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Abstract In this paper, the propagation characteris-
tics of a multi-physical fields coupled Rayleigh sur-
face wave in a semi-infinite piezoelectric medium 
covering with a functionally gradient piezoelectric 
semiconductor layer are investigated. First, we can 
get state transfer equation of piezoelectric semi-
conductor material from constitutive and governing 
equations. The transfer and stiffness matrices in the 
piezoelectric semiconductor material and the piezo-
electric material based on the state vector can be got 
by solving state transfer equation.  Furthermore, by 
combining these matrices of the functionally gradi-
ent piezoelectric semiconductor covering layer and 
the homogeneous piezoelectric half-space, it can be 
obtained that the total surface stiffness matrix of the 
Rayleigh wave. Last, it can be obtained that the dis-
persion curve relation from electrical boundary con-
ditions and mechanical stress freedom. The veloc-
ity equations of Rayleigh surface waves propagating 
along x-direction under different electrical boundary 
conditions and five types of gradient profiles of pie-
zoelectric semiconductor layers are presented. The 

effects of gradient variation, stable carrier concentra-
tion, bias electric fields, and surface boundary con-
ditions on Rayleigh surface waves are investigated. 
The wave propagation characteristics obtained in this 
paper have certain theoretical guiding significance for 
the development of the surface wave devices made of 
semiconductor materials.
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1 Introduction

The widespread adoption of surface acoustic wave 
(SAW) devices in electronic, information, commu-
nication media, and various other fields has resulted 
in a surge in demand. These devices offer numerous 
advantages, including ease of production, high sensi-
tivity, and compact size [1–4]. Among these devices, 
those equipped with a piezoelectric half-space or 
overlayer stand out as particularly significant. These 
acoustic devices utilize piezoelectric materials as 
their primary covering layers, making them a focal 
point of extensive research and investigation. Sharma 
[5] studied the characteristics of the Bleustein–Guly-
aev wave propagating in a nonlocal piezoelectric lay-
ered structure. Mansfel’d [6] researched selection of 
modes of a piezoelectric layer in a composite acoustic 
resonator using bulk acoustic waves. Xu and Fu [7] 
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studied enhanced coupling coefficient in dual-mode 
ZnO/SiC surface acoustic wave devices with par-
tially etched piezoelectric layer. Xu and Fang et al. [8] 
researched effect on coupling coefficient of diamond-
based surface acoustic wave devices using two layers 
of piezoelectric materials of different widths. In addi-
tion, the propagation of surface waves in piezoelectric 
media has received more attention from scholars, this 
includes propagation in piezoelectric half-spaces as 
well as propagation in piezoelectric overlays. Singh 
et al. [9] studied propagation characteristics of trans-
verse surface wave in a heterogeneous layer cladded 
with a piezoelectric stratum and an isotropic sub-
strate. Jin et  al. [10] researched the propagation of 
love waves with the influence of imperfect interface 
in piezoelectric layered structures. Manna [11] stud-
ied the propagation characteristics of love wave in 
a structure composed of a piezoelectric cover layer 
and an inhomogeneous elastic half space. Chaudhary 
et  al. [12] researched the propagation of Rayleigh 
wave in piezoelectric layer overlying in a orthotropic 
substratum. Liu[13] et  al. researched propagation of 
shear horizontal surface waves in a layered piezoelec-
tric half space with an imperfect interface. Chen [14] 
studied surface effect on Bleustein-Gulyaev wave in 
a piezoelectric half-space. Yang and Kong[15] stud-
ied love waves in a piezoelectric half-space with an 
anisotropic elastic layer. All these studies have been 
made to improve the accuracy of the SAW devices.

During the research process, it is found that some 
piezoelectric materials exhibit obvious semicon-
ductor properties, which affect the accuracy of the 
research results. In 1962, White [16] discussed the 
propagation characteristics of the surface elastic 
waves in the piezoelectric semiconductor, and firstly 
predicted the increase or decrease effect of bias 
electric field on elastic waves. This shows that, the 
wave propagation in the piezoelectric semiconductor 
materials does have obvious unique characteristics 
compared with that in the piezoelectric materials. 
Yang and Zhou [17] studied the wave propagation 
characteristics in a piezoelectric ceramic slab sand-
wiched by two semiconductor layers, and found that 
the semiconductor properties of piezoelectric materi-
als can cause the loss of dispersion and harmony. Gu 
and Jin [18] investigated the shear-horizontal surface 
waves propagating in a piezoelectric semiconductor 
half space, and found that semiconductor effects have 
influence on the wave velocity, and cause dispersion 

or attenuation of waves. Jiao and Wei [19] studied 
the wave propagating in a piezoelectric semicon-
ductor plate sandwiched between two piezoelectric 
half spaces. Sharma et  al. [20] studied the propaga-
tion characteristics of thermoelastic diffusive surface 
waves in a semiconductor half-space. The adoption of 
the piezoelectric semiconductor in SAW devices and 
so on can provide some new ideas for the develop-
ment of novel surface acoustic wave devices.

As a composite structure, there are two completely 
different materials are bonded together in the over-
lay structure, which leads to a mismatch of physical 
properties at the interface. Tian et al. [21] researched 
the effect of the imperfect interface on the SH wave 
propagation in multilayered piezoelectric semicon-
ductor layers. A pn-junction will appear at the inter-
face when a p-type semiconductor and an n-type 
semiconductor bonded [22], and a Schottky junction 
will appear at the interface when a metal and a semi-
conductor are bonded [23]. The accuracy and stability 
of the devices will be damaged. Due to the gradual 
gradient of material properties, the functionally gradi-
ent material is an optional direction to eliminate the 
mismatch. Lakshman [24] studied the propagation 
characteristics of love wave in functionally graded 
piezoelectric layered structure. Li and Wei [25, 26] 
discussed the Rayleigh and Love wave propagation 
in a functionally gradient piezoelectric overlay, and 
found that the wave velocity can be affected by the 
carefully designed gradient profiles of the overburden. 
Long and Fan[27] investigated the propagation of the 
SH surface wave in a strain-gradient half space, and 
found that the wave characteristics are much richer 
than those in the classical elastic materials. Less work 
on the functionally gradient piezoelectric semicon-
ductor overlays in these structures is reported, which 
is the origin and highlight of this paper.

It is investigated in this paper that the propagation 
characteristics of the Rayleigh wave in a semi-infinite 
space with a functionally gradient piezoelectric semi-
conductor (FGPS) layer at the intact interface. In order 
to avoid additional interface effects, the transfer and 
stiffness matrices of the gradient piezoelectric semi-
conductor overlay are directly obtained by geometric 
integration instead of dividing the layer into multiple 
sub-layers. The total surface stiffness matrix is obtained 
by combining the stiffness matrix of the overlay with 
that of the substrate. Furthermore, the dispersion equa-
tion of the Rayleigh surface wave is derived. Based on 
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the numerical results in Sect.  5, the influences of the 
steady-state carrier concentration, bias electric fields, 
gradient variation of overburden and surface boundary 
conditions on Rayleigh wave velocity are discussed.

2  State transfer equation of the Rayleigh wave

Consider a homogeneous, anisotropic, and piezoelec-
tric half space covering with a functionally gradient 
piezoelectric semiconductor (FGPS) layer, as shown in 
Fig. 1. A Rayleigh wave propagates along the positive x
-axis, and the material properties of the FGPS layer are 
changing along z-direction. The thickness of the FGPS 
layer is h.

The constitutive equations of piezoelectric semicon-
ductor materials are [19, 25]

where �ij is the stress tensor, Skl is the strain tensor, Ek 
is the electric field vector, Di is the electric displace-
ment vector, Ji is the electric current vector, p is the 
perturbation of the carrier concentration. cijkl , ekij and 
�ik are the elastic, piezoelectric and dielectric param-
eters, respectively. Ej is the biasing electric field, q is 

(1a)�ij = cijklSkl − ekijEk,

(1b)Di = eiklSkl + �ikEk,

(1c)Ji = qp�ijEj + qp�ijEj − qdijp,j,

the carrier charge, and p is the steady carrier concen-
tration. �ij and dij are the carrier mobility and diffu-
sion constants, respectively.

The governing equations of piezoelectric semicon-
ductor materials consist of the equations of motion, 
electrostatics, and the charge conservation, that is [19]

where � and ui are the mass density and the displace-
ment component, respectively. The dot above the 
variable represents derivative of time. The strain ten-
sor Sij with respect to ui and the electric field vector 
Ei with respect to the electric potential scalar � are 
given, respectively,

In the wave motion problem of Rayleigh wave, the 
mechanical displacement u , the electric potential � , and 
the carrier concentration perturbation p are all func-
tions of the variables x and z . That is,

It is widely assumed that the form of the components 
u1, u3,� and p in Eq. (4) is as

where � and k are the angular frequency and wave 
number, respectively.

Let � = [u1, u3,�, p] and � = [�13, �33,D3, J3] , and 
the state vector is defined as �= (�,�)T.Then, when the 
parameters of the piezoelectric semiconductor mate-
rial gradiently changes, the state vector of the covering 
layer will satisfy the following first-order matrix differ-
ential equation with variable coefficient,

where the detailed description of �(z) in the FGPS 
layer can be found in Appendix A.

Equation (6) is the state transfer equation of the pie-
zoelectric or functionally gradient piezoelectric semi-
conductor material. In fact, it is a reduced-dimension 
form of second-order wave motion.

(2a,b,c)𝜎ij,j = 𝜌üi,Di,i = qp, qṗ + Ji,i = 0,

(3)Sij =
ui,j + uj,i

2
,Ei = −�,i.

(4)u =
{
u1, 0, u3

}
(x, z, t),� = �(x, z, t), p = p(x, z, t).

(5)�(x, z, t) = f (z)ei(�t−kx),

(6)
d�

dz
= i�(z)�

Fig. 1  A piezoelectric half space coating with a FGPS layer
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3  The total surface stiffness matrix 
of the Rayleigh wave

Firstly, the stiffness matrices of the overlay and the sub-
strate are derived, respectively. And then the total sur-
face stiffness matrix is obtained by further combined. 
At last, the dispersion equation of the Rayleigh wave is 
derived.

3.1  Stiffness matrix of the FGPS covering layer

For the FGPS material, the state vectors �
(
z0
)
 and �(z) 

are combined by a transfer matrix �(z, z0) as

Substituting Eq.  (7) into Eq.  (6), the following 
differential equation with respect to  �(z, z0) can be 
gotten

where � indicates the unit matrix. The solution of 
Eq.  (8) is of an exponential form by using Magnus 
expansion [20]. Let �(h) denotes the transfer matrix 
of the FGPS covering layer, where h is the thickness 
of the layer. It can be expressed as

where [25]

is the Magnus series and

To simplify the calculation of multiple integrals, 
the integral of the univariate [20]

(7)�(z) = �
(
z, z0

)
�
(
z0
)
.

(8)
d�

(
z, z0

)
dz

= i�(z)�
(
z, z0

)
,�

(
z0, z0

)
= �,

(9)�(h) = �(h, 0) = e�(h,0),

(10a)

�(h, 0) =
h∫
0

i�(�)�� +
1

2

h∫
0

��1

�1∫
0

��2
[
i�
(
�1
)
, i�

(
�2
)]

+
1

12

h∫
0

��1

τ1∫
0

��2

τ1∫
0

��3
([
i�
(
�3
)
,
[
i�
(
�2
)
, i�

(
�1
)]])

+
1

4

h∫
0

��1

τ1∫
0

��2

τ2∫
0

��3
([[

i�
(
�3
)
, i�

(
�2
)]
, i�

(
�1
)])

+⋯

(10b)

[
i�(�m), i�(�n)

]
= i�

(
�m
)
i�
(
�n
)
− i�

(
�n
)
i�
(
�m
)
.

is introduced. A sixth-order approximation of a Mag-
nus series can be written as [25]

where

Then, based on the the diagonal Padé approxi-
mation [26], the asymptotic solution of the transfer 
matrix �(h) can be obtained with an eight order Padé 
approximation as

where

The stress vector consisted of �(h) and �(0) and 
the displacement vector consisted of �(h) and �(0) 
are connected by a matrix �(h) , called stiffness 
matrix, as

Comparing Eq.  (7) and Eq.  (14), the stiffness 
matrix �(h) of the FGPS overlay is derived as

(11)

�j =
1

hj∫
h

z0

(
� −

(
z0 +

h

2

))j

i�(�)��, j = 0, 1, 2⋯ ,

(12a)�(6) = �0 +
1

240

[
−20�1 − �3 + �1, �1 + �2

]
,

(12b)

�1 =
[
�1, �2

]
, �2 = −

1

60

[
�1, 2�3 + �1

]
,

�1 =
3

4

(
3�0 − 20�2

)
, �2 = 12�1, �3 = −15

(
�0 − 12�2

)
.

(13a)�(h) =

[
�11 �12

�21 �22

]
=
(
�4(−�)

)−1(
�4(�)

)
,

(13b)
�0(�) = �,�1(�) = 2� + �,

�m(�) = 2(2m − 1)�m−1(�) + �2�m−2(�).

(14)
[
�(h)

�(0)

]
= �(h)

[
�(h)

�(0)

]
,
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3.2  Surface stiffness matrix of the piezoelectric half 
space

The state vector �e =
[
u1, u3,�, �13, �33,D3]

T in the 
piezoelectric material satisfies Eq. (6), that is

The elements of matrix �e in Eq.  (16) are all 
constants.

Meanwhile, the vector �e in Eq. (16) satisfies that

Substituting Eq.  (17) into Eq.  (16), the following 
matrix differential equation of constant coefficient can 
be gotten

The solution of �e
(
z, z0

)
 in Eq.  (18) with the con-

stant matrix �e can be obtained

Then, by combining Eqs. (17) and (19), the state 
vector �e of the piezoelectric material can be expressed 
as

Let �n(n = 1, 2,⋯ , 6) be the eigenvalues of matrix 
�e . They are separated into two groups �1, �2, �3 
( Im

(
𝜆n
)
< 0 ) and �4, �5, �6 ( Im

(
𝜆n
)
> 0 ). Let 

�−
z
= diag

(
λ1, λ2, λ3

)
 and �+

z
= diag

(
λ4, λ5, λ6

)
 . The 

eigenvectors can form a matrix, and we can define this 
matrix as � and its two submatrices are �−

z
 and �+

z
 . Let 

� =

[
�− �+

�− �+

]
= [�−�+] . Then, the matrix �e can 

be rewritten as

(15)

�(h) =

[
�11 �12

�21 �22

]
=

[
�22

(
�12

)−1
�21−�22

(
�12

)−1
�11(

�12

)−1
−
(
�12

)−1
�11

]
.

(16)
d�e

dz
= i�e�e.

(17)�e(z) = �e(z, z0)�
e
(
z0
)
.

(18)
d�e

(
z, z0

)
dz

= i�e�e
(
z, z0

)
,�e

(
z0, z0

)
= �.

(19)�e
(
z, z0

)
= ei�

e(z−z0).

(20)�e(z) = ei�
e(z−z0)

�e(z0)

(21)

�e = ��z�
−1 =

[
�− �+

�− �+

][
�−
z

0

0 �+
z

][
�− �+

�− �+

]−1

The inverse of the matrix � is expressed as

For a homogeneous piezoelectric half-space, as 
shown in Fig.  1, wave functions in Eq.  (3) gradually 
decrease to zero as z → −∞ . Therefore, only �−

z
 , in 

which the imaginary parts of the three elements are 
negative, are retained. Let

Thus, by inserting Eq.  (23) into Eq.  (19), it is 
obtained that the transfer matrix of the piezoelectric 
half space

where �− = diag
(
e−i�1(z−z0), e−i�2(z−z0), e−i�3(z−z0)

)
.

In addition, inserting Eq. (24) into Eq. (17), namely

where �−�e
0

(
z0
)
= �0 is a constant matrix. Then, it 

can be derived that

where the surface stiffness matrix �e
S
 of the piezoe-

lectric half space satisfies that

3.3  Total surface stiffness matrix

� And � , which have been derived in Sect. 3.1, are 
the transfer and stiffness matrices of the FGPS over-
lay, respectively. In the piezoelectric substrate, let �e 
denotes the transfer matrix and �e denote the stiffness 
matrix. The thickness of the substrate is assumed to 
h′ ( h′ ≫ h ). For the structure in Fig.  1, they can be 
rewritten as

(22)�−1 =

[
�− �+

�− �+

]−1
=

[
�−

�+

]

(23)�e
0
= �−�−

z
�−

(24)�e
0

(
z, z0

)
=

[
�−(�−)−1

�−(�−)−1

]
�−

(25)
[
�e

0
(z)

�e
0
(z)

]
=

[
�−(�−)−1

�−(�−)−1

]
�0

(26)�e
0
(z) = �e

S
�e

0
(z)

(27)�e
S
= �−(�−)−1.

(28a)�(h−) = �(h)�
(
0+

)

(28b)�e(0−) = �e(h�)�e
(
−h

� +
)
,
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The displacements, the electric potential, the car-
rier concentration perturbation, the stresses, the nor-
mal electric displacement, and the normal electric 
current are continuous on the interface is required for 
the perfect interface conditions. That is, the state vec-
tors at the two sides of the interface satisfy that

For the FGPS covering layer, the state vector 
�
(
0+

)
 is 8 × 1 order in the cover z = 0+ plane. But 

the substrate is piezoelectric material, and then, the 
state vector �e(0−) at z = 0− plane should be turned 
to a 6 × 1 order matrix, denoted as �e(0−) . Therefore, 
Eq.  (31) need to be amended. Because the electric 
displacement and electric current are nonexistent in 
the substrate (piezoelectric medium) and vacuum, 
the electrical displacement and electrical current in 
the FGPS covering layer should approach zero at the 
boundary, which means that J3 = 0 at z = 0+ and h− . 
Then, Eq. (28a) is corrected to

Equation (29) can be corrected to

the stiffness matrix in Eq.  (15) of the covering layer 
can be modified to �f (h).

W h e r e �f (x, z, t) =
(
�f ,�f

)T
,�f =

(
u1, u3,�

)T  , 
�f =

(
�13, �33,D3

)T . The 8 × 8 order matrices �(h) 
and �(h) are amended to 6 × 6 order matrices �f (h) 
and �f (h) , respectively. The detailed expressions �f  
and �f  are given in “Appendix A”. Then, the continu-
ous condition, shown in Eq. (31), of the state vector is 
amended to

(29)

[
�(h−)

�
(
0+

)
]
= �

[
�(h−)

�
(
0+

)
]
=

[
�11 �12

�21 �22

][
�(h−)

�
(
0+

)
]
,

(30)
[

�e(0−)

�e
(
−h�

+
)
]
= �e

[
�e(0−)

�e
(
−h

� +
)
]
=

[
�e

11
�e

12

�e
21

�e
22

][
�e(0−)

�e
(
−h

� +
)
]
.

(31)�e(0−) = �
(
0+

)
.

(32)�f (h−) = �f (h)�f
(
0+

)
.

(33)
[
�f (h−)

�f
(
0+

)
]
= �f (h)

[
�f (h−)

�f
(
0+

)
]
,

(34)�e(0−) = �f
(
0+

)
.

From Eqs. (28b), (32) and (34), it can be derived 
that

where

(35)�f (h−) = ��e
(
−h�+

)
,

� is the total transfer matrix of the composite sys-
tem with two layers. From Eqs. (55), (30), and (34), it 
can be obtained that

where

� is the total stiffness matrix of the system.
As shown in Eq.  (27), �e

S
 represents the surface 

stiffness matrix of the piezoelectric half space, and 
then, the substrate stiffness matrix can be expressed 
as:

From Eqs. (37b) and (38), the total stiffness matrix 
of the compound system consisted of a FGPS overlay 
and a piezoelectric half space is

Then, the total surface stiffness matrix is

(36)� = �f (h)�e(h�).

(37a)
[

�f (h−)

�e
(
−h�

+)
]
= �

[
�f (h−)

�e
(
−h�

+
)
]
,

(37b)

� =

⎡⎢⎢⎣
�

f

11
+�

f

12

�
�e

11
−�

f

22

�−1

�
f

21
−�

f

12

�
�e

11
−�

f

22

�−1

�e

12

�e

21

�
�e

11
−�

f

22

�−1

�
f

21
�e

22
−�e

21

�
�e

11
−�

f

22

�−1

�e

12

⎤⎥⎥⎦
.

(38)�
�

=

[
�e

S
03×3

03×3 03×3

]

(39)� =

[
�

f

11
+�

f

12

(
�e

S
−�

f

22

)−1

�
f

21
0

0 0

]
.



2137Meccanica (2023) 58:2131–2149 

1 3
Vol.: (0123456789)

4  The velocity equation of Rayleigh wave

In this section, the wave velocity equations of the 
Rayleigh surface wave in a piezoelectric half space 
with a FGPS covering layer under two different elec-
trical boundary conditions are given, respectively. 
The total surface stiffness matrix �S is adopted to 
relate the generalized traction vector �S(h) with the 
generalized displacement vector �S(h) as

Two kinds of surface conditions at the top surface 
z = h of the FGPS overlay are considered.

 (1)  The mechanically traction is free, and the cir-
cuit is electrically open, that is

   A homogeneous algebraic equation is 
derived by inserting Eq. (43) into Eq. (42), and 
the existence of its nontrivial solution requires

   Equation (43) is the dispersive relation of the 
Rayleigh wave based on the dielectrically open 
circuit surface condition.

 (2)  The mechanically traction is free, and the cir-
cuit is electrically short, that is

   Inserting Eq. (44) into Eq. (41), it is obtained 
that

The nontrivial solution exists when

(40)�S = �
f

11
+�

f

12

(
�e

S
−�

f

22

)−1

�
f

21
.

(41)�S(h) = �S�S(h).

(42)
�13(h) = 0, �33(h) = 0,D3(h) = 0, J3(h) = 0.

(43)det
(
�S

)
= 0.

(44)�13(h) = 0, �33(h) = 0,�(h) = 0, p(h) = 0.

(45)

⎧⎪⎨⎪⎩

0 = k11u1 + k12u3

0 = k21u1 + k22u3

D3 = k31u1 + k32u3

where �S =
(
kij

)
, i, j = 1, 2. Eq. (46) is the disper-

sive equation of the Rayleigh wave based on the die-
lectrically short circuit surface condition.

5  Numerical results and discussions

It is considered that an isotropic, homogeneous, and 
piezoelectric half space with a functionally gradi-
ent piezoelectric semiconductor overlay, as shown in 
Fig. 1. The interface between the overlay and the sub-
strate is mechanically and dielectrically perfect. The 
substrate (with thickness h′ ) adopts the material  SiO2 
whose parameters are listed in Table 1. And the over-
lay is a functionally gradient, transversely isotropic, 
piezoelectric semiconductor material. Let PA and 
PB denote the material parameters at the bottom and 
top of the overlay, respectively. In this simulation, PA 
adopts ZnO, and its material parameters are shown in 
Table  2. In order to facilitate the calculation, the fol-
lowing dimensionless biased electric fields are intro-
duced, �1 = �11E1

√
�∕c44 , �3 = �11E3

√
�∕c44 and 

� = �1�1 + �3�3.
The material constants P(z) in the FGPS overlay sat-

isfy that

P(z) represents the piezoelectric parameters cijkl(z) , 
the piezoelectric parameters ekij(z) , the dielectric 
parameters �ik(z) , the carrier mobility constants �ik(z) , 
the carrier diffusion constants dik(z) , or the mass den-
sity �(z) at any given position z . Five types of gradient 
profile are considered in the numerical examples,

Case  1:

Case  2:

(46)
|||||
k11 k12

k21 k22

|||||
= 0,

(47)P(z) = PAV(z) + PB(1 − V(z)).

(48a)V(z) = (1 −
z

h
)
0.2

Table 1  Material parameters of the Substrate  (SiO2) [20]

cij ∶ GPa; � : kg/m3; �ij ∶  10−2C/Vm

c
11

c
12

�
33

�

78.5 16.1 33 2200
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Case  3:

Case  4:

Case  5:

The five types of gradient profiles are shown in 
Fig. 2.

(48b)V(z) = 1 −
z

h

(48c)V(z) = (1 −
z

h
)5

(48d)V(z) =

⎧⎪⎨⎪⎩

1

2
+

1

2
(1 − 2

z

h
)
0.2
, z ≤ 1

2
h

1

2
−

1

2

�
−1 + 2

z

h

�0.2

, z ≥ 1

2
h

(48e)V(z) =

⎧
⎪⎨⎪⎩

1

2
+

1

2
(1 − 2

z

h
)
5

, z ≤ 1

2
h

1

2
−

1

2

�
−1 + 2

z

h

�5

, z ≥ 1

2
h

For a gradient overlay, the material constant PA 
at the bottom can be larger or less than PB at the 
top, as shown in Fig.  2. Let f = P∕PA denotes the 
ratio of the top parameter to the bottom one. f < 1 
indicates that the parameters at the bottom are much 
larger, while f > 1 means that the parameters at the 
top are larger. In this paper, let f = 0.5 or 2, respec-
tively. The horizontal axis represents the change in 
position within the gradient layer; the vertical axis 
represents the ratio of the material parameter value 
P at the current position to PA at the bottom of the 
covering layer. P∕PA = 1 indicates that the material 
parameters are equal to PA , while P∕PA = f  indi-
cates that the material parameters are equal to PB . 
Five gradient profiles were used in the layer, which 
represent five different material parameter variation 
rules, respectively. The curves in case 2, 4, and 5 
converge together at z∕h = 0.5 , which means the 
material parameters P =

1

2
(PA + PB) . In case 2, the 

material parameters change linearly from PA to PB . 
In other cases, the convex curves represent that the 
values of P are much closer to PB , while the con-
cave curves represent that the value of P are much 
closer to PA.

Figure 3 shows the effects of five different gradi-
ents on Rayleigh wave velocity with the steady car-
rier concentration p = 6 × 1016 m−3, the tangential 
bias electric field �1 = 4 , the normal bias electric 
field �3 = 4 when PB = 0.5PA (top-level parameters 
are smaller). In this case, the dispersion curves are 
insensitive to both the surface open circuit and short 
circuit boundary conditions. It can be observed that, 
in the low-frequency range, the wave velocity in case 
3 is greater than that in case 1. However, an opposite 
result is gotten in the high-frequency region, that is, 
the wave velocity in case 1 is greater than that in case 
3. In other words, the curves in case 1 and case 3 are 
symmetric with respect to those in case 2. The wave 
velocity in cases 4 and 5 are almost the same in the 

Table 2  Material parameters at the bottom of the overlay (ZnO) [14, 16]

cij ∶ GPa; eij ∶ C/m2; � : kg/m3; dij ∶  cm2/s; �ij ∶  cm2/Vs; �ij ∶  10−11C/Vm; q :  10−19C

c
11

c
13

c
33

c
44

e
31

e
33

e
15

�

210.9 105.1 210.9 42.47 − 0.573 1.32 − 0.48 5680

d
11

d
33

�
11

�
33

�
11

�
33

q

0.0208 0.0208 1 1 7.57 9.031 1.062

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z/h

P
/P

A

Case1

Case2

Case3

Case4

Case5

1

f

Fig. 2  The gradient profile of the overlay
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low-frequency region, but they show a significant dif-
ference in the high-frequency region.

Figure 4 shows the effects of five different gradi-
ents on Rayleigh wave velocity with the steady car-
rier concentration p = 6 × 1016 m−3, the bias electric 
fields �1 = �3 = 4 when PB = 2PA (top-level param-
eters are larger). The results are obviously different 
from those when PB = 0.5PA . The wave velocity in 
case 3 is smaller than that in case 1 when propagat-
ing in the low-frequency region, but much larger in 

the high-frequency region. The wave velocities of 
case 4 and case 5 are almost identical in the low-fre-
quency range but significantly different in the high-
frequency region. When PB = 0.5PA and PB = 2PA , 
the relative positions of the curves in cases 1 and 
3 are diametrically opposed to those in cases 4 and 
5. Meanwhile, the velocity curve is sensitive to the 
opening and short circuit surface conditions when 
PB = 2PA , which is quite different from the result 
when PB = 0.5PA . Under the short circuit surface 

1 2 3 4 5 6 7 8
1800
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2200

2400

2600

2800

3000

3200

3400
v

kh

 case1
 case2
 case3
 case4
 case5

1 2 3 4 5 6 7 8
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1800
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2400

2600
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 case2
 case3
 case4
 case5

a b

Fig. 3  The influences of the five kinds of gradient profiles on the dispersive curves v ∼ kh and P
B
= 0.5P

A
 under a open circuit and 

b short circuit conditions

Fig. 4  The influences of the five kinds of gradient profiles on the dispersive curves v ∼ kh and P
B
= 2P

A
 under a open circuit and b 

short circuit conditions
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Fig. 5  The influences of the steady carrier concentration on the dispersive curves v ∼ kh when P
B
= 2P

A
 in all the five gradient pro-

files
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condition, the curve for case 4 becomes flatter, and 
the curve for case 3 becomes much steeper. When 
PB = 0.5PA , the influence of open circuit or short 
circuit on the velocity curve is not obvious. It also 
has been found that the steady carrier concentration 
and bias electric fields exhibit tiny influences at the 
studied frequency range in the figures. Therefore, 
the velocity curves under PB = 2PA are focused on 
at the following simulations.

Figure 5 shows the effects of the steady carrier con-
centration on the Rayleigh wave velocity when biasing 
fields �1 = �3 = 4 and the parameters of top overlayer 
PB = 2PA . Figures  5a–j exhibit the velocity curves 
under case 1 ~ case 5, respectively. And Fig. 5a, c, e, 
g and i are plotting based on the open circuit condi-
tion, while Fig. 5b, d, f, h and j are based on the short 
circuit condition. The same layout is still adopted in 

the following figures. The wave velocity for case 1 
under both open and short circuit surface conditions 
decreases initially and then increases as the increas-
ing wave number. Under the open circuit condition, 
the effect of increasing carrier concentration on wave 
velocity is not obvious when kh < 2 , while the wave 
velocity increases obviously as the increasing steady 
carrier concentration at the high-frequency region. 
Under the short circuit condition, the wave velocity 
increases obviously as the steady carrier concentration 
increases at the frequency region shown in the figure. 
It can be seen in Fig. 5a and b that the frequency-sen-
sitive region expands when the carrier concentration 
increases, and the sensitivity under open circuit condi-
tion is much greater than that under short circuit one. 
Under open-circuit condition, the sensitivity of wave 
velocity to the steady carrier concentration gradually 

Fig. 5  (continued)
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increases with the increase of frequency. Under short-
circuit condition, it can be observed that the sensitiv-
ity of wave velocity to the steady carrier concentration 
increases firstly and then decreases as the frequency 
increases, which reaches its peak when kh ≈ 5 . In both 
the open and short circuit surface conditions for case 
2, the change in wave velocity first increases and then 
decreases with the increasing wave number, and the 
change in steady-state carrier concentration will have 
a sensitive impact on the wave velocity. (There is a 
small insensitive region in the low-frequency region 
under the open-circuit condition). The sensitivity of 
wave velocity to the increase of the steady carrier con-
centration increases firstly and then decreases, which 
reaches the peak at kh ≈ 4 . In the low-frequency 
region, the higher the steady carrier concentration, 
the larger the wave velocity, which is opposite in the 
high-frequency region. In case 3, the wave velocity 
under the open-circuit condition presents a trend of 
first decreasing, then increasing, and again decreasing 
with the constantly increase of wave number, while 
that under the short circuit condition first decreases 
and then increases. Under both conditions, the wave 
velocity is sensitive to the steady carrier concentra-
tion, and consistently increases with it over the whole 
frequency region shown in the figure. Under the 
open-circuit condition, the wave velocity increases 
when the steady carrier concentration increases, and 
the sensitivity is higher in the mid-frequency region. 
However, the sensitivity reaches the peak when kh ≈ 4 
under the short circuit surface condition. For case 4, 
the wave velocity firstly increases and then decreases 
with the increasing wave number under the open cir-
cuit condition. But the curves are quite different under 
the short circuit surface condition. When the steady 
carrier concentration is smaller, the wave velocity 
decreases with the increasing wave number. When the 
steady carrier concentration increases, the wave veloc-
ity decreases first and then increases with the wave 
number. The wave velocity is sensitive to the steady 
carrier concentration regardless of open circuit condi-
tion or short one. With the increasing steady carrier 
concentration, the wave velocity increases first and 
then decreases, and the sensitive region also becomes 
slightly larger. In the mid-frequency region, the sen-
sitivity is much higher. The sensitivity of the wave 
velocity to carrier concentration reaches the peak at 
kh ≈ 2.7 under the open circuit condition, while it gets 
to its maximum at kh ≈ 3.6 under the short one. In 

case 5, the propagation velocity of the Rayleigh wave 
first decreases, and then increases with the increase of 
wave number under the two electrically surface condi-
tions. When the steady carrier concentration increases, 
the sensitive region increases. The wave velocity for 
the open circuit is sensitive to the steady carrier con-
centration in high-frequency region. In the short cir-
cuit condition, the sensitivity of wave velocity changes 
increases firstly and then decreases with the increasing 
steady carrier concentration. When kh ≈ 5.7 , the sen-
sitivity gets the maximum.

Figure  6 shows the effects of the tangential bias 
electric field �1 on Rayleigh wave velocity when the 
steady carrier concentration p = 6 × 1016 m−3 and 
the parameters of the top overlayer PB = 2PA . In 
case 1, Fig. 6a and b show that the effect of the tan-
gential bias field �1 on wave velocity is tiny. When 
kh ∈ (3, 5) , the increase of bias field �1 will exhibit a 
little effect, which makes the wave velocity smaller. 
In case 2, the bias electric field �1 still has little influ-
ence. When kh ∈ (1, 2) and (6, 7) , the increase of the 
bias electric field �1 will have a weak effect, which 
makes the wave velocity increase. In case 3, the influ-
ence of �1 is more sensitive in the mid-frequency 
band. In the open circuit condition, the bias electric 
field �1 has a clearly visible on the wave velocity when 
kh ∈ (3.5, 6) . When �1 increases, the wave veloc-
ity will gradually decrease, which get the maximum 
sensitivity when kh ≈ 4.1 . In the short circuit condi-
tion, the wave velocity will reduce with the increas-
ing �1 when kh ∈ (4, 5) , and, the bias electric field �1 
get the maximum impact on the wave velocity when 
kh ≈ 4.2 . In case 4, the influence of bias field �1 is 
tiny. When kh ∈ (1, 2), the wave velocity will increase 
with the increasing �1 as shown in Fig. 6g and h. In 
case 5, when kh ∈ (2, 6) , the wave velocity increases 
firstly, and then decrease with the increasing �1 under 
both the open and short circuit conditions.

Figure  7 shows the effects of the bias electric 
field �3 on Rayleigh wave velocity when the carrier 
concentration p = 6 × 1016 m−3 and the parameters 
of the top overlayer PB = 2PA . In case 1, under the 
open circuit surface condition, the influence of the 
normal bias field �3 is not obvious when kh < 2 . With 
the increasing frequency, the wave velocity obvi-
ously increases with �3 . Under the short circuit con-
dition, the wave velocity increases obviously when 
�3 increases at the whole frequency region shown 
in the Fig.  7b. The wave velocity is sensitive to the 



2143Meccanica (2023) 58:2131–2149 

1 3
Vol.: (0123456789)

bias electric field �3 in both conditions, and the sen-
sitivity to open circuit condition is much greater than 
short circuit condition. The increasing �3 causes an 

expansion of sensitive areas. When the bias electric 
field �3 increases, the sensitivity of the wave velocity 
under the open circuit condition increases gradually 

Fig. 6  The influences of the tangential biasing electric field �
1
 on the dispersive curves v ∼ kh in all the five gradient profiles with 

P
B
= 2P

A
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with the increasing frequency, and the sensitivity 
of wave velocity under the short circuit condition, 
which reaches the maximum when kh ≈ 5, firstly 
increases and then decreases with the increasing fre-
quency. Under the open circuit conditions for case 2 
shown in Fig. 7c, the bias electric field �3 has no obvi-
ous effect on the wave velocity when kh < 1.5 , but 
the wave velocity increases obviously with �3 when 
kh > 1.5 . When the bias field �3 increases, the sensi-
tive region increases and the wave velocity change is 
more sensitive in the high-frequency region. Under 
short circuit condition shown for case 2 in Fig. 7d, the 
wave velocity increases obviously when �3 increases. 
Meanwhile, the sensitivity of wave velocity change 
first increases and then decreases, it gets the maxi-
mum when kh ≈ 3.5 . In case 3, under both the open 

and short circuit surface conditions, the wave veloc-
ity is sensitive to �3 , and the sensitive region increases 
gradually as the bias electric field �3 increases. Mean-
while, the sensitivity of the wave velocity under 
the condition of open circuit is more obvious at the 
mid-frequency region, while it under the short circuit 
condition reach the peak when kh ≈ 4 and even the 
trend of the curve is changed if �3 is large enough. For 
case 4 in Fig.  7g, the increase of �3 under the open 
circuit has no obvious effect on the wave velocity 
when kh < 1.5 . With the increasing frequency, the 
wave velocity increases obviously with �3 . Under the 
short circuit condition, the wave velocity increases 
obviously when �3 increases. It can be seen from 
Fig. 7g and h that, the sensitive area expands with the 
increasing �3 , and the sensitivity is greater under the 

Fig. 6  (continued)



2145Meccanica (2023) 58:2131–2149 

1 3
Vol.: (0123456789)

open circuit condition than short one. The sensitivity 
of wave velocity to the bias electric field �3 under the 

open circuit condition gradually increases with the 
increase of frequency, while under the short circuit 

Fig. 7  The influences of the normal biasing electric field �
3
 on the dispersive curves v ∼ kh in all the five gradient profiles when 

P
B
= 2P

A
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condition firstly increases and then decreases with the 
increasing frequency, which get its peak as kh ≈ 3 . 
For case 5, under the open circuit condition, �3 has 
no obvious effect on the wave velocity when kh < 2 . 
With the increasing frequency, the wave velocity 
increases obviously with �3 . Under the short circuit 
condition, the wave velocity obviously increases with 
the increasing �3 . In both conditions, the wave veloc-
ity is sensitive to the normal bias field �3 , and the sen-
sitivity is greater for open circuit than short circuit. 
Under the open circuit condition, with the increase of 
frequency, the sensitivity of wave velocity to the bias 
electric field �3 gradually increases and then remains 
unchanged. Under the condition of short circuit, with 
the increase of frequency, it can be observed that the 
sensitivity of wave velocity to the bias field increases 

first and then decreases, and reaches the peak when 
kh ≈ 5.5.

6  Conclusions

In this paper, it is observed that the influence of the 
material properties of functionally gradient layer, 
the boundary conditions of open or short circuit, the 
steady carrier concentration, and the bias electric 
fields on Rayleigh wave velocity in a semi-infinite 
piezoelectric half space covering with a functionally 
gradient piezoelectric semiconductor layer. The fol-
lowing results can be found based on the theoretical 
analysis and numerical simulation.

Fig. 7  (continued)
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(1) Various transformations on the dispersive curves 
have occurred when the homogeneous covering 
layer is replaced by the gradient covering layer. 
The dispersive curves are more sensitive to the 
gradient profile under the surface short than the 
open circuit condition, which is similar to the 
results in the functionally gradient piezoelectric 
overlayer. Under both surface short and open cir-
cuit conditions, the dispersive curves are more 
sensitive to the gradient profile in the high-fre-
quency range than the low- frequency one.

(2) When the parameters at the top FGPS overlayer 
are larger than those at the bottom one, the influ-
ences of all the factors are more obvious than in 
the opposite case. The dispersive curves are more 
sensitive in the high-frequency region than in the 
low-frequency region.

(3) For the five gradient profiles, the relative posi-
tions of the velocity curves in cases 1 and 3 and 
that in case 4 and case 5 are completely opposite 
about that in case 2 at the low-frequency region, 
which can be used as a basis to design the chang-
ing trends of material parameters in the overlay.

(4) The increase of the steady carrier concentration 
has different effects on the wave velocity under 
different geometric profiles and open or short 
circuit boundary conditions, and it will make 
the wave velocity increase in the low-frequency 
region in all cases but more complex in the high-
frequency region.

(5) The normal biased electric field, which makes the 
sensitive region and the wave velocity increase, 
has a far greater influence on the wave velocity 
than the tangential biased electric field. It indi-
cates that the normal biased electric field helps 
the propagation of the Rayleigh waves for the 
hole carrier.

All these conclusions provide theoretical support for 
the design of surface acoustic wave devices with FGPS 
layer.
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Appendix A

The explicit expressions of �(z) in Eq. (6),

where

The explicit expressions of �e in Eq. (16),

where

The state vectors �
(
0+

)
 and �(h−) of the FGPS 

layer are connected by the transfer matrix �(h) , that 
is,

(49)�(z) =

[
�11(z) −i�(z)

�21(z) k�13(z)�(z)

]

�11(z) = �(z)
�
k�31(z) − i�(z)

�
,

�21(z) = −ik2
�
�11(z) − �13(z)�(z)�31(z)

�
+ i�(z)�2��

+ k�13(z)�(z)�(z) + �(z),

�ik(z) =

⎡⎢⎢⎢⎢⎢⎣

c1i1k(z) c1i3k(z) ek1i(z) 0

c3i1k(z) c3i3k(z) ek3i(z) 0

ei1k(z) ei3k(z) −�ik(z) 0

0 0 −qp�ik(z) −qdik(z)

⎤⎥⎥⎥⎥⎥⎦

,

�(z) = [�33(z)]
−1,

�� = diag(1, 1, 0, 0),

�(z) =

⎡⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−q
�
�31(z)E1 + �33(z)E3
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13
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where

Let �
f

1
=

⎡⎢⎢⎢⎣

u
1

u
3

�

⎤⎥⎥⎥⎦
,�

f

2
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�
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�
,�
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1
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�
11

�
13

D
3
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,�

f

2
=

�
J
3

�
. 

Due to the nonexistence of the electric current J3 , 
Eq. (50) can be rewritten as

From Eq. (52), it can be obtained that

Furthermore, it can be derived that

Let �f =
[
�

f

1

�
f

1

]
 , then, Eq. (28a) can be amended to

where 
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