎦
,

q̈ =

⎡
⎢⎢⎣

−430

−440

100

⎤
⎥⎥⎦
, �FZ =

⎡
⎢⎢⎣

0

1∕2

2

⎤
⎥⎥⎦
, s1 =

⎡
⎢⎢⎣

1∕4

1∕4

0

⎤
⎥⎥⎦
, s2 =

⎡
⎢⎢⎣

3∕20

1∕10

0

⎤
⎥⎥⎦
,

s3 =

⎡⎢⎢⎣

0

−1∕8

−1∕2

⎤
⎥⎥⎦
, s4 =

⎡⎢⎢⎣

0

−85∕16

−85∕4

⎤
⎥⎥⎦
, s5 =

⎡⎢⎢⎣

0

87∕16

87∕4

⎤
⎥⎥⎦
.

(80)�FZ =

⎡⎢⎢⎣

1∕10

−1∕10

−1

⎤⎥⎥⎦
rad/s

2
.

v
B∕A =

⎡
⎢⎢⎢⎣

−400

400√
2 − 100

⎤
⎥⎥⎥⎦
, v

C∕A =

⎡
⎢⎢⎢⎣

−160

240

−60

⎤
⎥⎥⎥⎦
, r

C∕A =

⎡
⎢⎢⎢⎣

120

80

0

⎤
⎥⎥⎥⎦
,

�
SLI

=

⎡
⎢⎢⎢⎣

0

1∕2

2

⎤⎥⎥⎥⎦
, q

B∕A =

⎡
⎢⎢⎢⎣

200

−200

40

⎤⎥⎥⎥⎦
, q

C∕A =

⎡
⎢⎢⎢⎣

80

−120

20

⎤⎥⎥⎥⎦
.

(81)�SLI =

⎡⎢⎢⎣

1∕10

−1∕10

−1

⎤⎥⎥⎦
rad/s

2
.

6.3 � Angular acceleration of the third representation

The angular acceleration vector for the third repre-
sentation is given by Eq. (47). The numerical values 
associated with this formula are the following:

Now, since r3∕1 ⋅ q2∕3 ≠ 0 , the angular acceleration 
vector can be computed by the formula (47), which 
yields the following numerical results:

thus, we see that the final result is given by:

6.4 � Angular acceleration of the fourth representation

Equation (58) is the basic formula for the angular accel-
eration vector of the fourth representation. A quick cal-
culation of the matrix P for the particular data of the 
second case study reveals that:

(82)�W1 =

⎡
⎢⎢⎣

0

1∕2

2

⎤
⎥⎥⎦
.

(83)

q1∕3 =

⎡
⎢⎢⎣

−80

120

−20

⎤
⎥⎥⎦
, q2∕3 =

⎡
⎢⎢⎣

120

−80

20

⎤
⎥⎥⎦
,

r3∕1 =

⎡⎢⎢⎣

120

80

0

⎤⎥⎥⎦
, r3∕1 ⋅ q2∕3 = 8000.

(84)�W1 =

⎡⎢⎢⎣

1∕10

−1∕10

−1

⎤⎥⎥⎦
rad/s

2
.
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but the term tr(P) is part of the denominator of the 
parameters �1 , and � , which are related to the angular 
acceleration vector given by Eq. (58). Therefore, we 
have to resort to the alternative formula of the angular 
acceleration vector (59), which produces the follow-
ing numerical results:

and, finally, it is obtained the following angular accel-
eration vector:

6.5 � Angular acceleration of the fifth representation

The corresponding angular acceleration vector is given 
by Eq. (60). In this particular case, the following results 
are obtained:

(85)P =
1

3

⎡
⎢⎢⎣

−320 280 40

−280 320 − 40

0 0 0

⎤
⎥⎥⎦
, tr (P) = 0.

R =
1

3

⎡
⎢⎢⎣

60800 59200 0

59200 60800 0

0 0 0

⎤
⎥⎥⎦
, tr (R) =

121600

3
, J−1 =

⎡
⎢⎢⎢⎣

19

20000

37

40000
0

37

40000

19

20000
0

0 0
3

121600

⎤
⎥⎥⎥⎦
,

ṖPT =
1

3

⎡⎢⎢⎣

−118400 − 121600 0

121600 118400 0

−30400 − 29600 0

⎤
⎥⎥⎦
, �A2 =

⎡⎢⎢⎣

0

1∕2

2

⎤
⎥⎥⎦
, �2 =

1

2

⎡⎢⎢⎣

0 − 4 1

4 0 0

−1 0 0

⎤
⎥⎥⎦
.

(86)�A2 =

⎡⎢⎢⎣

1∕10

−1∕10

−1

⎤⎥⎥⎦
rad/s

2
.

pQ =

⎡⎢⎢⎣

620

3
580

3

−1

⎤⎥⎥⎦
, 𝜎 = −8000, r∗

1
=

⎡
⎢⎢⎢⎣

−
3

200
1

100
1

3

⎤
⎥⎥⎥⎦
, r∗

2
=

⎡
⎢⎢⎢⎣

−
1

100
3

200
1

3

⎤
⎥⎥⎥⎦
, r∗

3
=

⎡
⎢⎢⎢⎣

1

40

−
1

40
1

3

⎤
⎥⎥⎥⎦
,

ṗQ =

⎡⎢⎢⎢⎣

2477

6

−
560

3
140

3

⎤⎥⎥⎥⎦
, p̈Q =

⎡⎢⎢⎢⎣

4901

10
7191

10

−
1517

12

⎤⎥⎥⎥⎦
.

which produce the following angular acceleration 
vector:

(87)�CM =

⎡
⎢⎢⎣

1∕10

−1∕10

−1

⎤
⎥⎥⎦
rad/s

2
.

6.6 � Angular acceleration of the formula proposed in 
this paper

Equation (36) represents the angular acceleration vec-
tor proposed in this paper. The corresponding computa-
tions for the numerical data of the second case study are 
the following:
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which produce the following angular acceleration 
vector:

6.7 � Remarks on the second case study

A detailed analysis of all the numerical results related 
to the previous computations shows that: 

(a)	 The equations reported in [13–15, 17], and the 
formula proposed in this paper were able to 
compute the angular acceleration vector cor-
responding to the numerical data of the second 
case study. All the formulas produced the same 
numerical result.

(b)	 Only the basic formula proposed in [20] failed 
to compute the angular acceleration vector cor-
responding to the numerical data related to the 
second case study. However, the alternative for-
mula shown in [20] produces the correct numeri-
cal value of the angular acceleration vector.

L12 = 200
√
2mm, L13 = 40

√
13mm, u =

√
2

2

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦
, m =

√
13

13

⎡
⎢⎢⎣

3

2

0

⎤
⎥⎥⎦
,

𝜆 =

√
26

26
, k1 =

√
26, k2 = 5, u̇ =

√
2

4

⎡
⎢⎢⎣

−4

4

−1

⎤
⎥⎥⎦
, ṁ =

√
13

26

⎡
⎢⎢⎣

−8

12

−3

⎤
⎥⎥⎦
,

ü =

√
2

40

⎡
⎢⎢⎣

−65

−100

24

⎤
⎥⎥⎦
, m̈ =

√
13

52

⎡
⎢⎢⎣

−43

−44

10

⎤
⎥⎥⎦
, �1 =

1

52

⎡
⎢⎢⎣

−5

−5

0

⎤
⎥⎥⎦
,

�2 =

⎡
⎢⎢⎢⎣

9

65
6

65
79

104

⎤
⎥⎥⎥⎦
, �3 =

1

13

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦
, �4 =

1

104

⎡
⎢⎢⎣

−12

12

−3

⎤
⎥⎥⎦
,

�5 =
1

26

⎡⎢⎢⎣

2

−3

−20

⎤⎥⎥⎦
, �6 =

1

26

⎡⎢⎢⎣

−2

3

20

⎤⎥⎥⎦
, �7 =

1

26

⎡⎢⎢⎣

0

−5

−20

⎤⎥⎥⎦
,

�8 =
33

√
26

208

⎡⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
, �9 =

33
√
26

208

⎡⎢⎢⎣

0

0

−1

⎤
⎥⎥⎦
.

(88)� =

⎡⎢⎢⎣

1∕10

−1∕10

−1

⎤⎥⎥⎦
rad/s

2
.

7 � Conclusions

This paper presented a systematic and detailed 
approach for the computation of the angular accelera-
tion vector of a rigid body moving in space. Moreo-
ver, the proposed approach systematically groups 
some desirable features, which leads to a simpler and 
better way of conceiving and understanding the cor-
relation that exists between the rotational motion of 
a rigid body and the velocity and acceleration of an 
arbitrary point of the body. Some advantages of the 
proposed approach are the following: 

(1)	 The novelty of the proposed method lies in the 
particular form of writing the pose of the moving 
rigid body, as well as in the procedure to com-
pute its time derivatives. As a result, the method 
leads naturally to obtaining a novel expression of 
the angular acceleration vector, where it is not 
required to solve the inverse acceleration problem 
in rigid body kinematics [13].

(2)	 The integrated nature of the proposed approach 
may help to visualize the physical connection 
between rotation, angular velocity, and angular 
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acceleration, which are present during the spa-
tial motion of a rigid body. On the one hand, the 
proposed method treats the rotational phenom-
enon in a way that agrees directly with physical 
insight. On the other hand, the approach allows 
us to correlate the angular motion of the body 
with the translational motion of any point of the 
moving body.

(3)	 The approach presented in this paper does not 
require the computation of the angular veloc-
ity vector of the moving body. However, all the 
representations of the angular acceleration vec-
tor reported in [14, 15, 17], and [20] requires the 
computation of the angular velocity vector. This 
issue may represent a serious drawback since 
obtaining the angular velocity vector may lead to 
computational singularities.

(4)	 A singularity occurs when the denominator of 
the angular acceleration vector equals zero. The 
denominators of the angular acceleration vec-
tors reported in [14, 15, 17], and [20] involves 
several vectors, in consequence, they are sensi-
tive to singularities. That is because these results 
come from an intensive vector and matrix algebra 
manipulation of preconceived equations of clas-
sical kinematics. On the other hand, the denomi-
nator of the expression for the angular accelera-
tion vector proposed in this paper is very simple, 
namely, the scalar parameter �2 , and therefore, it 
is very robust against singularities. It may pro-
duce a singularity if, and only if, the three points 
of the body are collinear.

Last, the authors hope that the present contribution 
may help to a better understanding of the accelera-
tion analysis of complex multibody systems, such 
as machines, mechanisms, parallel robots, and the 
human body.
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Appendix 1

The objective of this appendix is to present a detailed 
derivation of the nine vector terms ṅ1, ṅ2,⋯ ṅ9 
involved into Eq. (30). To this end, the general idea is 
to include only u , u̇ , ü , m , ṁ , and m̈ , since these vec-
tors are directly related to the position, the velocity, 
and the acceleration of the three non-collinear points 
of the moving rigid body under analysis.

(1)	 Computation of the first term, ṅ1.

The first term, namely, ṅ1 , has been previously 
defined in Eq. (30), and it may be handled as follows: 

 By using vector product identities, we have that: 

 where 

 In this way, according to the rules of cross vector 
products, Eq. (89) may be written as follows: 

(2)	 Computation of the second term, ṅ2.

The algebraic handling of the second term, namely, 
ṅ2 , is described below: 

 where 

 Thus, vector ṅ2 becomes: 

(89)
ṅ1 ≡ (v̈⋅w)u = {(k1m̈ − k2ü) ⋅ (u × v)}u

= k1{m̈ ⋅ (u × v)}u − k2{ü ⋅ (u × v)}u.

(90)
(u×v)×(u×m̈) = {m̈⋅(u×v)}u − {u⋅(u×v)}m̈

= {m̈⋅(u×v)}u, u⋅(u×v) = 0.

(91)
(u×v)×(u×ü) = {ü ⋅ (u×v)}u − {u ⋅ (u×v)}ü

= {ü ⋅ (u×v)}u, u ⋅ (u×v) = 0.

(92)
u×v = u×(k1m − k2u) = k1(u×m)

− k2(u×u) = k1(u×m), u×u = 0.

(93)ṅ1 = k2
1
(m̈×u)×(u×m) − k1k2 (ü×u)×(u×m).

(94)
ṅ2 ≡ (v̇⋅ẇ)u = {(k1ṁ − k2u̇) ⋅ (u̇ × v + u × v̇)}u

(95)
u̇ × v = u̇ × (k1m − k2u) = k1(u̇ ×m) − k2(u̇ × u)

(96)
u × v̇ = u × (k1ṁ − k2u̇) = k1(u × ṁ) − k2(u × u̇)
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 Next, by resorting to the following vector product 
identity, it is found that: 

 Therefore, it is finally obtained that: 

(3)	 Computation of the third term, ṅ3.

This section shows the computation of the third term, 
namely, ṅ3 . The process begins with the following 
expression: 

 where 

 Then, the third term can be expressed as: 

(4)	 Computation of the fourth term, ṅ4.

The algebraic manipulation of the fourth term is as 
follows: 

 Recalling the following vector product identities: 

 Having laid the necessary groundwork, we get the 
following result: 

(97)ṅ2 = k2
1
{ṁ ⋅ (u̇ ×m)}u − k1k2 {u̇ ⋅ (u × ṁ)}u

(98)
(u̇×u)×(u×ṁ)={u̇⋅(u×ṁ)}u−{u⋅(u×ṁ)}u̇

={u̇⋅(u×ṁ)}u, u⋅(u×ṁ)=0.

(99)ṅ2 = k2
1
{ṁ ⋅ (u̇ ×m)}u − k1k2 (u̇×u)×(u×ṁ).

(100)ṅ3 ≡ (v̇⋅w)u̇ = {(k1ṁ − k2u̇) ⋅ (u × v)}u̇

(101)
u×v = u×(k1m − k2u) = k1(u×m)

− k2(u×u) = k1(u×m), u×u = 0.

(102)ṅ3 = k2
1
{ṁ ⋅ (u ×m)}u̇ − k1k2 {u̇ ⋅ (u ×m)}u̇.

(103)

ṅ4 ≡ (ü⋅w)v = {ü ⋅ (u × v)}v = {ü ⋅ (k1u ×m)}(k1m − k2u)

ṅ4 = k
2

1
{ü ⋅ (u ×m)}m − k1k2 {ü ⋅ (u ×m)}u.

(104)(ü×m)×(u×m)={ü⋅(u×m)}m−{m⋅(u×m)}ü={ü⋅(u×m)}m, m⋅(u×m)=0.

(105)(ü×u)×(u×m)={ü⋅(u×m)}u−{u⋅(u×m)}ü={ü⋅(u×m)}u, u⋅(u×m)=0.

(5)	 Computation of the fifth term, ṅ5.
The fifth term can be formulated in a way that 

yields a convenient vector expression, which starts 
with the relation: 

 where 

 Then Eq. (107) becomes: 

 To complete the reduction process, we now use the 
well-known vector product identity: 

 Thus, the sought expression is, therefore: 

(6)	 Computation of the sixth term, ṅ6.

In this section, we examine another means of 
expressing the so-called sixth term. To this end, in the 
first instance, we have the following equation: 

(106)ṅ4 = k2
1
(ü×m)×(u×m) − k1k2 (ü×u)×(u×m).

(107)

ṅ5 ≡ (u̇⋅ẇ)v = {u̇ ⋅ (u̇ × v + u × v̇)}

v = {u̇ ⋅ (u̇ × v) + u̇ ⋅ (u × v̇)}v

ṅ5 = {u̇ ⋅ (u × v̇)}v, u̇ ⋅ (u̇ × v) = 0.

(108)
u × v̇ = u × (k1ṁ − k2u̇) = k1(u × ṁ) − k2(u × u̇)

(109)
u̇⋅(u×v̇)=k1{u̇⋅(u×ṁ)}−k2{u̇⋅(u×u̇)}

=k1{u̇⋅(u×ṁ)}, u̇⋅(u×u̇)=0.

(110)
ṅ5 = k1 {u̇ ⋅ (u×ṁ)}(k1m − k2u)

= k
2

1
{u̇ ⋅ (u × ṁ)}m − k1k2 {u̇ ⋅ (u × ṁ)}u.

(111)
(u̇×u)×(u×ṁ)={u̇⋅(u×ṁ)}u − {u⋅(u×ṁ)}

u̇={u̇⋅(u×ṁ)}u, u⋅(u×ṁ) = 0.

(112)ṅ5 = k2
1
{u̇ ⋅ (u × ṁ)}m − k1k2 (u̇×u)×(u×ṁ).
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 and, after some vector algebra, we obtain the final 
result given by: 

(7)	 Computation of the seventh term, ṅ7.
In this section, we analyze the mathematical form 

associated with the seventh term described in Eq. 
(30), namely: 

 The first term of the above equation may be conveni-
ently transformed by the following vector identity: 

 Thus, the seventh term is given by: 

(8)	 Computation of the eighth term, ṅ8.

We now consider an alternative derivation of 
the formula for the eighth term that was previously 
defined. The procedure is as follows: 

 To get a more convenient form of the first term of 
the above equation, we resort to the following vector 
identity: 

 Therefore, the eighth term gets the following form: 

(113)

ṅ6 ≡ (u̇⋅w)v̇ = {u̇⋅(u × v)}v̇ = {u̇⋅(k1u ×m)}v̇

= {u̇⋅(k1u ×m)}(k1ṁ − k2u̇)

(114)ṅ6 = k2
1
{u̇ ⋅ (u ×m)}ṁ − k1k2 {u̇ ⋅ (u ×m)}u̇.

(115)
ṅ7 ≡ (ü⋅v)w = {ü⋅(k1m − k2u)}w = {ü⋅(k1m − k2u)}(u × v)

ṅ7={ü⋅(k1m − k2u)}(k1u ×m)=k2
1
(ü ⋅m)(u ×m)−k1k2 (ü ⋅ u)(u ×m)

(116)
ü × {(u ×m) ×m} = (ü ⋅m)(u ×m) − {ü ⋅ (u ×m)}m

(117)
ṅ7 = k

2

1
ü × {(u ×m) ×m}

+ k
2

1
{ü ⋅ (u ×m)}m − k1k2 (ü ⋅ u)(u ×m).

(118)
ṅ8 ≡ (u̇⋅v̇)w = {u̇⋅(k1ṁ − k2u̇)}w = {u̇⋅(k1ṁ − k2u̇)}(u × v)

ṅ8={u̇⋅(k1ṁ−k2u̇)}(k1u×m)=k2
1
(u̇ ⋅ ṁ)(u ×m)−k1k2(u̇⋅u̇)(u×m)

(119)
u̇ × {(u ×m) × ṁ} = (u̇ ⋅ ṁ)(u ×m) − {u̇ ⋅ (u ×m)}ṁ

(120)
ṅ8 = k21 u̇ × {(u ×m) × ṁ} + k21 {u̇ ⋅ (u ×m)}ṁ − k1k2 (u̇ ⋅ u̇)(u ×m).

(9)	 Computation of the ninth term, ṅ9.

This section is dedicated to finding an alternative 
formula for the ninth term defined in Eq. (30). This 
term can be expressed as: 

 where 
(121)

ṅ9 ≡ (u̇⋅v)ẇ = {u̇⋅(k1m − k2u)}ẇ = {k1(u̇⋅m) − k2(u̇⋅ u)}(u̇ × v + u × v̇)

(122)
u̇ × v = u̇ × (k1m − k2u) = k1(u̇ ×m) − k2(u̇ × u)

(123)
u × v̇ = u × (k1ṁ − k2u̇) = k1(u × ṁ) − k2(u × u̇)

 From these relationships, we have that: 

 The algebraic process continues using the following 
two vector identities: 

 By using the foregoing identities it is obtained the 
final result given by: 
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