
Vol.: (0123456789)
1 3

Meccanica (2023) 58:755–779 
https://doi.org/10.1007/s11012-023-01646-5

Deviatoric stress waves due to rheology in incompressible 
thermoviscoelastic solid medium with small strain, small 
deformation physics

K. S. Surana   · E. Abboud

Received: 11 March 2022 / Accepted: 15 February 2023 / Published online: 23 March 2023 
© Springer Nature B.V. 2023

Abstract  This paper demonstrates existence of 
deviatoric stress waves in thermoviscoelastic (TVE) 
solid continua due to rheology in addition to the pres-
ence of usual deviatoric stress waves purely due to 
elasticity of the solid continua. The physical mecha-
nisms that enable existence of deviatoric stress waves 
due to rheology in TVE solid continua are identified. 
Evolutions of deviatoric stress waves due to rheology 
are presented. Propagation, reflection, transmission, 
and interaction of such waves in conjunction with 
usual elastic stress waves are presented. The param-
eters controlling the rheological deviatoric stress 
waves and the speed of propagation of composite 
deviatoric stress waves due to rheology and elastic-
ity are identified, discussed and illustrated through 
model problem studies. Mathematical model for the 
TVE solids in ℝ1 is constructed using conservation 
and balance laws of classical continuum mechanics in 
ℝ

3 and the constitutive theories that are derived using 
entropy inequality and representation theorem. Model 
problems and their solutions are also presented to 
illustrate the validity of the concepts presented in the 
paper.

Keywords  Elastic waves · Rheology · Deviatoric 
stress · Dynamic stiffness · Thermoviscoelastic solid 
continua · Memory · Relaxation time · Deviatoric 
stress wave due to rheology

Abbreviations 

CBL	� Conservation and Balance 
Laws

CCM	� Classical Continuum 
Mechanics

TVE	� Thermoviscoelastic
BVP	� Boundary Value Problems
IVP	� Initial Value Problems
CM	� Conservation of Mass
BLM	� Balance of Linear Momenta
BAM	� Balance of Angular Momenta

1 � Introduction, literature review, and scope 
of work

The subject of stress waves in elastic solids has 
been of interest for a long time. Small deformation, 
small strain and finite deformation, finite strain stud-
ies related to elastic wave propagation are well pub-
lished. In case of the TVE solid continua with dis-
sipation mechanism, it is considered sufficient to 
determine influence of dissipation on wave ampli-
tude attenuation and base elongation. It is believed 
that presence of dissipation mechanism and rheology 
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does not appreciably alter the elastic waves. In case 
of TVE solid continua, we have physics of elastic-
ity, dissipation as well as memory or rheology. In 
such solids upon cessation of external disturbance, 
the deformed matter takes finite amount of time to 
resume unstressed or relaxed state. This is called 
stress relaxation phenomenon and is characterized 
by relaxation time. For larger relaxation times, TVE 
solid continua take more time to resume an unstressed 
state. In published works, this physics is incorporated 
in the mathematical model either phenomenologically 
or using CBL of CCM and the constitutive theories.

The linear and nonlinear mathematical models, the 
analytical and/or numerical solutions of the boundary 
value problems (BVPs) and the initial value problem 
(IVPs) for elastic, thermoviscoelastic solid continua 
with and without memory are documented in various 
published works [1, 2, 4–8, 13–18, 20, 21, 36–38]. 
We simply cite these here for convenience of inter-
ested readers, but these works do not have direct bear-
ing on the research presented in this paper, but pro-
vide background material. A good discussion of the 
published works in these references can be found in 
[9, 31].

The mathematical models and the concepts used 
in deriving them for TVE solid continua are largely 
borrowed from polymeric fluids for which experi-
ments are relatively easier to perform and easier to 
observe (under microscopic photography) the defor-
mation details. Just like polymeric fluid, a polymeric 
solid is also synthesized using a solvent consist-
ing of short chain molecules and a polymer consist-
ing of long chain molecules. The resulting solid is 
referred to as polymeric solid or thermoviscoelastic 
solid. When the composition of the polymeric solid 
is dominated by the short chain molecules i.e. solvent, 
the polymeric solid behaves more like a solid with 
short chain molecule material. On the other hand, if 
the composition of the polymeric solid is dominated 
by long chain molecules of the polymer, the poly-
meric solid behaves more like long chain polymeric 
solid continua with prominent rheology. Microscopic 
photography of deforming polymeric fluids reveal 
complex Brownian motion of the long chain mole-
cules at the molecular level. In the relaxed unstressed 
state, the long chain polymer molecules are observed 
mostly in a coiled state either by themselves or col-
lectively in a colony of long-chain molecules. These 
colonies of long chain molecules are observed to be 

interconnected with the neighboring colonies. The 
solvent and polymer have their own properties (like 
viscosities) that contributes to the properties of the 
TVE solid continua. But the synthesized polymeric 
solid has its own viscosity, conductivity and other 
material properties. These obviously must be deter-
mined experimentally for the polymeric solid.

Upon applying disturbance to a TVE solid con-
tinua the short chain molecules collectively behave 
like usual short chain molecule solids (such as a mon-
olithic material). The long chain molecules on the 
other hand, begin to uncoil primarly in the direction 
of the disturbance. This requires that they overcome 
the viscous resistance (drag) offered by the solvent 
as well as viscous resistance offered by the polymer 
molecules. Thus, the motion of the polymer mole-
cules is like one dimensional springs. Collectively the 
polymer molecules act like one dimensional springs 
in the direction of the disturbance. Just like a one 
dimensional spring is only active in its axial direc-
tion and has no resistance or response normal to this 
direction, the polymer molecules behave in a similar 
fashion. That is, normal to the direction of distur-
bance the polymer molecules response is quite weak, 
but not zero due to random orientation and arrange-
ment of the polymer molecules in the TVE solid 
continua. At scales lower than macroscale, the poly-
meric solids are not homogenous and isotropic (the 
Brownian motion confirms this), but at macroscale 
TVE solids can be considered isotropic and homog-
enous. This allows us to use CBL of CCM in deriv-
ing mathematical models for deformation physics of 
TVE solid continua. Surana [28, 29] and Surana et.al 
[11] have presented the derivations of mathematical 
models for TVE solid continua using CBL of CCM 
as well as derivation of constitutive theories using 
entropy inequality and representation theorem.

There is vast amount of published work on devia-
toric stress wave propagation in elastic solid con-
tinua. Existence and propagation of such waves 
require presence of strain i.e. elasticity. This stress 
wave propagation phenomenon is due to mechanism 
of vibrational energy transfer between neighboring 
material points, hence requires presence of strain and 
elasticity. To our knowledge the existence and propa-
gation of deviatoric stress waves purely due to rheol-
ogy have never been reported in the published works 
on TVE solids. This in fact is the incentive and moti-
vation for the work presented in this paper.
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In any deforming solid continua, the total defor-
mation can be additively decomposed into volumet-
ric and distortional. Volumetric deformation results 
in change of volume if the matter is compressible 
and the distortional deformation results in only the 
change of shape of the volume of matter. The volu-
metric deformation can result in pressure waves only 
if the matter is compressible. Distortional deforma-
tion results in deviatoric stress waves. Existence and 
propagation of these waves require stiffness and mass. 
For example, in incompressible solid continua that 
has stiffness and mass, deviatoric stress waves can 
exist and propagate but pressure waves are not possi-
ble due to lack of volumetric deformation. Likewise, 
in a compressible gas that has virtually no stiffness 
only pressure waves can exist and propagate. In TVE 
solids, the deviatoric stress waves due to elasticity 
(strain) co-exist with deviatoric stress waves due to 
rheology. In a recent paper Surana et al. [10] demon-
strated existence of deviatoric stress waves in poly-
meric fluids. In such fluids due to absence of elastic-
ity (strains) the stiffness due to elasticity is absent. 
The authors identified viscosity and relaxation time 
as sources of dynamic stiffness in such fluids that per-
mit existence, propagation, transmission, reflection 
and interaction of deviatoric stress waves purely due 
to rheology. Authors showed that increasing viscos-
ity and decreasing relaxation time results in increas-
ing dynamic stiffness hence result in faster deviatoric 
stress wave speed. The authors also presented results 
showing dependence of deviatoric wave speed on vis-
cosity and relaxation time. The work presented in the 
present paper is motivated by the work of reference 
[19].

1.1 � Motivation and scope of present work

We consider isotropic, homogeneous, incompress-
ible TVE solid continua with elasticity, dissipation 
and memory mechanism. Due to incompressibility, 
pressure waves cannot exist in such solid continua, 
but deviatoric stress waves that require stiffness and 
mass can exist and propagate. In TVE solid continua 
considered here there are two mechanisms of devia-
toric stress waves that co-exist: (1) The first type of 
deviatoric stress waves are due to elasticity (strain) 
and mass or in general due to static stiffness because 
of elasticity and mass. These are commonly studied 
in solid continua (2) The second type of deviatoric 

stress waves are due to rheology. These have never 
been studied and reported to our knowledge. We 
explain the rheology mechanisms that makes exist-
ence of such stress waves possible. When a TVE 
solid continua is subjected to disturbance, the vis-
cous resistance offered to the motion of polymer mol-
ecules by the solvent and the neighboring polymer 
molecules in the direction of the disturbance can be 
collectively viewed as one dimensional springs acting 
in the direction of the disturbance. This is additional 
source of dynamic stiffness in TVE solids with mem-
ory, and since TVE solids naturally have mass, addi-
tional deviatoric stress wave can exist due to this rhe-
ology in TVE solids. This mechanism of additional 
dynamic stiffness exists regardless of whether the 
TVE solid continua is compressible or incompress-
ible but requires motion of the polymer molecules. 
Thus, it is straight forward to conclude the existence 
of deviatoric stress waves in TVE solid continua due 
to rheology regardless of whether the TVE solid is 
compressible or incompressible. A complete study of 
deviatoric stress waves due to rheology in TVE sol-
ids with memory is the objective of the research pre-
sented in this paper. The investigations considered in 
this paper are outlined in the following: 

(1)	 Existence of the deviatoric stresses due to rheol-
ogy and the composite stress waves due to rheol-
ogy and elasticity of solid continua.

(2)	 Purely elastic deviatoric stress waves and their 
propagation.

(3)	 Physics of propagation of deviatoric stress waves 
due to rheology.

(4)	 Parameters influencing the deviatoric stress 
waves due to rheology and their speed of propa-
gation.

(5)	 Physics of propagation of composite deviatoric 
stress waves due to elasticity and rheology.

(6)	 Propagation, reflection, transmission and interac-
tion of composite deviatoric stress waves.

The mathematical model considered in the present 
work consists of CBL of CCM in ℝ1 in lagrangian 
description derived from CBL in ℝ3 and the linear 
constitutive theories that are derived using entropy 
inequality and the representation theorem. For non-
cyclic loading (as considered here) the entropy pro-
duction due to dissipation is not significant, hence the 
deformation process can be assumed isothermal, thus 
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energy equation need not be considered as part of the 
mathematical model. We consider simple linear vis-
coelastic solid with small deformation, small strain 
physics. The mathematical model is nondimension-
alized and the solutions of the IVP described by the 
mathematical model are obtained using space-time 
coupled finite element method based on space-time 
residual functional, also referred to as space-time 
least squares method for a space-time strip with time 
marching [12]. The space time differential operator in 
the present study is linear.

2 � Mechanisms of static and dynamic stiffness 
in TVE solid continua with memory

TVE solids possess elasticity due to strains, dissipa-
tion physics due to viscosity and rheology due to long 
chain molecules of the polymer. Such solids naturally 
possess static (same as dynamic) stiffness due to elas-
ticity (strains). This permits existence and propaga-
tion of deviatoric elastic (or non elastic) stress waves 
in such solids. In solid continua presence of strain 
during deformation is essential for existence and 
propagation of deviatoric stress waves.

Additionally, in TVE solid continua with memory, 
the long chain molecules provide rheology or mem-
ory. Uncoiling and stretching of long chain molecules 
during loading and the viscous drag (resistance) expe-
rienced by the polymer molecules in this process is 
similar to stretching of one dimensional springs. This 
is additional source of dynamic stiffness in TVE sol-
ids with memory. Since viscous drag is dependent on 
viscosity of the polymeric solid, viscosity is naturally 
a parameter that controls the dynamic stiffness due 
to rheology in TVE solids. Higher values of viscos-
ity naturally result in more pronounced viscous drag, 
thus higher dynamic stiffness.

The second source of dynamic stiffness due to 
rheology is because of relaxation physics. A smaller 
relaxation time implies less physical time for the pol-
ymer molecules to revert back to relaxed state, hence 
increased viscous resistance and higher stiffness dur-
ing relaxation process compared to longer relaxation 
time that requires longer physical time for the relaxa-
tion process. Thus, in this case the relaxation pro-
cess is spread over a longer time implying decreased 
dynamic stiffness. The stiffness due to rheology is 
naturally dynamic stiffness i.e. its existence requires 

motion. For a stationary TVE solid continua, the elas-
tic stiffness dependent on elastic properties is always 
nonzero, but the dynamic stiffness due to rheology is 
zero when the continua does not have time depend-
ent deformation as it requires motion of the polymer 
molecules.

In a deforming TVE solid the deviatoric stress 
waves due to elasticity and due to rheology always 
co-exist. We shall see that in general the deviatoric 
stresses due to elasticity are much more dominant 
in TVE solid continua with memory compared to 
the deviatoric stresses due to rheology. Separating 
the two effects in the study of deviatoric stress wave 
propagations in TVE solids is somewhat difficult. 
This is due to two reasons: (i) Physics of stress wave 
propagation in solid continua (ii) and secondly due to 
the fact that the deviatoric stress waves due to rheol-
ogy are quite weak compared to purely elastic waves 
hence, in the composite wave the influence of rheol-
ogy is not dominant, hence may not be detectable.

3 � Deviatoric stress wave propagation in TVE solid 
continua

The physics of deviatoric stress wave propagation in 
solid continua requires elasticity but more specifically 
presence of strain. The purely elastic waves naturally 
have strain physics but the deviatoric stress waves due 
to rheology do not contain strain physics. Instead, the 
deviatoric stress wave due to rheology have strain 
rate physics (convected time derivatives of strain 
tensor(s)). Thus, composite deviatoric stress wave and 
purely elastic deviatoric stress waves can propagate in 
TVE solids due to presence of strain physics in both 
cases. However, a deviatoric stress wave purely due 
to rheology can exist but cannot propagate due to the 
absence of strain physics. Thus, in the model prob-
lem studies it is possible to demonstrate existence 
of deviatoric stress waves due to rheology but their 
propagation during evolution is not possible. Instead, 
the only alternative is to compare purely elastic wave 
with the composite wave to study their propagation, 
reflection, transmission, interaction and their propa-
gation speeds.

Regarding composite wave speed, we know that 
effective total dynamic stiffness increases due to 
presence of rheology, thus in principle the compos-
ite wave speed must be influenced by viscosity and 
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relaxation time. However, the change in stiffness due 
to rheology is small compared to the stiffness due 
to elasticity, thus a quantitative measure of change 
in wave speed due to rheology is also quite difficult, 
nonetheless in model problem studies we clearly 
demonstrate the existence of this physics.

4 � Mathematical model

The mathematical model consists of CBL of CCM 
and the constitutive theories derived based on entropy 
inequality and representation theorem for small defor-
mation, small strain physics. Explicit form of the 
partial differential equations (PDEs) constituting the 
mathematical model in ℝ1 (used in present work) are 
obtained as a special case of the mathematical model 
in ℝ3 . Thermoviscoelastic solids with memory (rub-
ber like material) have been studied for longtime [19]. 
Most approaches used in deriving constitutive theo-
ries have been phenomenological, primarily based 
on 1D spring and 1D dashpot, dumbbell models [3]. 
More recently CCM principles are slowly being used 
for constitutive theories for TVE solids with memory 
[11, 28, 29]. At macroscale TVE solids are assumed 
isotropic and homogeneous. This allows us to use 
CBL of CCM and constitutive theory methodolo-
gies for isotropic and homogeneous matter based of 
entropy inequality and the representation theorem 
[22–27, 32–35, 39, 40].

4.1 � Conservation and balance laws and constitutive 
theories

The rate of entropy production in such solids is rela-
tively small (when the loads are not repeated cyclic 
loads), thus thermal effects are almost negligible, 
hence can be neglected. Thus, the mathematical 
model consists of conservation of mass (CM), bal-
ance of linear momenta (BLM), balance of angular 
momenta (BAM) and the constitutive theory for the 
stress tensor. Furthermore, in case of small deforma-
tion, small strain the determinant of the jacobian of 
deformation is one ( |JJJ| = 1 ), hence the density 
remains constant during the deformation process. 
Thus, CM is not part of mathematical model consid-
ered here. Density �

0

 used in BLM is the constant den-

sity in the reference or initial configuration that does 
not change during deformation.

In case of small deformation, small strain, the ini-
tial (same as reference) configuration and the deformed 
configurations are virtually the same due to the fact 
that deformed coordinates x̄i of the material point can 
be considered to be the same as the undeformed coor-
dinates xi . Thus, in this case, whether we use xi coor-
dinates and time t or x̄i coordinates and time t, the 
resulting mathematical model will be the same. Since 
we are considering solid medium, we prefer to use xi 
and t in the mathematical model, hence the Lagrangian 
description.

Using notations of references [28, 29], we have the 
following for BLM and BAM of CCM in ℝ3 in Lagran-
gian description.

in which �
0

 is density in the reference configuration, vvv 
is velocity, uuu is displacement, vector FFFb is body force 
vector per unit mass, ��� is cauchy stress tensor (basis 
independent due to small deformation, small strain)

Constitutive Theories
We decompose ��� into e��� and d��� , equilibrium and 

deviatoric stress tensors (additive decomposition).

Constitutive theory for e��� describes volumetric defor-
mation and the constitutive theory for d��� addresses 
distortional deformation physics [29]. Since the mat-
ter is assumed incompressible, the constitutive theory 
for e��� is much simplified and is given by [29]

in which p is the mechanical pressure, assumed posi-
tive when compressive. Derivation of the constitutive 
theory for d��� begins with the conjugate pair d��� ∶ ��� in 
the entropy inequality [21,22] in which ��� is the linear 
part of Green’s strain tensor. Thus, for incompress-
ible, isothermal physics we can write

(1)�
0

Dvvv

Dt
− �

0

FFF
b −��� ⋅⋅⋅��� = 0 (BLM)

(2)[���] = [���]T (BAM)

(3)vvv =
Duuu

Dt
=

�uuu

�t

(4)��� = e��� + d���

(5)e��� = −p���
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Due to physics of dissipation, Eq. (6) must be modi-
fied to include strain rate 

.

��� in the argument tensors of 
d���.

Let (i)��� ; i=1,2,...,n be the rates of strain tensor ��� of up 
to order n. (i)��� are naturally basis independent, then 
we can generalize (7) and instead use

From published works on polymeric fluids [3, 
28–30], we know that a constitutive theory for devi-
atoric cauchy stress tensor must at least use the first 
convected time derivative of the deviatoric cauchy 
stress tensor as a constitutive variable with deviatoric 
cauchy stress tensor as its argument tensor. Other-
wise, it is not possible to show the existence of mem-
ory modulus, hence lack of rheology and relaxation 
physics. The same concept apply to polymeric solids 
as well. That is, we must at least consider the follow-
ing instead of Eq. (8)

Let d���(j) ; j=1,2,...,m be material or time derivatives of 
the cauchy stress tensor up to orders m (same as the 
convected time derivatives due to Lagrangian descrip-
tion and small strain, small deformation assumption), 
then we can generalize Eq. (9).

Using (10), we can derive a most general constitutive 
theory for d���(m) based on integrity and representation 
theorem.

Surana [28, 29] has presented the details of the 
derivation as well as derivation of material coeffi-
cients. These constitutive theories are called theories 
of order (n,m). In the present work we consider a sim-
plified constitutive theory of up to orders m=1 and 
n=2 that resembles the constitutive theories for Max-
well, Oldroyd-B and Giesekus constitutive models for 
viscoelastic polymeric fluids [28, 29].

(6)d��� = d���(���)

(7)d��� = d���(���,
.

���)

(8)d��� = d���(���, (i)���) ; i = 1, 2, ..., n

(9)d���(1) = d���(1)(d���,���, (i)���) ; i = 1, 2, ..., n

(10)
d���(m) = d���(m)(���, d���, d���(j)

,
(i)���)

; i = 1, 2, ..., n ; j = 1, ...,m − 1

in which �
1
 is relaxation time, � and � are Lamé’s 

constants, � is viscosity, �
2
 is retardation time and � 

is mobility factor (see references [3, 28, 29] for more 
details). Using Eq. (11) we define three different con-
stitutive theories that are parallel to the constitutive 
theories for Maxwell, Oldroyd-B and Giesekus poly-
meric fluids, hence are denoted so.

Maxwell model:
�
2
=0, � =0 in Eq. (11)

Oldroyd-B model:
� =0 in Eq. (11)
Giesekus model:
�
2
 =0 in Eq. (11)

4.2 � Complete mathematical model

Complete mathematical model consists of (1)–(3) 
in which we substitute additive stress decomposi-
tion Eq. (4) and constitutive theory for equilibrium 
stress tensor e��� given by (5) and the constitutive 
theory for deviatoric stress tensor d��� given by (11)

4.3 � Dimensionless form of the mathematical model 
in ℝ3

Let L
0
 , v

0
 , t

0
 , (�

0

)ref  , �0 , p0 , �0 be reference length, 
velocity, time, density, stress, pressure and viscosity 
respectively. First we express Eq. (12)–(14) using 
hat ( ̂ ) on all quantities which implies that all these 

(11)

d��� + �
1
(d���(1)) = 2���� + �(tr(���))III

+ 2�(1)��� + 2��
2

(2)��� + �
�
1

�
(d���)2

(12)�
0

�vi

�t
− �

0

FFF
b
i
+

�p

�xi
−

�(d���ji)

�xj
= 0

(13)

d��� + �
1

�(d���)

�t
= 2���� + �tr(���)III

+ 2�
�(���)

�t
+ 2��

2

�2(���)

�t2
+ �

�
1

�
(d���(0))2

(14)vi =
�ui

�t
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quantities have their usual dimensions or unit, then 
we define the following dimensionless variables

The dimensionless form of Eqs. (12)–(14) are given 
by

	

we can write Eqs. (16)–(18) as

(15)

x =
x̂

L
0

, v =
v̂

v
0

, u =
û

L
0

, t =
t̂

t
0

,

d𝜎 =
̂d𝜎

𝜏
0

, p =
p̂

p
0

, 𝜂 =
𝜂̂

𝜂
0

, E =
Ê

E
0

, 𝜌
0

=

𝜌
0

(𝜌
0

)ref

with t
0
=

L
0

v
0

, v
0
=

�
E
0

(𝜌
0

)ref
,

𝜏
0
= p

0
= (𝜌

0

)ref v
2

0
; characteristic kinetic energy

Then E
0
= 𝜏

0
= p

0
= (𝜌

0

)ref v
2

0
, we also use

F̂b
i

F
0

= Fb.

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(16)

�
0

�vi

�t
−

(
L
0
F
0

v2
0

)
�
0
F
b
i

+

(
p
0

(�
0
)ref v

2

0

)
�p

�xi
−

(
�
0

(�
0
)ref v

2

0

)
�(d�ji)

�xj
= 0

(17)

d� +

(
𝜆̂
1

t
0

)
𝜕(d�)

𝜕t
=

E
0

𝜏
0

(2𝜇� + 𝜆tr(�)I)

+ 2𝜂

(
𝜂
0

𝜏
0
t
0

)
𝜕(�)

𝜕t
+ 2𝜂

(
𝜂
0

𝜏
0
t
0

)
𝜆̂
2

t
0

𝜕2(�)

𝜕t2
+

(
𝛼

𝜂

)(
𝜏
0
t
0

𝜂
0

)(
𝜆̂
1

t
0

)
(d�(0))2

(18)vi =
�ui

�t

(19)

If we choose F
0
=

v2
0

L0
, then

F0L0

v2
0

= 1 and
P0

(𝜌0)ref v
2

0

= 1 ,

𝜏0

(𝜌0)ref v
2

0

= 1 , De =
𝜆̂1

t0
, De

2
=

𝜆̂2

t0
, Re =

𝜏0t0

𝜂0

⎫
⎪⎬⎪⎭

(20)�
0

�vi

�t
− �

0

FFF
b
i
+

�p

�xi
−

�(d���ji)

�xj
= 0

(21)

d� + De
�(d�)

�t
= 2�� + �tr(�)I

+

(
2�

Re

)
�(�)

�t
+ 2�

(
De

2

Re

)
�2(�)

�t2
+ �

DeRe

�
(d�(0))2

where Re is the Reynolds number and De and De
2
 are 

Deborah numbers.
Equations Eqs. (20)–(22) are the final form of the 

dimensionless BLM, and the constitutive equation.

4.4 � Dimensionless form of the mathematical model 
in ℝ1

We consider pure axial deformation in x
1
 direction.

For 1D in ℝ1 ( O − x
1
 of x-frame), we can obtain 

the following mathematical model using (20)-(22). 
For simplicity we choose �

2
= 0 and � = 0 i.e. we 

consider mathematical model parallel to Maxwell 
polymeric fluid.

We obtain the following

(22)vi =
�ui

�t

In which E is module of elasticity. We choose 
mechanical pressure p = 0 and Fb

1
= 0 for the model 

problem studies presented in the paper.
Secondly, since the main thrust of this work is to 

investigate the deviatoric stress waves due to rheol-
ogy, this requires that we vary De, E and � . For this 
reason we can recast Eq. (24) in a more conveni-
ent form. Thus, finally we have the following math-
ematical model that is suitable for 1D deviatoric 

(23)�
0

�v
1

�t
− �

0

Fb
1
+

�p

�x
1

−
�(d�

11
)

�x
1

= 0

(24)d�
11
+ De

�(d�
11
)

�t
= E

�u
1

�x
1

+ (
2�

Re
)
�v

1

�x
1

(25)v
1
=

�u
1

�t
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stress wave studies in the viscoelastic polymeric 
solid with memory.

In the mathematical model Eqs. (26)–(28), varying 
De number represents varying rheology and C

1
,C

2
 

represent presence of elasticity due to strain and the 
presence of dissipation due to viscosity respectively.

5 � Solution of the mathematical model

The mathematical model Eqs. (26)–(28) is a system 
of linear partial differential equations in space coor-
dinate x

1
 and time t, hence is an initial value prob-

lem (IVP) in which the space-time differential oper-
ator is linear but not self-adjoint [12]. We seek 
solution of this IVP using space-time finite element 
method in which space-time integral form is space-
time variationally consistent [12]. Based on refer-
ence [12], the space-time integral form based on 

(26)�
0

�v
1

�t
−

�(d�
11
)

�x
1

= 0

(27)

d�
11
+ De

�(d�
11
)

�x
1

= C
1

�u
1

�x
1

+ C
2

�v
1

�x
1

∀ x, t ∈ Ωxt

(28)v
1
=

�u
1

�t

space-time residual functional is the only space-
time integral form that is space-time variationally 
consistent, hence ensures unconditional stability of 
the computations during entire evolution, hence is 
used in the present work. We divide space-time 
domain Ω̄xt into space time strips, Ω̄T

xt
= ∪

j=1

jΩ̄T
xt

 in 

which Ω̄T
xt

 is discretization of Ω̄xt in space time strips 
jΩ̄T

xt
 (Fig.  1a). A typical nth space-time strip is 

divided into nine-node p-version hierarchical space-
time finite elements for which the local approxima-
tions are of higher order global differentiability in 
space x and time t.

Fig.  1b shows discretization 1Ω̄T
xt
= ∪

e
Ω̄e

xt
 of the 

first space-time strip (0 ≤ t ≤ Δt) , using BCs and 
ICs for the first space-time strip, a converged solu-
tion is obtained (h,p-refinements, with minimally 
conforming approximation space [12]) for the first 
space-time strip. Using the converged calculated 
solution at Δt , initial conditions are obtained for the 
second space-time strip (Δt ≤ t ≤ 2Δt) followed by 
computation of solution for the second space-time 
strip. We call this procedure; space-time strip with 
time marching. This procedure is continued until 
the desired time is reached. In this approach of cal-
culating evolution the residual functional I [12] for 
each space-time strip is an accurate measure of 
solution accuracy when the approximation space is 
minimally conforming. Thus, the solutions reported 

Fig. 1   Discretization of space-time domain into space-time strips, discretization of nth space-time strip into space-time elements
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in the paper are nearly time accurate (within com-
putational roundoffs).

5.1 � Space‑time residual functional for a space‑time 
strip

Consider discretization nΩ̄T
xt
= ∪

e
Ω̄e

xt
 of nth space-time 

strip of nΩ̄xt . Let (u
1
)e
h
 , (v

1
)e
h
 and (d�

11
)e
h
 be the local 

approximation of u
1
 , v

1
 and d�

11
 over an element Ω̄e

xt
 

and (u
1
)h , (v1)h and (d�

11
)h be approximations of u, v 

and d�
11

 over discretization nΩ̄T
xt

 such that

Upon substituting (29) we obtain residual functions 
E
1
,E

2
 and E

3
 over nΩ̄T

xt
.

Space-time residual functional I over nΩ̄T
xt

 is defined 
as

If I is differentiable in its arguments i.e. in (u
1
)h , (v1)h 

and (d�
11
)h , then �I is unique and �I = 0 is a neces-

sary condition for an extremum functional I in (33)

and

Hence, (35) is sufficient condition or extremum prin-
ciple that ensure unique (u

1
)h , (v1)h and (d�

11
)h from 

(29)
(u

1
)h = ∪

e
(u

1
)e
h
; (v

1
)h = ∪

e
(v

1
)e
h
; (d�

11
)h = ∪

e
(d�

11
)e
h

(30)E
1
= �

0

�(v
1
)h

�t
−

�(d�
11
)h

�x
1

(31)

E
2
= (d�

11
)(h) + De

�(d�
11
)(h)

�t
= C

1

�(u
1
)h

�x
1

+ C
2

�(v
1
)h

�x
1

(32)E
3
= (v

1
)h −

�(u
1
)h

�t

(33)I =

3∑
i=1

Ii =

3∑
i=1

(Ei,Ei)nΩ̄T
xt

(34)�I =

3∑
i=1

2(Ei, �Ei) = {g} = 0

(35)𝛿2I =

3∑
i=1

2(𝛿Ei, 𝛿Ei) > 0 ∀ 𝛿Ei ; i = 1, 2, 3

Eq. (34) and this solution minimizes I in (33) (due to 
Eq. (35)). Let

In the local approximation Eq. (36), [Nu
1],[Nv

1 ] and 
[N�] are approximation functions and {�u1e } , {�v1e } and 
{��

e
} are nodal degrees of freedom for (u

1
)e
h
 , (v

1
)e
h
 and 

(d�
11
)e
h
 and

are degrees of freedom for nΩ̄T
xt

 for u
1
,v
1
 and d�

11
 and

and

are total dofs for nΩ̄T
xt

 and Ω̄e
xt

.
We can write the following using Eq. (33)

{ge({�e})} and {g({�})} are linear functions of 
{�e} and {�} respectively, hence we can write the 
following:

and

or

in which

(36)
(u

1
)e
h
= [Nu

1 ]{�u1
e
} , (v

1
)e
h
= [Nv

1 ]{�v1
e
}

(d�
11
)e
h
= [N�]{��

e
}

(37){�u1} = ∪
e
{�u1

e
} ; {�v1} = ∪

e
{�v1

e
} ; {��} = ∪

e
{��

e
}

(38){�}T = [{�u1}T , {�v1}T , {��}T ]

(39){�e}T = [{�u1
e
}T , {�v1

e
}T , {��

e
}T ]

(40)I =

3∑
i=1

Ii =
∑
e

(

3∑
i=1

(Ee
i
,Ee

i
)Ω̄e

xt
)

(41)

∴∴∴ 𝛿I =
∑
e

(

3∑
i=1

2(Ee
i
, 𝛿Ee

i
)Ω̄e

xt
) =

∑
e

(

3∑
i=1

{ge
i
}) = {g({𝛿})} = 0

(42)
3∑
i=1

(Ee
i
, 𝛿Ee

i
)Ω̄e

xt
= [Ke]{𝛿e} − {f e}

(43)�I = 2

∑
e

([Ke]{�e} − {f e}) = 0

(44)[K]{�} = {F}
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we impose BCs and ICs in Eq. (44) and solve for 
remaining {�} . After calculating solution for a space-
time strip, we calculate residual functional I using Eq. 
(33). Its proximity to zero is a measure of accuracy. 
In the present work I values of the order of O(10−8) 
or lower are considered zero and are achieved in all 
solutions reported in the paper.

6 � Model problem studies

In this section we present model problem studies 
using mathematical model in ℝ1 for 1D axial defor-
mation to demonstrate existence and evolution of 
deviatoric stress waves purely due to rheology. We 
also present studies for composite deviatoric stress 
waves, their propagation, reflection, transmission and 
interaction. Composite wave speed, its dependence on 

[K] =
∑
e

[Ke] assembly of [Ke]

{F} =
∑
e

[f e] assembly of {f e}

viscosity and De are illustrated in the numerical stud-
ies. Dependence of dynamic stiffness on viscosity and 
De is also shown in the model problem studies. The 
assumptions used in deriving the conservation and 
the balance laws remain valid here as well.

Figure 2a shows a rod of constant cross section of 
polymeric solid with dissipation and memory. The 
left end of the rod is clamped (impermeable) and 
the right end ( x

1
= 1 ) is subjected to a deviatoric 

stress or a velocity pulse of duration 2Δt (Fig. 2d). 
Assuming that the rod deformation is purely 1D, 
we can idealize the rod of Fig.  2(a) by a line rep-
resentation shown in Fig.  2b. Figure  2c shows a 
space-time finite element discretization 1Ω̄T

xt
 of the 

first space-time strip 1Ω̄xt using nine node p-ver-
sion hierarchical space-time elements with higher 
order global differentiability in x

1
 and t. Boundary 

conditions and initial conditions are also shown in 
Fig. 2c. Figure 2d shows the stress or velocity pulse 
(shown as deviatoric stress pulse in Fig. 2d) applied 
at x

1
= L = 1.

Values of De, elastic coefficient C
1
 and dissipa-

tion coefficient C
2
 are given in the graphs of the 

Fig. 2   1D solid domain, 
idealization of 1D solid 
domain, discretization of 
first space-time strip with 
space-time finite elements 
and applied disturbance
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calculated results. In all numerical studies the 
space-time domain nΩ̄xt of the nth space-time strip is 
discretized into nΩ̄T

xt
 = ∪

e
Ω̄e

xt
 using uniform discre-

tization consisting of 10 nine node p-version space-
time elements Ω̄e

xt
 . Since the mathematical model in 

u
1
 , d�

11
 and v

1
 is a system of first order PDEs in 

space and time, local approximation of class C11 for 
all three variables in space and time constitute mini-
mally conforming approximations, hence are used 
in the numerical studies.

p convergence studies are conducted for the first 
space-time strip to ensure that choice of p-level in 
space and time always yields residual functional I of 
the order of O(10−8) or lower, confirming good accu-
racy of the computed solution. p−level of 9 in space 
and time is found to be adequate, hence is used in all 
studies for all space-time strips.

6.1 � Existence of the deviatoric stress wave due to 
rheology

Since the deviatoric stress wave due to elasticity 
and due to rheology co-exist in deforming TVE sol-
ids with memory, application of deviatoric stress 
wave at x = L implies application of total deviatoric 
stress at x

1
= L due to elasticity and rheology. Thus, 

with applied d�
11

 at x
1
= L it is not possible to sep-

arate d�
11

 due to elasticity and rheology. In order to 

demonstrate existence of d�
11

 purely due to rheology 
we set C

1
 (elastic constant) to zero. This eliminates 

elasticity all together, secondly, instead of d�
11

 pulse 
of base 2Δt at x

1
= L , we apply a pulse of velocity v

1
 

of duration 2Δt with peak value of v
1
= 0.1 (can be 

applied by impact in the experiment). This impacts 
certain amount of energy to the rod at x = L . Since 
C
1
= 0 , the resistance offered to the deformation of 

the rod is purely due to rheology. We monitor evolu-
tion of d�

11
 in the rod with time. An important point 

to remember here is that since C
1
= 0 (no elasticity) 

deviatoric stress waves can not propagate as time 
elapses. The medium has viscosity, thus we expect 
base elongation and amplitude decay of the d�

11
 due 

to velocity pulse as time elapses, but no propagation 
of d�

11
 wave as evolution proceeds. For these studies 

we consider De = 0.004 and C
1
= 0 and C

2
= 0.01 . 

Figure 3 shows evolution of d�
11

 along the length of 
the rod for various increments of time. The first time 
step shows the maximum possible magnitude of d�

11
 

( −0.03 ) for this choice of De and C
2
 and for veloc-

ity pulse of duration [0,Δt ]. In the second time step, 
the velocity pulse is discontinued, instead half stress 
pulse of magnitude d�

11
= −0.03 at Δt and d�

11
= 0 

at 2Δt with continuous and differentiable distribution 
is applied. For t ≥ 2Δt , the boundary at x

1
= L is free 

boundary. Switching the half velocity pulse to half 
stress pulse for Δt ≤ t ≤ 2Δt is essential to ensure that 

Fig. 3   Existence of d�
11

 
purely due to rheology: 
C
1
= 0 , De = 0.004 , 

C
2
= 0.01
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the boundary at x
1
= L is not a stress free boundary 

for Δt ≤ t ≤ 2Δt , as a stress free boundary will result 
in reflection of compressive d�

11
 for 0 ≤ t ≤ Δt into a 

tensile wave for t > Δt . We observe the following: 

(1)	 The existence of deviatoric stress wave purely 
due to rheology for all values of time.

(2)	 The peak value d�
11

 is clearly at t = Δt for the 
first increment of time. Upon further evolution, 
the peak values of the subsequent waves progres-
sively diminish, accompanied by base elongation 
due to dissipation physics.

(3)	 We note that waves for all values of time are 
anchored at x

1
= L , confirming that these devia-

toric stress waves due to rheology are unable to 
propagate due to lack of elasticity (as C

1
= 0).

(4)	 This study conclusively confirm existence of 
deviatoric stress wave purely due to rheology, 
attenuation and dispersion of the stress waves due 
to viscosity and their inability to propagate due to 
absence of elasticity are clearly demonstrated

(5)	 We note that when De = 0 , C
2
= 0 and C

1
= 1.0 

(pure elastic case) d�
11

=0.1 at t = Δt for the same 
velocity pulse. This magnitude is much higher 
than the magnitude of d�

11
 purely due to rheol-

ogy, confirming weaker resistance offered by rhe-
ology physics compared to elastic behavior due 
to strain physics.

6.2 � Influence of viscosity on deviatoric stress waves 
due to rheology

In this study also we choose C
1
= 0 (absence of elas-

ticity) and De = 0.004 . We compute evolutions for 
C
2
= 0.01 and 0.015 using the same discretization and 

p−levels used in Sect. 6.1. Thus the d�
11

 waves in this 
case are purely due to rheology. We apply velocity 
pulse of duration 2Δt , but switch it to a stress pulse 
for Δt ≤ t ≤ 2Δt of same peak magnitude as obtained 
in the first time step. d�

11
 is zero beyond t = 2Δt . This 

procedure is same as in described in 6.1. Evolution 
is computed for both values of C

2
 . Higher dissipation 

must result in higher magnitude of d�
11

 as it offers 
more resistance to the polymer molecules during 
their motion, but also causes more amplitude decay 
and base elongation. For 0 ≤ t ≤ Δt , d�

11
 versus x

1
 

plots for C
2
= 0.01 and 0.015 are shown in Figs.  3 

and 4. We clearly observe higher values of d�
11

 
over the length of the rod at t = Δt for C

2
= 0.015 

(Figs  4) compared to d�
11

 versus x at t = Δt shown 
in Figs.  3 for C

2
= 0.01 . This confirms increased 

resistance to motion for C
2
= 0.015 compared to 

C
2
= 0.01 , hence increased dynamic stiffness due to 

rheology. In general we also observe higher values 
of d�

11
 for C

2
= 0.015 for all values of time com-

pared to C
2
= 0.01 . However, we keep in mind that 

for C
2
= 0.015 , amplitude decay and base elongation 

are more pronounced compared to C
2
= 0.01 , hence it 

Fig. 4   Existence of d�
11
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is entirely possible that for some values of time d�
11

 
amplitudes for C

2
= 0.015 may become lower than 

those for C
2
= 0.01 . This aspect is not investigated in 

this particular study. As expected for both values of 
C
2
 , the d�

11
 wave due to rheology experiences base 

elongation and amplitude decay due to dissipation 
physics.

This study demonstrates that dynamic stiffness 
due to rheology increases with increasing dissipation 
coefficient, implying that d�

11
 increases with increas-

ing dissipation (as shown here) and that total stiffness 
(sum of purely elastic and due to rheology) increases 
as well. A consequence of this is of course increased 
speed of the composite deviatoric stress wave. Studies 
presented in a later section confirm this.

Remarks
This study again confirms: 

(1)	 Existence of d�
11

 waves due to rheology alone (in 
the absence of elasticity).

(2)	 Higher dissipation coefficient yields higher mag-
nitude of d�

11
 but more pronounced amplitude 

decay and base elongation compared to lower 
dissipation.

(3)	 It is worth noting that the maximum value of d�
11

 
due to rheology is much lower than d�

11
 due to 

pure elasticity ( d�
11

= 0.1 ) when the same distur-
bance is applied at x

1
= L.

6.3 � Influence of De on deviatoric stress waves due to 
rheology

In this study we illustrate the influence of De on devi-
atoric stress wave purely due to rheology as well on 
the composite deviatoric stress wave due to elasticity 
and rheology. As we have seen in TVE solids with 
memory deviatoric stress wave can only propagate 
in the presence of elasticity. Thus, influence of De 
on the deviatoric stress wave depends upon whether 
the wave is propagating (i.e. C

1
≠ 0 ) i.e. whether the 

elasticity is present ( C
1
≠ 0) or absent ( C

1
= 0).

First, we consider study in which C
1
= 0 (absence 

of elasticity), C
2
= 0.01 and De = 0.004 , 0.006 and 

0.008. We apply half velocity pulse of magnitude 
(0.1) at x

1
= L = 1.0 . Figure  5a shows evolution of 

d�
11

 at t = Δt for all three values of De. Figure  5b 
shows an exploded view of the evolution of d�

11
 in 

the vicinity of x
1
= 1.0 . We clearly note that higher 

Deborah number (De) results in higher values of d�
11

 . 
d�

11
 stress wave in this case is purely due to rheology 

but the deviatoric stress waves are unable to propa-
gate due to absence of elasticity. Without motion, 
rheology is absent, thus De in this case merely offers 
resistance to the motion, hence the reason to higher 
d�

11
 for higher De.

In the second study we choose C
1
= 1.0 (pres-

ence of elasticity), C
2
= 0.01 and De = 0.004 , 0.006 

and 0.008 (same C
2
 and De values as in the previ-

ous study without elasticity). In this case also we 
apply half velocity pulse of peak magnitude (0.1) 
at x

1
= L = 1.0 . Figure  6a shows evolution d�

11
 at 

t = Δt for all three values of De. Figure 6b shows an 
exploded view of d�

11
 in the vicinity of x

1
= 1.0 . We 

clearly observe that d�
11

 magnitude increases with 
decreasing Deborah number. This behavior is exactly 
opposite when compared with the study for C

1
= 0.0 

presented in Fig 5. We discuss results of Figs. 5 and 6 
in the following.

Remarks: 

(1)	 The relaxation phenomenon and rheology 
requires propagation of the disturbance which 
is only possible when C

1
≠ 0 . In this case lower 

De implies lower time for the stress relaxation, 
hence higher resistance to the motion of the poly-
mer molecules during relaxation which results in 
higher values of d�

11
 for decreasing De as shown 

in Fig. 6b.
(2)	 When C

1
= 0 , there is no elasticity, hence the 

d�
11

 wave is merely diffusing but not propagat-
ing, thus in this case De only offers resistance 
to motion but not rheology. As a consequence 
higher De results in higher d�

11
 values.

(3)	 We note that when C
1
≠ 0 (as in (1)) the physics 

of rheology is identical to deviatoric stress waves 
physics in polymeric fluids reported by Surana et. 
al [10].

6.4 � Composite deviatoric stress (d�
11
) , wave speed 

and its propagation

In a purely elastic medium the reference wave speed 
v
0
=

√
E
0

(�
0

)ref
 is precisely deterministic. However in 

TVE solids with memory the wave speed changes due 
to additional dynamic stiffness because of rheology. 
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We have seen in the model problems presented in 
Sects. 6.1–6.3 that in TVE solids with memory the 
resistance offered to the time dependent disturbance 
increases with increasing viscosity and decreasing 
De. Thus the dynamic stiffness consists of elastic 
stiffness (independent of time) and the dynamic 

stiffness due to viscosity and De. Increased dynamic 
stiffness must promote faster deviatoric stress wave 
propagation. As we have seen in Sects. 6.1–6.3, devi-
atoric stress wave propagation in TVE solids requires 
presence of elasticity. Thus, in TVE solids with mem-
ory, we can only study the speed of propagation of a 

Fig. 5   Evolution of d�
11

 
for C

1
= 0 , C

2
= 0.01 and 

De = 0.004 , 0.006, 0.008 
adσ11versus x1 bdσ11versus 
x1(exploded view of circled 
area shown in Fig. 5a
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composite wave, that contains influence of elasticity 
as well as rheology. Furthermore, we have seen that 
contribution to total d�

11
 due to rheology is small 

compared to elasticity.
However, there are some facts that we have 

clearly observed (when elasticity and rheology both 
are present): (1) increasing dynamic stiffness with 
increasing C

2
 ; (2) increasing dynamic stiffness with 

decreasing De. Thus, we can conclude the follow-
ing: (a) increasing d�

11
 wave speed with increasing 

C
2
 ; (b) increasing d�

11
 wave speed with decreasing 

De. We present numerical studies to illustrate these. 
In both of the following two studies a velocity pulse 
of duration 2Δt with peak value of 0.1 is applied at 
x
1
= 1.0 . For t ≥ 2Δt , x

1
= 1.0 is a free boundary.

Case I: varying C
2
 for fixed C

1
 and De.

Fig. 6   Evolution of d�
11

 
for C

1
= 1 , C

2
= 0.01 and 

De = 0.004 , 0.006, 0.008  
adσ11versus x1 bdσ11versus 
x1(exploded view of circled 
area shown in Fig. 6a
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In the first study we consider C
1
= 1 , De = 0.004 

and choose C
2
= 0.01, 0.015, 0.02.

Case II: varying De for fixed C
1
 and C

2

In the second study we consider C
1
= 1 , C

2
= 0.01 

and choose De = 0.004, 0.006, 0.008.

Discussion of results: Case I
The computed evolution for this case for t = 3Δt , 

7Δt , 15Δt and 18Δt are shown in Figs.  7a–d. In all 
graphs in Fig. 7, the peak magnitude of d�

11
 is deter-

mined and is clearly identified for all four values of 
time. Time values, t = 3Δt and 7Δt correspond to 
before the reflection of d�

11
 waves from the imperme-

able boundary at x
1
= 0 . Time values, t = 15Δt and 

18Δt correspond to time after the reflection of d�
11

 
waves from the boundary at x

1
= 0 . We note the fol-

lowing from the results presented in Figs. 7a–d. 

	 (i)	 Progressively larger values of C
2
 result in: 

(a)	 Progressively increasing composite wave 
speed. This is confirmed by noting that 
peaks of d�

11
 for C

2
= 0.015 and C

1
= 0.01 

trail the peak of d�
11

 for C
2
= 0.02 . This 

holds true before reflection (Fig. 7a and b) 
as well as after reflection (Figs. 7c and d)

(b)	 Progressively increased amplitude decay 
and base elongation. Figures  7a and b 
clearly show that for C

2
= 0.02 , we have the 

smallest amplitude and largest base of the 
wave.

	(ii)	 Since d�
11

 purely due to rheology is quite weak 
(very low amplitude) compared to purely elas-
tic wave, the waves shown in Fig 7 are domi-
nated by elasticity. Thus, increasing d�

11
 due 

to rheology for increasing C
2
 is not observed in 

these graphs but only the progressively increas-
ing dissipative effect of progressively increas-
ing C

2
 is observed.

	(iii)	 These studies confirm that the composite devia-
toric stress wave speed increases with progres-
sively increasing dissipation coefficient but at 
the expense of base elongation and amplitude 
decay.

Fig. 7   a d�
11

 versus x
1
 at t = 3Δt . b d�

11
 versus x

1
 at t = 7Δt . c 

d�
11

 versus x
1
 at t = 15Δt . d d�

11
 versus x

1
 at t = 18Δt

▸
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Discussion of results: Case II
The computed evolutions for t = 3Δt , 8Δt , 14Δt 

and 18Δt are shown in Figs.  8a–d. In all graphs in 
Figs. 8a–d, the peak magnitude of d�

11
 is determined 

and is clearly identified for all four values of time. 
Times, t = 3Δt and 8Δt are before the reflection 
of d�

11
 waves from the boundary at x

1
= 0 whereas 

times, t = 14Δt and 18Δt are the values of time after 
the reflection of d�

11
 waves from the impermeable 

boundary at x
1
= 0 . We can observe the following 

from the results presented in Figs. 8a–d. 

	 (i)	 Progressively reducing Deborah numbers result 
in: 

(a)	 Progressively increasing composite wave 
speed. d�

11
 wave with smaller De is always 

ahead of the d�
11

 waves with larger De. This 
holds true before as well as after reflection 
of d�

11
 waves from the boundary at x

1
= 0.0

.
(b)	 Since C

2
= 0.01 for all three De, the dissi-

pation mechanism is identical for all three 
De. Higher De corresponds to larger relaxa-
tion time hence more time is required for 
the relaxation process. Thus, at an instant 
of time (as in graphs 8(a)-(d)), higher De 
would result in higher stress values. Support 
of the wave is effected likewise, i.e. higher 
De would yield smaller base of the wave as 
we can observe in Fig. 8a–d.

	(ii)	 As in case I, here also d�
11

 due to rheology is 
weak compared to pure elastic d�

11
 wave, hence 

its impact on composite wave is not observable 
in Figs. 8a–d.

	(iii)	 These studies confirm that the composite devia-
toric stress wave speed increases with progres-
sively decreasing De. Higher De, naturally 
results in higher peak value of composite d�

11
 

wave accompanied with smaller support com-
pared to lower De

Fig. 8   a d�
11

 versus x
1
 at t = 3Δt . b d�

11
 versus x

1
 at t = 8Δt . c 

d�
11

 versus x
1
 at t = 14Δt . d d�

11
 versus x

1
 at t = 18Δt

▸
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6.5 � Composite deviatoric stress ( d�
11

 ) wave 
propagation, reflection, transmission and 
interaction

In this study we consider the dimensionless spatial 
domain of length two units ( [0, L] = [0, 2] ) . The 
domain is divided in two subdomains [0, 1] and [1, 2] 
referred to as M

1
 and M

2
 . We assign different values 

of C
1
 to each of subdomains M

1
 and M

2
.

Case I:
For subdomain M

1
(0 ≤ x

1
≤ 1) , we consider 

C
1
= 1.0 and for sudomain M

2
(1 ≤ x

1
≤ 2) , we 

choose C
1
= 2.0.

Case II:
In this study, for subdomain M

1
 , we choose 

C
1
= 2.0 and for subdomain M

2
 we consider C

1
= 1.0.

In both cases we consider De = 0.0015 and 
C
2
= 0.004 . For case I, the stress wave speed in sub-

domain M
2
 is faster than the one in subdomain M

1
 

due to higher value of C
1
 for M

2
 . In case II C

1
 values 

are interchanged for M
1
 and M

2
 , hence in this case 

wave speed is faster in subdomain M
1
 . Domain [0, 2] 

is discretized (uniform discretization) using 30 nine 
node p-version space-time elements. p-level of 9 with 
equal order, equal degree local approximations of 
class C1 in space and time are found adequate to yield 
residual functional values I of the order of O(10−8) , 
confirming that the equations in the first order math-
ematical model are satisfied accurately in the point 
wise sense. In both studies, we apply a velocity pulse 
of duration 2Δt at x

1
= 2.0 with peak value of 0.5 of 

the velocity pulse.
For t ≥ 2Δt , x

1
= 2.0 is a free boundary. In both 

cases evolution of d�
11

 is calculated for 0 ≤ t ≤ 30Δt . 
Plots of the evolution of d�

11
 i.e. graphs of d�

11
 versus 

x
1
 for various values of time are shown in Figs. 9a–b 

and 10a–b. We discuss the results in the following.
Discussion of results: case I
At t = 2Δt , the d�

11
 stress wave enters in the 

domain completely. At t = 8Δt , the wave reaches the 
bimaterial interface and the reflection, transmission 
process initiates. At t = 9Δt , we observe transmission 
of compressive wave in material M

1
 and reflected ten-

sile wave in material M
2
 . Since C

1
 for M

1
 is lower than 

for M
2
 , the interface for the reflected wave behaves 

like a free boundary. At t = 10Δt , the transmitted and 
the reflected waves are propagating to the left and the 
right of the interface. At t = 14Δt , the tensile wave 

in material M
2
 reaches free boundary at x

1
= 2.0 first 

(due to faster wave speed in M
2
 ). At t = 18Δt , the 

tensile wave in M
2
 is reflected from the free bound-

ary at x
1
= 2.0 as a tensile wave and begins to propa-

gate towards the interface. The compressive wave in 
M

1
 reflects from the impermeable boundary at x

1
= 0 

(magnitude doubles at the reflection).
At t = 22Δt the reflected wave in M

1
 recovers 

as a steady propagating wave toward the interface 
while the tensile wave in M

2
 is at the interface and 

has already gone through partial transmission. At 
t = 24Δt we observe transmission of tensile wave 
(from M

2
 ) into M

1
 as a tensile wave, but reflected 

wave from the interface is a compressive wave. We 
note that wave amplitudes are progressively decreas-
ing as evolution proceeds. This of course is due to 
dissipation. At t = 25Δt the reflected wave in M

1
 

from boundary at x
1
= 0 and the transmitted ten-

sile wave in M
1
 from M

2
 interact and combine into 

a single wave with lower peak amplitude (as the two 
waves are compressive and tensile). At t = 26Δt the 
transmitted tensile wave and the reflected compres-
sive wave resume their identity they had before the 
interaction. At t = 27Δt , the compressive wave in M

1
 

reaches the interface, while the other waves continue 
to propagate. This process continues till the dissipa-
tion mechanism has completely converted the energy 
in the waves into entropy. At this stage both materials 
M

1
 and M

2
 are stress free, hence resume their original 

undeformed state.
Discussion of results: case II
In this case the wave speeds are reversed between 

M
1
 and M

2
 compared to Case I, hence the wave evo-

lution is quite different compared to Case I. At time 
t = 2Δt , the entire wave is in the spatial domain. At 
t = 11Δt the wave has gone through partial trans-
mission in domain M

1
 and ready for reflection at 

the interface between M
1
 and M

2
 . At t = 13Δt , both 

transmitted and reflected waves are compressive as 
expected. Both transmitted and reflected waves con-
tinue to propagate ( t = 14Δt ). At t = 18Δt the wave 
in M

1
 reaches impermeable boundary, the wave in 

M
2
 has not reached free boundary at x

1
= 2.0 . At 

t = 22Δt the reflected wave in M
1
 from the imper-

meable boundary at x
1
= 0 continues to propagate 

towards the bimaterial interface while the reflected 
wave from the interface in M

2
 reaches the free bound-

ary at x
1
= 2.0 . At t = 25Δt the wave in M

2
 reflects 

from the free boundary as a tensile wave while the 
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compressive wave in M
1
 reaches interface with par-

tial transmission. At t = 26Δt , tensile wave from the 
free boundary at x

1
= 2.0 continues to move towards 

the interface, while the wave in M
1
 approaching inter-

face goes through reflection as a tensile wave (as 
C
1
 in M

2
 is lower than C

1
 in M

1
 ) and transmits as a 

compressive wave ( t = 27Δt ). At t = 28Δt , compres-
sive and tensile waves in M

2
 interact to form a single 

wave which splits into original waves before interac-
tion at t = 29Δt . At t = 30Δt the tensile wave moving 
to the left is ready to reach the interface. This process 
of reflection, transmission and interaction continues 

Fig. 9   a Evolution of d�
11

 , 
Case I. b Continued evolu-
tion of d�

11
 , Case I 
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till wave magnitude reduce to zero due to dissipation. 
At this stage both M

1
 and M

2
 are stress free.

7 � Summary and conclusion

In the following we summarize the work presented in 
this paper and draw some conclusions. 

Fig. 9   (continued)
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	 1.	 The mathematical model in Lagrangian descrip-
tion consisting of balance of linear momenta 
in x

1
 and the constitutive theory for deviatoric 

Cauchy stress similar to Maxwell fluid (Eulerian 
description) but containing elasticity is used 
to study deviatoric stress waves purely due to 

rheology as well as composite deviatoric stress 
waves due to elastic part and due to rheology. 

	 (i)	 It is shown that drag or viscous 
resisting forces experienced by the uncoil-
ing of the polymer molecules results in 

Fig. 10   a Evolution of 
d�

11
 , Case II. b Continued 

evolution of d�
11

 , Case II 
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additional dynamic stiffness over and above 
the stiffness due to elasticity. Thus, motion 
of the polymer molecules is similar to a 
one dimensional spring. When a TVE solid 

is disturbed the polymer molecules collec-
tively behave like 1D springs in the direc-
tion of the disturbance. This dynamic stiff-

Fig. 10   (continued)
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ness does not exist in a stationary TVE 
solid.

	(ii)	 Since viscous drag is proportional to viscos-
ity, increasing viscosity results in increasing 
dynamic stiffness.

	 (iii)	 Another mechanism of dynamic 
stiffness in TVE solid continua is due to 
De number. It is shown that in TVE sol-
ids decreasing Deborah number results in 
increasing dynamic stiffness.

	 2.	 It is shown that in the absence of elasticity, the 
deviatoric stress waves due to rheology exist 
and evolve as time elapses, but can not propa-
gate as stress wave propagation in solid con-
tinua requires presence of elasticity. Thus, in the 
absence of elasticity the deviatoric stress waves 
due to rheology can exist, but can only experi-
ence base elongation and amplitude decay (due 
to dissipation) without propagation.

	 3.	 Magnitudes of the deviatoric stress waves due 
to rheology increase with increasing viscosity 
of the medium due to increased resistance to 
motion. Higher values of viscosity yield higher 
values of d�11 but accompanied by faster wave 
attenuation and base elongation.

	 4.	 In the absence of elasticity, increasing values 
of De yield increasing peak values of devia-
toric stress waves as in this case De is merely a 
source of resistance as shown in Fig. 5

	 5.	 In the presence of elasticity, the deviatoric stress 
wave propagates, hence the physics is similar to 
deviatoric stress wave propagation in polymeric 
fluids (Surana et  al. [10]), thus for this case 
decreasing De produces increasing composite 
deviatoric stress values as shown in Fig. 6.

	 6.	 Since the deviatoric stress wave magnitude due 
to rheology are much smaller compared to elas-
tic deviatoric stress wave magnitudes, the com-
posite wave magnitude is naturally dominated 
by the elasticity.

	 7.	 Increased total dynamic stiffness (due to elastic-
ity as well as rheology) due to increasing dissi-
pation coefficient and decreasing De must result 
in increasing wave speed. This can be observed 
in Figs.  7 and 8. Since the additional stiffness 

due to rheology is small, the wave speed of the 
composite d�

11
 does not show appreciable vis-

ible increase compared to pure elastic case. We 
note from Figs.  7 and 8 that with prolonged 
evolution composite d�

11
 wave speed increases 

with increasing dissipation and decreasing De is 
clearly observed.

	 8.	 In rubber like materials, more like gels, the elas-
ticity is low but rheology is dominant. In such 
applications d�

11
 due to rheology will obviously 

be dominant.
	 9.	 We remark that deviatoric stress wave due to 

rheology and dynamic stiffness due to rheology 
require motion, hence obviously for a stationary 
rod these are absent.

	10.	 The work presented in this paper on: 

(a)	 deviatoric stress waves due to rheology, 
their existence, their dependence on dissipa-
tion and relaxation time,

(b)	 the composite deviatoric stress waves, their 
propagation, reflection, transmission and 
interaction, their dependence on dissipation 
and relaxation time,

(c)	 dependence of wave speed on dissipation 
and relaxation time,

(d)	 increase in composite wave speed with 
increasing dissipation and decreasing relax-
ation time,

		     to our knowledge is the first and the only 
presentation in the published literature.
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