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Abstract Aiming at the two-scale optimization 
problem, this paper proposes a topology optimiza-
tion method that combines Bi-directional Evolution-
ary Structural Optimization and Fast Non-dominated 
Sorting Genetic Algorithm II (NSGA-II). Taking 
the maximum stiffness of the structure as the objec-
tive function, the effective properties of heterogene-
ous materials are deduced through the energy-based 
homogenization theory, and the two-scale topology 
optimization is realized. In addition, a semi-random 
double-penalized crossover mutation operator is 
developed to improve the convergence ability of the 
algorithm. NSGA-II transforms the scheme of guid-
ing unit addition and deletion in the iterative process 
into a probability problem, expands the scope of opti-
mization search, and improves the global search abil-
ity of the optimization algorithm. The effectiveness of 
the new method is verified by numerical examples.

Keywords Bi-directional evolutionary structural 
optimization (BESO) · Fast non-dominated sorting 
genetic algorithm II (NSGA-II) · Double-penalized 
operator · Homogenization theory · Two-scale 
topology optimization

1 Introduction

Continuum structure topology optimization, first pro-
posed by Bendsoe and Kikuchi [1], is an innovative 
structural optimization method that can quickly find 
the optimal material layout under specific conditions. 
After development, topology optimization has been 
increasingly used in various fields. The most com-
monly used topology optimization methods include 
Solid Isotropic Material Interpolation Penalty (SIMP) 
[2], homogenization method [1], level set method 
[3–5] and the Evolutionary Structural Optimization 
(ESO) method [6]. Aiming at the common checker-
board phenomenon, gray area problem and local opti-
mal solution phenomenon in topology optimization 
[7], various scholars have proposed many effective 
methods, including sensitivity filtering [8], perim-
eter constraint [9] and continuity method [10] et  al. 
In addition, Genetic Algorithms (GAs) [11] have also 
been developed and gradually applied to topology 
optimization [12].

The SIMP method performs a single-point opti-
mization search according to the sensitivity, and the 
optimization result will show a local optimum to a 
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certain extent. In order to expand the search range 
and realize multi-point search, Zhang [13] combined 
SIMP method with genetic algorithm to improve the 
optimization efficiency. ESO cannot add units during 
the optimization process, and deleting useful units 
by mistake will cause the final optimization result 
to not be the global optimal solution. In response to 
this problem, Genetic Evolutionary Structural Opti-
mization (GESO) [14] was proposed, which greatly 
improved the global search ability of the ESO algo-
rithm. But fundamentally, GESO still cannot add 
elements. After development, Zuo [15] proposed a 
topology optimization method for GAs and BESO, 
which realized the addition and removal of materials 
during the optimization process. In addition, NSGA-
II was proposed and gradually developed on the basis 
of GAs [16] to achieve fast optimization through 
processes such as fast non-dominated sorting and 
crowded computation, competitive selection and elite 
strategy.

Lattice structure has become a research hotspot 
in the field of topology optimization because of its 
advantages in noise reduction, heat absorption, and 
light weight. With the development of additive manu-
facturing technology, the fabrication of lattice struc-
tures has gradually become possible. Not only that, 
the pursuit of high-performance materials requires 
parallel design between structures and materials. 
More and more scholars have carried out research 
on parallel optimization of two-scale structures. Gao 
[17] published Matlab code for structural optimiza-
tion of 2D and 3D two-scale composites. Chen [18] 
proposed the isosurface threshold formula and algo-
rithm to realize the parallel design of macrostructure 
and microstructure. Xia [19] provided a Matlab code 
for microstructure design based on the energy homog-
enization method. However, the design of micro-
structures by SIMP method is prone to grayscale and 
numerical instability. Huang [20] studied the two-
scale optimization problem through the homogeniza-
tion theory based on the BESO method. Huang [21, 
22] showed that the BESO method has high efficiency 
in microstructure design. Most of these studies are 
based on two-scale optimization by SIMP or BESO 
methods. The shortcomings of the SIMP method have 
been mentioned above, and the BESO method may 
cause the addition and deletion of materials to fail in 
some aspects [14]. In order to solve these problems 
and improve the global search ability of classical 

optimization algorithms in the two-scale optimiza-
tion process, this paper proposes an optimization 
algorithm combining NSGA-II and BESO, called 
BESO–NSGA-II.

The BESO–NSGA-II algorithm aims to achieve 
the concurrent optimization of macrostructures and 
microstructures through homogenization theory 
under the premise of satisfying volume constraints 
and aiming at the maximum stiffness of the structure. 
The multi-point global search of the algorithm is real-
ized through NSGA-II to determine the optimal dis-
tribution of materials. A double penalty operator is 
proposed to ensure a "clean" topology and improve 
the stability and fast convergence of the algorithm.

The arrangement of this paper is as follows. Sec-
tion  2 presents the optimization problem. Section  3 
presents the derivation and filtering scheme of the 
sensitivity. Section  4 introduces the specific imple-
mentation of the BESO–NSGA-II algorithm. Sec-
tion  5 verifies the effectiveness of the proposed 
method through a series of 2D/3D examples. Finally 
came to a conclusion.

2  Problem statements

In the homogenization method, the size of the micro-
structure is often considered to be much smaller 
than the size of the macrostructure. The microstruc-
ture presents a periodic distribution within the mac-
rostructure. Figure  1 is a schematic diagram of the 
two-scale structure. In the linear elastic range, the 
displacement field of the macrostructure can be 
expanded as:

Fig. 1  Schematic diagram of the two-scale structure
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x represents the global macro variable, and y repre-
sents the local micro variable. ϵ is a value much less 
than 1, which represents the ratio of macroscale to 
microscale.

When only the first-order term of the progressive 
expansion of Eq.  (1) is considered, the macroscopic 
stiffness tensor can be expressed as [17]:

In the formula, Ωm is the area of the microstructure 
(under two-dimensional conditions), D is the locally 
varying elastic tensor, ε(�0

m
 ) is the linearly independ-

ent element strain field, and ε(um) is the unknown 
strain field of the microstructure, which can be solved 
by the linear elastic equilibrium equation:

νm is the virtual displacement in the microstructure, 
and Hper is the displacement space.

The optimized mathematical model can be 
expressed as:

where �i
M

 and �jm represent the macroscopic and 
microscopic design variables, respectively, and the 
objective C is to minimize the mean compliance of 
the structure. F and U represent the external force 
vector and node displacement vector that the mac-
rostructure is subjected to. The macrostructure ΩM 
is discretized into M macroscopic units, and the 
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microstructure Ωm is discretized into N microscopic 
units. GM and Gm are the volume constraints of the 
macro-unit and the micro-unit, respectively.

VM and Vm are the target volume fractions of mac-
rostructure and microstructure, respectively. υ0 is the 
solid volume fraction for each iterative process. In 
order to eliminate singularities in the calculation pro-
cess, �min

M
 and �min

m
 are treated as positive numbers suf-

ficiently close to 0.
The static performance of a structure is generally 

given by the following equilibrium equation:

where K is the global stiffness matrix of the macro-
structure, which can be assembled from the element 
stiffness matrix ki. The reference element in the 
ξ − η coordinate system shown in Fig. 2 is defined in 
the natural coordinate system. Through coordinate 
transformation, the element stiffness matrix can be 
expressed as:

B is the strain displacement matrix, and J is the 
Jacobian matrix.

For a 2D four-node quadrilateral element, the four 
shape functions can be expressed as:

(5)� = ��

(6)�i = ∫
1

−1 ∫
1

−1

�T�� det Jd�d�

Fig. 2  Quadrilateral elements in ξ−η coordinate system
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The element node value can describe the element 
displacement field. If u = (u,ν)T represents the dis-
placement component at point (ξ,η), d represents 
the element node displacement array. The specific 
expression is:

In the isoparametric transformation, based on the 
geometric coordinates of the nodes, the geometric 
coordinates of any point in the unit are interpolated 
using the shape function Ni , which is expressed as:

Expressing Eq.  (9) as the general expression of 
the function f = f (x, y), which is an implicit function 
of ξ and η, by the chain derivation rule we have:

can be written as:

where J is the Jacobian matrix, which can be 
expressed as:

The stress–strain relationship is:
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Assuming that f is always equal to u, we can get:

Similarly:

Then the strain–displacement relationship can be 
written as:

According to the interpolation function formula of 
formula (8), it can be expanded and written as:
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From formula (16), (17) and (18), we can get:

The element stiffness matrix can be obtained by sub-
stituting Eq. (19) into (6).

3  Sensitivity analysis and filtering scheme

For topology optimization, sensitivity analysis is 
needed to guide the search direction of the opti-
mization algorithm. At the macroscopic scale, the 
mean compliance depends on the material proper-
ties of each element in the structure. Let F be the 
design-independent load vector, so the derivative 
of the average compliance of the ith element Xi 
with respect to the change in material density is 
[20]:

For the proposed optimization framework, the sensi-
tivity expression of the mean compliance to the micro-
design variables is:

The elastic tensor of the microstructure is repre-
sented by the material interpolation scheme in the 
improved SIMP method [23], and the specific form is:

In the formula, e = 1e−9, to avoid the singularity of 
the matrix. p is the penalty factor, and D0 is the consti-
tutive elastic tensor of the material. For the microstruc-
ture, the homogenized elastic tensor can be expressed 
as:
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Substituting Eq. (22) into (23) and derivation of the 
microstructure design variables can be obtained:

Substituting Eq.  (24) into (21), the sensitivity of 
the average compliance can be obtained as:

In the BESO method, the sensitivity of the jth ele-
ment can be defined as:

Sensitivity is corrected by a sensitivity filtering 
strategy. This not only effectively reduces the check-
erboard phenomenon, but also enables the addition 
and deletion of cells by deriving the sensitivity of 
empty cells by filtering the sensitivity values of phys-
ical cells within the radius [24]. The filtering strategy 
used in this paper is as follows:

In the formula, w(rjk) is the weight factor, rjk 
represents the distance from the center of node j to 
the center of node k, and the weight factor can be 
expressed as:

The sensitivity value is corrected by a convergence 
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previous iteration as the update value of the sensitiv-
ity [24].

In the formula, �′
j,g

 and ��
j,g−1

 are the sensitivity val-
ues of the gth and g−1th iteration steps of the jth unit, 
respectively. Finally, the effect of each unit on the 
structural properties is measured according to this 
sensitivity value.

During the optimization process, the material 
redistribution and the update calculation of the objec-
tive function are continuously carried out. When the 
optimization reaches the specified target mass frac-
tion and the following convergence conditions are 
met, the optimization process is terminated. The con-
vergence error is mainly calculated from the objective 
function value.

In the formula, C  represents the objective func-
tion value, q is the current number of iterations, and 
E is 5, indicating that the optimization results of five 
consecutive iterations have certain stability. τ  is the 
allowable convergence error.

4  Implementation of BESO–NSGA‑II

In the BESO–NSGA-II algorithm, each macroscopic 
element is analyzed as an independent individual. The 
number of populations remains unchanged during the 
iterative process, ensuring that the number of indi-
viduals in the entire population is always equal to the 
number of elements in the design domain. Each indi-
vidual is represented by a binary string of a certain 
length. The initial string is defined in this article as 
an array of all 1 s, representing that all units are solid 
materials, and an array of all 0 s means the units to be 
deleted in this iteration. After the optimization model 
is initialized, the sensitivity value is used as the basis 
for fast non-dominated sorting. Comparing the sensi-
tivity of each element to establish the dominant and 
non-dominant relationship, and rank order. For indi-
viduals of the same level, the crowding degree is cal-
culated, and the expression is:
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αmax and αmin represent the maximum and minimum 
values of sensitivity in this iteration cycle, respec-
tively. αi+1 represents the sensitivity value calculated 
by the i + 1th element, and αi−1 represents the sensi-
tivity value calculated by the i−1th element.

The crossover mutation operator plays an 
extremely important role in NSGA-II, which enriches 
the population diversity. The crossover mutation 
operator proposed in this paper adopts a semi-random 
method, which avoids the checkerboard phenomenon 
and non-convergence under the fully random operator 
to a certain extent. The cross- mutation operator only 
has the transformation between 0 and 1.

The double penalty operator is mainly used in the 
crossover mutation operator. First based on the sensi-
tivity threshold calculated for each generation. Divide 
the population into high-sensitivity regions and 
low-sensitivity regions. Two individuals were ran-
domly selected as parents within the design domain. 
Two crossover bits are randomly selected, and the 
crossover operation is performed on the parents. In 
order to accelerate the convergence, the algorithm 
in this paper gradually penalizes the crossover rate 
to a certain maximum value as the number of itera-
tions increases during the optimization process. The 
mutation operator is to mutate the binary code of 
each individual according to a certain mutation rate. 
A double penalty operator for the mutation rate is 
proposed here. In the iterative loop of the optimiza-
tion algorithm, with the increase of the number of 
iterations, the crossover rate and the mutation rate are 
gradually penalized to a certain maximum value, and 
the maximum value is limited to 1, such as Eqs. (32) 
and (33). Among them, pc is the crossover rate, pc, min 
are the set minimum crossover rates, and pc,max are 
the set minimum crossover rates. pm is the mutation 
rate, pm, min are the set minimum mutation rate, pm, max 
are the set minimum mutation rate, and prg is the 
index to control the crossover mutation rate.

In each iteration step, for the high-sensitivity 
region, as shown in Eq.  (34), the mutation rate (the 
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probability that the binary code is mutated to 1) is 
gradually penalized to a certain minimum value as 
the sensitivity value increases from high to low. Indi-
viduals with higher sensitivity values have a greater 
probability of having more 1  s, which are easier to 
retain in the optimization process. For low-sensitiv-
ity regions, as shown in Eq.  (35), the mutation rate 
(probability of binary code mutation to 0) is gradually 
penalized to a certain maximum value as the sensitiv-
ity increases from high to low. At this time, individu-
als with low sensitivity values have Larger probabil-
ities have more 0  s and are easier to remove during 
optimization. It is worth noting that individuals of the 
same rank have the same rate of variation. Through 
the double penalty mechanism, the fast convergence 
of the optimization process and a clearer and more 
stable topology are ensured.

In the formula, phigh,m is the variation rate of high-
sensitivity individuals, and plow,m is the variation rate 
of low-sensitivity individuals. rhigh,max is the maxi-
mum value of the individual level of the high-sensi-
tivity area, and rhigh,min is the minimum value of the 
individual level of the high-sensitivity area. rlow,max 
and rlow,min are the maximum and minimum values of 
individual levels in the low-sensitivity area. The ini-
tial value of phigh,m is pm,max, and the initial value of 
plow,m is pm.

Figure  3 is a flowchart of the algorithm 
implementation:

4.1  Numerical examples

Introduce some two-scale optimization examples. The 
elastic modulus of the filled material is set to 1 Mpa, 
the Poisson’s ratio is 0.3, the volume evolution ratio 
ER = 0.02, and the crossover rate and mutation rate 
are both 0.6.

4.2  Cantilever beam

Widely used in many different engineering projects, 
cantilever beam can be fixed at one end and hang 

(34)phigh,m = phigh,m −
pm,max − pm,min

rhigh,max − rhigh,min + 1

(35)plow,m = plow,m +
pm,max − pm,min

rlow,max − rlow,min + 1

freely at the other end, allowing structures with 
large spans to be achieved without the need for col-
umns or supports. Cantilever beams are often used in 
the design and construction of bridges, especially in 
shorter span bridges. Cantilever bridges are typically 
supported at one end and suspended at the other to 
span rivers, canyons, roads, or other obstacles. Can-
tilever beams are also widely used in aerospace engi-
neering, for example in structures such as wings and 
rudder surfaces of aircraft and spacecraft. In sum-
mary, cantilever beams have a wide range of applica-
tions in engineering, and their light weight, high stiff-
ness, and large spans make them a common structural 
design choice in many engineering projects.

This example considers a two-scale design of a 
cantilever beam. Figure 4 shows the initial design of 
the macrostructure and microstructure. The macro 
design domain has a length of 80  mm and a height 
of 40  mm, and a downward concentrated force is 
applied at the lower right corner of its bottom with 
a magnitude of 1 N. The micro-units are discretized 
into 50 × 50 four-node units, the density values of the 
four elements in the center of the micro-unit are set to 
1e−6, and the remaining elements are filled with solid 
materials. The volume fraction of macrostructure and 
microstructure retained is 40%, the macroscopic fil-
tering radius is Rmin = 3, and the microscopic filter-
ing radius is rmin = 2.

In order to verify the effectiveness of the double 
penalty operator proposed in this paper, the algorithm 
with the double penalty operator added and the algo-
rithm without the double penalty operator are com-
pared. As shown in Fig. 5, before the 50th generation, 
the optimization efficiency of the two is basically the 
same, and after the 50th generation, the algorithm 
with the double penalty operator added converges 
in the 165th generation, reaching the target optimal 
value, while the algorithm without the double penalty 
operator is added. The convergence rate tends to be 
flat, and finally converges to the optimal result in 255 
generations. Figure 6 shows the microstructure evolu-
tion process corresponding to the two algorithms. All 
the examples in this paper introduce a double penalty 
operator to ensure the fast convergence of the results. 
It is worth noting that the double penalty operator 
only affects the optimization efficiency and does not 
affect the material layout of the macrostructures and 
microstructures.
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To verify the stability of the proposed algorithm, 
Fig.  7 shows the results of 6 runs under the same 
parameters. Similar optimization results can be 
obtained in terms of macroscopic and microscopic 
material layouts, elastic stiffness matrices, and objec-
tive functions. The average value of the objective 

function is 128.2632, and the maximum deviation 
value of the six runs from the average value is only 
0.89%, which is very close to the objective function 
value. This algorithm eliminates the random effect 
brought by the genetic algorithm and has some sta-
bility. Figure 8 shows the evolution of the two-scale 
optimization, which proves that the proposed method 
has a stable convergence effect on the objective func-
tion and structure layout after 160 generations.

Figure 9 shows the optimization results of the can-
tilever beam using the classical BESO method com-
bined with the homogenization theory with an objec-
tive function value of 135.7421. By comparing the 
objective function values, it can be concluded that the 
algorithm proposed in this paper is smaller than clas-
sical BESO in terms of the objective function (mean 

Fig. 3  Flowchart of algorithm implementation

Fig. 4  Cantilever beam problem
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compliance), implying an increase in structural stiff-
ness. Since the purpose of this algorithm is to study 
the optimization effect of the optimization algorithm 
on the value of the objective function (i.e., to improve 

the maximum stiffness of the structure), the cost of 
time is ignored.

Figure  10 presents the results of the two-scale 
optimization and the elastic stiffness matrix for three 

Fig. 5  Algorithm compari-
son results

Fig. 6  Microstructure evolution process
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different sizes of macrostructures. The macroscopic 
dimensions of a are 80 × 60  mm, the macroscopic 
dimensions of b are 80 × 40 mm, and the macroscopic 

dimensions of c are 40 × 40 mm. The dimensions of 
the macroscopic structure greatly affect the material 
layout of the microscopic structure. For the slender 

Fig. 7  Two-scale optimization of evolutionary processes
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cantilever beam, its x-direction is filled by the mate-
rial with higher stiffness, and when the dimensions 
of the macrostructure x-direction and y-direction are 
the same, the material stiffness in these two directions 
is also relatively the same. These conclusions are 
in accordance with the common sense of structural 
analysis. Chen [18] also discussed cantilever beam 
structures with different macroscopic sizes, and the 
results showed that the macroscopic size has a great 
influence on both the macrostructure and the micro-
structure, which is consistent with the conclusions 
obtained in this paper and verifies the correctness of 
the algorithm.

4.3  L-bracket

An L-bracket is a common structural section, usu-
ally made of steel or other metallic material, with an 
L-shaped cross-section. In engineering, L-bracket 
can usually be used to support the weight of build-
ings or other structures. In steel structure buildings, 
L-bracket are often used to construct floors, roofs, and 
cantilever structures. In the construction of bridges, 
L-bracket can be used as the main load-bearing 
members of bridge structures, and are used to con-
struct the main beams or beams of bridges. In addi-
tion, L-bracket can also be used in other engineering 

Fig. 8  Two-scale optimization of evolutionary processes

Fig. 9  Classical BESO optimization results
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projects, such as power transmission towers, elevated 
roads, railway tracks, etc. Its simple structure, con-
venient installation, stable performance and other 
characteristics make it have a wide range of applica-
tion value in engineering.

This example considers the two-scale design of 
L-bracket. The initial design macrostructure and 
microstructure are shown in Fig.  11. The design 
domain length is 60  mm, height is 60  mm, and the 
load size is 1N. The retained volume fraction of the 
macrostructure is 40% and the retained volume frac-
tion of the microstructure is 50%, the macro-filter 

radius Rmin = 2, the microfilter radius rmin = 3, and 
the crossover rate and variation rate are 0.6. Simi-
larly, six replicate experiments were performed for 
the model under the same parameters. As shown 
in Fig.  12, the results of the six runs showed some 
similarity in terms of macroscopic and microscopic 
material layout, elastic stiffness matrix, and objective 
function. The average value of the objective function 
is 146.8795. Figure 13 shows the two-scale optimiza-
tion evolution process, and it can be seen that after 
70 generations, the optimization results tend to con-
verge and stable results are obtained. Figure 14 shows 
the optimization results of the classical BESO algo-
rithm under the same model with the corresponding 
objective function of 154.5804. Under this model 
the results obtained by this algorithm outperform the 
results obtained by the classical BESO method.

The results of the two-scale optimization with 
three different initial microstructures and the elastic 
stiffness matrix are presented in Fig.  15. It can be 
found that the different initial microstructures affect 
the configuration of the microstructure to a certain 
extent, but do not have a large effect on the material 
layout of the macrostructure.

Fig. 10  Optimization results for different macroscopic scales

Fig. 11  L-bracket
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4.4  3D support structure

The 3D support structure considered in this example. 
The macroscopic structure and microscopic structure 

of the initial design are shown in Fig.  16. The mac-
roscopic structure and microscopic structure of the 
initial design are shown in Fig.  16. The volume frac-
tion retained by the macroscopic structure is 20%, the 

Fig. 12  Two-scale optimization of evolutionary processes
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volume fraction retained by the microscopic structure is 
30%, the macroscopic filter radius Rmin = 2, the micro-
scopic filter radius rmin = 2, and the crossover rate 
and mutation rate are 0.6. Figure 17 shows the macro-
scopic and microscopic models optimized by using this 
algorithm. Based on the SIMP method, Gao [17] also 

realized the two-scale optimization of the 3D support 
structure by using the homogenization theory, but the 
grayscale phenomenon appeared in the result. The algo-
rithm proposed in this paper can effectively improve 
the structural stiffness while suppressing this numerical 
instability.

�H =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.1031 0.0596 0.0970 −1.6168e − 5 −9.4004e − 6 −2.8555e − 5
0.0596 0.3321 0.0611 −4.5553e − 5 1.7457e − 5 −7.2870e − 5
0.0970 0.0611 0.1080 −2.7319e − 5 3.1321e − 5 −3.9190e − 5
−1.6168e − 5 −4.5553e − 5 −2.7319e − 5 0.0650 −2.2578e − 5 −6.4895e − 7
−9.4004e − 6 1.7457e − 5 3.1321e − 5 −2.2578e − 5 0.0680 −1.3615e − 5
−2.8555e − 5 −7.2870e − 5 −3.9190e − 5 −6.4895e − 7 −1.3615e − 5 0.0711

Fig. 13  Two-scale opti-
mization of evolutionary 
processes

Fig. 14  Classical BESO 
optimization results
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According to different application requirements, 
different initial structural designs can be carried out 
for the 3D support structure. In the field of archi-
tecture, an optimally designed three-dimensional 
support structure can achieve larger spans and more 
complex spatial forms by using the support ele-
ments in space, thus bringing more design possibili-
ties to buildings. In addition, in the aerospace field, 
3D support structures can also be used in spacecraft 
and satellites to support loads and instruments to 
maintain the stability and reliability of the structure.

Fig. 15  Two-scale optimization of different initial microstructures

Fig. 16  3D support structure

Fig. 17  3D support struc-
ture two-scale optimization 
results
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5  Conclusion

In this paper, a topology optimization method inte-
grating BESO and NSGA-II is proposed for the two-
scale optimization problem to achieve the design of 
maximum structural stiffness. The homogenization 
theory and the target sensitivity are derived. Due to 
the influence of NSGA-II, the present algorithm has 
a certain degree of randomness. Six iterations of the 
design for each arithmetic case yielded highly similar 
results, which proved the stability of the algorithm. 
The implementation of the double penalty operator 
allows the present algorithm to obtain an absolutely 
convergent and clean topology. In comparison with 
the classical BESO method, the proposed algorithm 
can effectively improve the stiffness of the structure. 
It is worth noting that the present algorithm aims 
to improve the optimization of the objective func-
tion and does not consider the effect of optimization 
time. Finally, the extension of the algorithm to the 3D 
model is implemented to verify the effectiveness and 
generalizability of the algorithm.
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