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Abstract  In this paper the construction of a neural-
network based closed-loop control of a discontinu-
ous capsule drive is analyzed. The foundation of the 
designed controller is an optimized open-loop control 
function. A neural network is used to determine the 
dependence between the output of the open-loop con-
troller and the state of the system. Robustness of the 
neural controller with respect to variation of param-
eters of the controlled system is analyzed and com-
pared with the original optimized open-loop control. 
It is expected that the presented method can facilitate 
the construction of closed-loop controllers for which 
alternative methods are not effective, such as non-
smooth or discontinuous ones.

Keywords  Optimal control · Closed-loop · Neural 
network · Capsule drive · Discontinuous system · 
Non-smooth system

1  Introduction

The capsule robots, often abbreviated to capsubots, 
are a class of capsule-shaped micro-robots able to 
explore the fields that are normally inaccessible to 
humans [1]. A particularly interesting subset of cap-
subots are devices propelled by an internal mechani-
cal oscillator. The vibrating mass produces inertial 
forces which allow the whole capsule to move in the 
presence of friction. In this approach the external 
moving parts such as wheels, tracks, robotic legs or 
arms are no longer necessary [1, 2]. Such capsubots 
are truly intriguing from the practical point of view 
due to their enormous potential in medicine, engi-
neering and other areas [1, 2]. Moreover, their rich 
dynamics [2] encompassing such phenomena as 
impacts, dry friction, etc. remains a broad research 
topic itself.

Wide range of research concerning the analysis and 
design of capsubots has already been performed. For 
instance, Guo et al. [2] presented a mesoscale proto-
type of a self-propelled vibro-impact capsule system 
as well as its optimization in terms of the average pro-
gression velocity, energy efficiency and power con-
sumption. Huda and Yu [3] developed a control strat-
egy for a capsubot, according to which the inner mass 
of the device—comprising two masses placed at the 
opposite ends of the cylindrical rod—is surrounded 
by a motor housing with a coil held in a shell. In [4], 
Liu et al. proposed a vibro-impact capsule containing 
a harmonically excited internal oscillator impacting a 
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massless plate suspended on a spring. Such arrange-
ment causes the resultant horizontal force acting on 
the capsule to be asymmetric, which in the presence 
of dry friction enables the system to move forward. 
More detailed studies on the control function with 
regard to the progression rate, as well as the optimi-
zation of energy consumption, have been presented 
in [5–7]. A comprehensive bifurcation analysis of a 
vibro-impact system with the use of path-following 
methods accompanied by an experimental investi-
gation can be found in [8]. Liu et al. [9] described a 
downscaled self-propelled vibro-impact capsule sys-
tem with an ability to move precisely in a limited 
space, having a size equal to a market-leading gas-
trointestinal capsule endoscope. The capsule system 
includes two impact constraints with a linear bearing 
holding a T-shape magnet situated between them that 
restricts its linear motion. The dynamic analysis of 
the prototype, as well as the optimization of the pro-
gression speed and minimization of the required pro-
pulsive force are described.

Apart from the vibro-impact systems, a differ-
ent layout of the capsule drives can be utilized. In 
particular, an interesting modification of the vibro-
impact capsule can be obtained by replacing the 
mass-on-spring oscillator with a pendulum. In this 
case, propulsion of the capsule is caused by the inter-
actions between friction, inertial forces produced by 
the swinging motion of the pendulum and the contact 
force between the capsule and the underlying surface 
[10]. Such arrangement seems to make the dynamics 
of the system somewhat more complex, because the 
contact force is dependent on the oscillations of the 
pendulum. Periodic locomotion principles and non-
linear dynamics of a pendulum-driven capsule sys-
tem have been investigated in the works [10–12]. It 
is worth noting that in [12], Liu included a motion-
generation strategy in the presence of viscoelasticity. 
The design and optimization of parameters of a pre-
designed control function profile for the pendulum 
capsule system have been considered in [12–14].

The existing methods of controller design appli-
cable to capsubots use various approaches including 
the open-loop control, closed-loop feedback lineari-
zation or neural networks. In [1], Liu et al. presented 
three control approaches for capsubots. The first one 
involves an open-loop control, whereas the second 
utilizes a closed-loop control with a partial feedback 
linearization technique based on trajectory tracking. 

The last one, called a simple switch control, is a com-
bination of the previous methods. The control profiles 
learned from the open and closed-loop control are 
used to move the capsubot effectively in the desired 
direction. In [3], Huda and Yu described a strategy 
for controlling a cylindrical rod, composed of two 
stages. The first one assumes the desired trajectory 
generation, whereas the second focuses on inner mass 
closed-loop control for a given desired trajectory with 
a partial feedback linearization approach. An adaptive 
trajectory tracking control method for a vibro-driven 
capsule system has been described by Liu et al. [13]. 
The implementation of an auxiliary input control var-
iable establishing the non-collocated feedback loop, 
is constructed to cope with the parametric uncertain-
ties. A comparison of the proposed approach with 
the classical one has been performed with the aid of 
a closed-loop feedback-tracking control system. The 
improvements in this method have been shown by Liu 
et al. [15]. This novel approach focuses on adding a 
neural network approximator and a robust compen-
sator to an auxiliary control variable. The proposed 
design method with multi-layer neural networks and 
variable strategy structure as well as an adaptive 
tracking control scheme copes well with uncertainties 
such as a priori unknown parameters, approximation 
errors and disturbances [15]. In [16], Zarychta et al. 
described a novel Fourier series-based method of the 
open-loop optimal control estimation, applicable to 
discontinuous systems such as capsule drives. In [17], 
the problem of crossing a circular fold by a capsule 
robot has been discussed by Yan et al. The path fol-
lowing techniques have been utilized and the COCO 
software has been used in numerical studies.

Liao et  al. [18] described the speed optimization 
of self-propelled capsule robot [9] in the varying fric-
tional environment between the device and its sup-
porting surface with the use of Six Sigma and Multi-
Island genetic algorithms, having utilized the Monte 
Carlo approach for validation. In the literature we can 
find another interesting examples of the multi-objec-
tive optimization with Six Sigma as a controller for 
the genetic algorithm [19, 20] and its reliability anal-
ysis with the use of a Monte Carlo algorithm [21, 22].

There is seemingly little research on the applica-
tion of neural networks in the optimal capsule drives 
control or other similar systems. Possibly, the direct 
application of the Reinforcement Learning technique 
[23–25] could be used to obtain an approximation of 
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the optimal closed-loop controller. However, such an 
approach would require a lot of time and computa-
tional resources [23–25]. Therefore, in this work we 
propose a simpler option. Provided that the optimal 
open-loop control is determined, a neural network 
approach can be used to establish the dependence of 
the controller’s output and the corresponding states 
of the controlled system. In such a manner, a closed-
loop controller can be obtained, the action of which 
reflects the open-loop optimal control operation.

The aim of this study is to test and evaluate the afore-
mentioned concept. For this purpose, an approximation 
of the open-loop optimal control of a pendulum capsule 
drive is performed by means of the Fourier series-based 
method described by us in [16]. After that, a neural net-
work is used to determine the dependency between the 
output value of the optimized open-loop controller and 
the corresponding states of the capsule system. In such a 
manner, a closed-loop controller is obtained. Finally, the 
performance and robustness of the closed-loop neural 
controller are compared with the original open-loop one. 
The results show that the neural controller maintains the 
efficiency of the original and offers greater robustness 
against the uncertainty of the controlled system friction 
coefficient, which is actually one of the main limitations 
in the use of open-loop controllers.

We believe that such a solution can be an interest-
ing option in the design and optimization of control-
lers used in the mechanical systems, including the 
discontinuous ones. Moreover, it is expected that the 
proposed method will facilitate the construction of 
closed-loop controllers of the systems for which an 
optimal open-loop control is available.

2 � Mathematical model

The subject of this research is the pendulum capsule 
drive. This section presents a brief description of the 
system along with an approximation of its open-loop 
optimal control. The information presented below is a 
foundation for the new, neural network based, closed-
loop controller of the device. A scheme of the pendu-
lum capsule drive is presented in Fig. 1.

In the system under consideration, the propulsion 
of capsule is caused by the interactions between fric-
tion Fx , horizontal inertial forces produced by the 
swinging motion of the pendulum Rx and the reaction 
(contact) force between the capsule and the underly-
ing surface Ry . Dynamics of the presented system is 
thoroughly described in [10–12]. In order to derive 
the motion equations of the capsule, one can either 
directly apply Newton’s laws of motion or use the 
Lagrange approach. In the latter, the value of the con-
straint force Ry can be determined with the aid of a 
Lagrange multiplier [26].

A detailed derivation of the pendulum capsule 
motion equations can be found in our previous work 
[16]. Therefore, in this paper we present only a brief 
explanation. In the dimensional form, equations of 
motion of the capsule are as follows:

(1a)
ml2𝜃̈(t) − mlẍ(t)cos𝜃(t) = mglsin𝜃(t) − k𝜃(t) − c𝜃̇(t) + F𝜃(t)

(1b)
(M + m)ẍ(t) − ml𝜃̈(t)cos𝜃(t) + ml𝜃̇2(t)sin𝜃(t) = −Fx(t)

Fig. 1   Scheme of the cap-
sule drive system. M—mass 
of the capsule, m—mass of 
the pendulum, l—length of 
the pendulum, θ—pen-
dulum angle, k—spring 
stiffness, c—damping coef-
ficient, Fθ—external torque 
acting on the pendulum, Fx
—friction force, x(t), y(t)—
coordinates of the capsule 
[16]
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where g is the gravitational acceleration and all the 
other symbols are described in the caption below 
Fig.  1. Then, the following non-dimensional quanti-
ties are used:

where t and � correspond to dimensional and dimen-
sionless time, respectively. Relations between deriva-
tives with respect to t and � are as follows.

Using symbols and notation defined in formulas (2) 
and (3), equations of motion of the pendulum capsule 
drive can be presented in the following dimension-
less, matrix form.

Further dimensionless quantities are contact force 
ry , resultant horizontal load due to the pendulum’s 
motion rz , and the dimensionless Coulomb friction fz , 
that are described by the following equations:

where � is the friction coefficient. Equations  (4)–(7) 
form the complete, dimensionless model of the cap-
sule pendulum drive presented in Fig. 1.

Our previous paper [16] describes a numerical 
method that enables approximation of the optimal 

(1c)
Ry(t) = (M + m)g − ml𝜃̈(t)sin𝜃(t) − ml𝜃̇2(t)cos𝜃(t)

(2)
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][
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]

=

[
sin�(�) − ��(�) − ���(�) + u(�)

−�
�2(�)sin�(�) − fz(�)

]

(5)ry(�) = (� + 1) − ���(�)sin�(�) − �
�2(�)cos�(�)

(6)rz(�) = ���(�)cos�(�) − �
�2(�)sin�(�)

(7)fz(𝜏) =

⎧
⎪⎨⎪⎩

𝜇ry(𝜏)sgn
�
z�(𝜏)

�
↔ z�(𝜏) ≠ 0

𝜇ry(𝜏)sgn
�
rz(𝜏)

�
↔ z(𝜏) = 0 ∧ ��rz(𝜏)�� ≥ 𝜇ry(𝜏)

rz(𝜏) ↔ z(𝜏) = 0 ∧ ��rz(𝜏)�� < 𝜇ry(𝜏)

control in the form of a finite number of Fourier 
series terms (8).

The detailed description of the method is beyond the 
scope of the current paper. Therefore, only the main 
idea is briefly explained here.

Using a finite number of the Fourier expan-
sion harmonics (8), any periodic, bounded, piece-
wise continuous function can be approximated. The 
approximation accuracy increases with the number 
of harmonics, K . Therefore, Eq. (8) enables the para-
metrization of control function with the aid of 2K + 3 
parameters: a0, a1,… , aK , b1,… , bK ,�,K . However, 
such parametrization cannot be effectively used to 
transform the optimal control problem into a non-
linear programming problem, i.e., it is not possible 
to simply optimize ai, bi parameters of the formula 
(8). The reason for this is the fact that the control 
function in all practical applications is bounded and 
there is no direct method to transform the restric-
tions imposed on the control function into the limits 
of values of the parameters ai, bi . The solution to this 
problem is explained in Fig. 2. One can notice that if 
the coefficients of subsequent harmonics are stacked 
in a vector [a1, b1,… , aK , bK] , then the “span” of the 
resulting function depends on the length of such vec-
tor, whereas its “shape” changes with the direction 
of the vector.1 The direction of a vector in ℝ2K can 
be described by a point on a unit sphere of dimen-
sion (2K − 1) , which is specified by 2K − 1 spherical 
coordinates. Then, the location of the control function 
span within the frame specified by the set of allow-
able controls can be described by two additional num-
bers from the interval [0, 1] . Such transformation ena-
bles parametrization of the Fourier expansion (8) in 
terms of (2K − 1) spherical coordinates that specify 
the shape of the optimized function, 2 parameters 

(8)u(�) =
a0

2
+

K∑
k=1

akcos(k��) +

K∑
k=1

bksin(k��)

1  The span of a function can be understood as the difference 
between supremum and infimum of its set of values. The 
shape of a bounded function is defined as its normalization to 
the interval [0, 1]. Graphical interpretation of these notions is 
presented in Fig. 2. Detailed discussion can be found in paper 
[16].
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governing its span, parameter � , which influences the 
period and a fixed number of harmonics K . In such 
a manner, the function (8) is well-defined in terms 
of 2K + 1 parameters in fixed ranges, which ena-
bles their optimization, the parameter � (which can 
be either optimized or selected beforehand), and the 
parameter K , which has to be selected a-priori. For 
more details, please refer to paper [16].

Using the algorithm described above, the control of 
the system (4)-(7) has been optimized with respect to 
the distance covered by the capsule within the dimen-
sionless time interval � ∈ [0, 100] . In the optimization 
process, the following values of system parameters 
have been assumed: � = 0.3, � = 2.5, � = 1.0, � = 10 . 
Moreover, it has been asserted that the control u(�) 
has to remain in the allowable range [−4, 4] . Under 
such assumptions, taking K = 5 harmonics in the 
formula (8), the following parameters of the approxi-
mate, open-loop optimal control have been obtained.

The control function (8) with parameters (9) 
and the resulting trajectory of the capsule’s motion 
are presented in the 4th section of the paper. These 
results are the starting point for the current research. 
In the remaining part of this work, we are going to 
show that a neural network can learn from the open-
loop solution (8) in order to form a closed-loop con-
troller. Moreover, it will be demonstrated that, coun-
terintuitively, such a neural network can outperform 

(9)
a0 ≈ 1.62506,� ≈ 1.64722(
a1, a2, a3, a4, a5

)
≈ (−3.43222,−1.95285,−0.68182, 0.38493, 0.17389)(

b1, b2, b3, b4, b5
)
≈ (−0.41690, 0.12411,−0.10468, 0.13722, 0.27902)

the original solution which served as the training set 
in the learning process (see Sect. 4).

3 � Methods

In the following sections, the use of a Neural Net-
work (NN) in the closed-loop controller design is 
presented. We base this process on the approximated 
solution of the open-loop optimal control function, 
for which we used our developed Fourier series-based 
method [16]. The objective of the NN is to return the 
value of optimized control for an arbitrary state of the 
controlled object (i.e., the pendulum capsule drive).

The research is divided into three stages. Within 
the preliminary research, we evaluate the perfor-
mance of feedforward artificial neural network pre-
dictive models that approximate the dependencies 
between the optimized open-loop control and the cor-

responding state variables of the system. In order to 
achieve this, the multi-layer perceptron (MLP) has 
been created in the Python language, the architec-
ture of which is described in Sect. 3.2. In this stage, 
we test the design of the MLP with regard to differ-
ent activation functions for the hidden and output 
layer, along with the changing number of neurons. 
The process of NN training and the criteria used for 

Fig. 2   Scheme of the Fourier series based method for optimal control approximation
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the model performance validation are described in 
Sect. 3.3.

In the second stage, the parameters of the NN pre-
dictive models with the top-scoring performance are 
implemented in the simulated controller of the pendu-
lum capsule drive. Therefore, we are able to calculate 
the distance covered by the capsule system driven by 
the neural controller.

In the last part, the robustness of both controllers 
(the optimized open-loop and the neural closed-loop) 
concerning the varying coefficient of friction between 
the capsule and the underlying surface is examined. 
The performance of the controllers is tested in differ-
ent conditions, from constant friction coefficient to 
large variations of this parameter.

To facilitate the comprehension of the pre-
sented method, all the above-described steps are 
performed in an Appendix using a much simpler 
example—a mathematical pendulum. We encour-
age the reader to analyze this additional material. 
Moreover, all the scripts created within the afore-
mentioned stages of this study are available in a 
reference data repository [35].

3.1 � The reference dataset

In this research, as a reference dataset we consider an 
optimized control trajectory of the pendulum capsule 
system along with its control calculated according to 
the formulas of the Fourier series-based algorithm 
presented in Sect. 2.

The reference dataset (see Fig.  3), consisting of 
approximately 10,000 control samples with six col-
umns, contains the information about the system state 
variables x0 − x3 , optimized, open-loop control u and 
dimensionless time � . In each row of the dataset, one 
sample of the reference control is represented. Its 
inputs called features, stored as columns, refer to: x0
—position of the pendulum � , x1—velocity of the 

pendulum 𝜃̇ , x2—position of the capsule z , and x3
velocity of the capsule z′ . Since the control has to be 
independent of the capsule position and the time, the 
related variable x2, along with the dimensionless time 
� were dropped from the learning process. Therefore, 
we consider three features, i.e., state variables of the 
system (see formulas (4)–(7)) and the corresponding 
control u as our target variable that is going to be pre-
dicted by NN.

3.2 � The Neural Network architecture

The design of NN architecture demands a few key 
decisions to be made, for instance to select the num-
ber of layers, number of neurons and activation func-
tions. The number of hidden layers depends on the 
problem which we are dealing with. In this research 
we fix one hidden layer, as the given configuration 
is sufficient to approximate an arbitrary continuous 
function [27, 28], such as the optimal control (the tar-
get of our NN prediction). Moreover, we want to pro-
vide a simple method that does not require the design 
of the deep NN model.

Another problem to be solved is the number of 
neurons. This should be chosen in a way that avoids 
under or overfitting. In the first case where there are 
not enough neurons to train, the results may not be 
satisfactory and adequate to what has been expected. 
On the other hand, with too many neurons, the arti-
ficial neural network possesses an excessive num-
ber of parameters to be determined which makes it 
“remember” each data point separately and lose the 
data generalization property. Many rules of thumb 
exist for establishing the correct number of neurons in 
a hidden layer [27]. We decided to test one of them, 
where the number of hidden neurons is calculated 
as the sum of 2/3 the size of the input layer and the 
whole size of the output layer. In total, five different 

Fig. 3   The reference data-
set for NN training
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numbers of neurons (3, 5, 10, 30, and 50) are tested. 
The first value, equal to 3, is based on the rule of 
thumb, whereas the other four are chosen arbitrarily, 
basing on authors’ experience.

The activation function could be imagined as a 
filter that processes the values going through it and 
scales the output into the proper range. Without any 
activation function applied, the NN could learn only 
linear transformations. One of the exemplary activa-
tion functions used for the hidden layer is Rectified 
Linear Unit (ReLU), considered one of the most 
efficient due to its good resistance to vanishing gra-
dients [29]. In this research, we also use the sigmoid 
(logistic) and hyperbolic tangent functions. The latter 
is preferred, since its gradients are not restricted to 
vary in the specified direction [30]. Moreover, when 
the output returned by the sigmoid function is close 
to zero, caused by the highly negative inputs, the 
process of the neural network prolongs and the prob-
ability of getting stuck in some local minima is higher 
[31]. For the output layer, a default option is a linear 
function (commonly used for regression problems). 
In this study, we test both: linear and sigmoid.

As the architecture of the NN model, including the 
different number of neurons as well as the activation 
functions for hidden and output layers, is established, 
we propose a default MLP model with n neurons in 
Fig. 4.

The proposed MLP consists of three layers: one 
input, one hidden, and one output layer. Please note 
that each layer is fully connected to the previous one 

via weight coefficients. For the input layer, the three 
features x0, x1 , and x3 , referring to the position of 
the pendulum � , the velocity of the pendulum 𝜃̇ , and 
the velocity of the capsule system z′ respectively, are 
assigned. In the (single) hidden layer, consisting of n 
neurons, the activation function f  is applied, being 
one of the following: the ReLU, sigmoid, or hyper-
bolic tangent. The output layer consists of one neu-
ron. It is represented by the optimal control u of the 
pendulum capsule drive system being the target of 
NN model predictions. On the output, the linear and 
sigmoid function are applied.

Since the aim of the NN is to learn the relationship 
between the features (system state variables) and the 
target data (open-loop optimal control), formula (10) 
is introduced. It presents a way of calculating the out-
put value of the chosen layer (in this case, the hidden 
layer) with the applied activation function f  . Thus, 
the input for the next layer (in this case, the output 
layer) is known. This step is repeated till the last con-
nection between the layer and the target is achieved.

In formula (10), the following notation has been 
adopted: i—index of the current neuron in the hid-
den layer, i ∈ {1,… , n} , n—total number of neurons 
in the hidden layer, j—index of the current neuron 
in the input layer, j ∈ {0, 1, 3} , h—hidden layer, f
—the activation function applied in the hidden layer 
(e.g., ReLU, sigmoid, tanh), zh

i
—value for the current 

(10)aout
i

= f (zh
i
) = f

(
bh
i
+
∑

j∈{0,1,3}
xjwij

)

Fig. 4   Multi perceptron 
layer (MLP) architecture, 
where: n—total number 
of neurons in the hidden 
layer, x0, x1, x3—system 
state variables and input 
activation for the hidden 
layer, b, b1, b2,… bn—bias 
for the current neuron in 
the hidden layer, zh

1
, zh

2
,… 

zh
n
—value for the current 

neuron in the hidden layer, 
aout
1
, aout

2
,… aout

n
—input 

activation for the output 
layer, u—output (control)
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neuron in the hidden layer, bh
i
—bias for the current 

neuron in the hidden layer, xj—input for the hidden 
layer, represented by three system’s state variables, 
aout
i

—current input for the output layer, wij—weight 
representing the connection between the j th input and 
the i th neuron in the hidden layer.

3.3 � The Neural Network training process

Since the reference dataset (described precisely 
in Sect.  3.1.) is loaded and checked with respect to 
the missing values, the considered control features 
( x0, x1 and x3 ) and the optimized open-loop control 
u are assigned to the vector x and the target variable 
u respectively. We split the dataset randomly into 
the separate training and test sets. It is worth noting 
that the smaller the test set, the more inaccurate the 
estimation of the generalization error becomes [31]. 
For this, we use 80% of the samples of the aforemen-
tioned features to fit the model and the remaining 
20% of the unseen data for the performance evalua-
tion. Dataset shuffling is additionally applied in this 
step in order to obtain the representative training and 
test sets. It also means that the created model is not 
determined by the data order. Moreover, it prevents 
getting stuck in cycles during the cost function opti-
mization [31].

The way the loss gradients are used to update the 
parameters of the NN is specified by the optimiz-
ers [23]. In this research, we consider the adaptive 
moment estimation (Adam) optimizer combining 
the advantages of AdaGrad [32] and RMSProp [33] 
methods. The first one deals efficiently with sparse 
gradients, whereas the second works well in online 
as well as non-stationary settings and resolves some 
problems of the first one. More precise connections 
between these methods and Adam optimizer are 
described in [34]. In the chosen algorithm, hyperpa-
rameters are equipped with intuitive interpretation 
and typically do not require any tuning. The individ-
ual adaptive learning rates are calculated for different 
parameters based on the estimation of the first and 
second moments of the gradient [34].

We train each of the MLP models for 1000 epochs 
until the lowest generalization error is achieved. 
Then, the calculated weights and biases are used 

to predict the target variable of the unseen data. To 
reduce the risk of the randomness results, the training 
is repeated three times.

Based on Fig. 5, showing the changes in the loss 
function for the training and test set, it can be noticed 
that the algorithm reaches convergence at the 114th 
epoch. Crossing that threshold, overtraining appears. 
To avoid this phenomenon, the loss values reaching 
the same level are monitored for ten epochs using 
the EarlyStopping class. Then, the training process is 
subsequently stopped.

The performance of the model is evaluated with 
regard to the loss function value and data fit on the 
test dataset. The first one is measured with the use of 
the Mean Squared Error (MSE) metric. This equals 
the average value of the Sum of Squared Errors cost 
function that is minimized to fit the model [31]. 
The MSE is calculated according to the following 
equation:

where n—number of training samples, yi—the true 
value of the current sample, ŷi—the predicted value 
of the sample.

Data fit evaluation of how far the predicted values 
are from the original ones is described using the coef-
ficient of determination R2 score, which shows the 

(11)MSE =
1

n

n∑
i=1

(yi − ŷi)

2

Fig. 5   The loss function value in 1000 epochs for the test set
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fraction of response variance captured by the model 
[31].

4 � Numerical results

The performance of NN predictive models has been 
analyzed for 30 different configurations of the MLP, 
presented in Sect. 3.2. The analysis included various 
activation functions for the hidden and output layers, 
along with changing numbers of neurons. The reasons 
for selecting the activation functions and the number 
of neurons have been presented in Sect. 3.2. The per-
formance was measured with the use of MSE and R2 
parameters providing the information about the gen-
eralization of the error and data fit respectively. The 
results are presented in Table 1.

In the second part of the research we consider only 
NN models with performance measured by the R2 and 
MSE equal to 0.999 and 0.0001/0.0002 respectively. 
Consequently, nine different configurations (bolded in 
Table 1) reach this result. It is worth noting that the 
highest scores are mainly obtained for the NN models 

with sigmoid and hyperbolic tangent activation func-
tions in the hidden layer, whereas in the output one 
the sigmoid is applied. Moreover, top-scoring perfor-
mance results with the aforementioned combination 
of activation functions in layers start from 10 neurons 
without significant changes during further increases 
in value. On the other hand, the rule of thumb tested 
in this study does not give satisfactory results, which 
could be related to the specific character of the con-
sidered system with the small number of input and 
output data. The process of NN training lasted an 
average of 100 epochs. However, in this study we do 
not focus on the training time criteria.

The linear relationship between the reference and 
predicted data with R2 coefficient equal to 0.999 is 
presented in Fig.  6. The results show the satisfac-
tory level of the model fit for the top-scoring perfor-
mance subject consisting of 50 neurons, along with 
the applied ReLU and linear activation function in the 
hidden and output layers.

Parameters of the nine top-scoring performances 
of NN models achieved in this stage are consequently 
implemented into the pendulum capsule drive con-
troller. Then, the distance covered by the system in 
the dimensionless time interval is calculated and pre-
sented in Table 2.

Table 1   The NN predictive models’ performance results con-
cerning the various activation functions for the hidden and out-
put layers and the different numbers of neurons

No. of 
neu-
rons

Activation function 
of the hidden layer

Activation function of the 
output layer

None (linear) Sigmoid

Data fit/loss function score

R2 MSE R2 MSE

3 ReLU 0.985 0.002 0.985 0.0019
10 0.996 0.0005 0.995 0.0006
17 0.997 0.0003 0.998 0.0003
30 0.998 0.0002 0.998 0.0003
50 0.999 0.0001 0.999 0.0002
3 Sigmoid 0.991 0.0012 0.989 0.0014
10 0.996 0.0005 0.998 0.0003
17 0.997 0.0004 0.999 0.0001
30 0.997 0.0005 0.999 0.0001
50 0.998 0.0003 0.999 0.0001
3 Tanh (hyperbolic 

tangent)
0.965 0.0045 0.989 0.0015

10 0.996 0.0005 0.999 0.0001
17 0.998 0.0003 0.999 0.0002
30 0.998 0.0003 0.999 0.0001
50 0.996 0.0006 0.999 0.0001

Fig. 6   The linear relationship between the learning and pre-
dicted data along with the R2 coefficient value equal to 0.999 
for the NN model consisting of 50 neurons and the applied 
ReLU and linear activation function for the hidden and output 
layer, respectively
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The analysis of the distance covered by the pendu-
lum capsule drive in the assumed, dimensionless time 
interval revealed that the highest score is obtained for 
the NN model consisting of 50 neurons in the hidden 
layer, along with the ReLU applied as an activation 
function and the linear one used for the output. The 
achieved result is equal to 6.135, with 1.16% higher 
performance than the one from the open-loop control 
(6.065). The scores of other NN models differ insig-
nificantly from the reference open-loop optimal con-
trol and are not considered in this study. In any case, 
it is worth observing that all (but one) provide a final 
displacement that is systematically larger than the ref-
erence one of 6.065, although the increment is minor.

The optimized control along with the distance 
covered by the pendulum capsule drive obtained in 

the dimensionless time interval for both controllers 
(open-loop and neural closed-loop), are presented in 
Fig. 7.

4.1 � Perturbations in the system

The controllers’ robustness against the variation of 
parameters of the system has been tested by introduc-
ing a variable friction coefficient between the capsule 
and the underlying surface. It has been assumed that 
the actual friction coefficient at each point is a uni-
formly distributed random value:

(12)�r ∈ [� − Δ,� + Δ]

Table 2   Distance 
covered by the pendulum 
capsule drive for the NN 
models with the highest 
performance scores 
obtained in the preliminary 
research along with their 
structure, i.e., the hidden 
and output layer activation 
functions, number of 
neurons, the data fit and 
loss function scores

Activation function 
of the hidden layer

Activation function 
of the output layer

No. of 
neu-
rons

Data fit score Loss 
function 
score

Covered distance

ReLU None (linear) 50 0.999 0.0001 6.135
ReLU Sigmoid 50 0.999 0.0002 5.998
Sigmoid Sigmoid 17 0.999 0.0001 6.081
Sigmoid Sigmoid 30 0.999 0.0001 6.082
Sigmoid Sigmoid 50 0.999 0.0001 6.073
Tanh Sigmoid 10 0.999 0.0001 6.115
Tanh Sigmoid 17 0.999 0.0002 6.079
Tanh Sigmoid 30 0.999 0.0001 6.076
Tanh Sigmoid 50 0.999 0.0001 6.089

Fig. 7   The optimized control (a) with the corresponding distance covered by the pendulum capsule drive (b) for the open-loop and 
NN controller vs. dimensionless time (τ)
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where � is the nominal, assumed value of the friction 
coefficient and Δ is its maximal, absolute deviation. A 
different value of �r has been drawn for each interval 
of the capsule’s path of motion of the dimensionless 
length equal to 0.1.

The subject of the evaluation was the NN predic-
tive model with the highest result of the distance 
covered by the pendulum capsule drive in the inter-
val of dimensionless time τ. The Δ parameter intro-
ducing perturbations, was varied from 0.00 to 0.20, 
thus changing the effective friction coefficient range 
simultaneously. For each value of the Δ parameter, 
the test has been repeated 3 times to reduce the risk 

of random results. The obtained mean scores, along 
with the corresponding standard deviation (SD) are 
presented in Table 3.

To better understand the impact of the Δ parameter 
variation on the distance covered by the pendulum 
capsule drive for the open-loop and neural closed-
loop controller, the relative changes have been cal-
culated (see Table  3). Within the first stage each of 
the controllers has been evaluated with respect to the 
changes between the distance without and under per-
turbations, according to the following formula:

Table 3   The results of the distance covered by the system in 
the environment with varying friction coefficient (Δ) range for 
the open-loop and neural closed-loop controller. The relative 
changes between the distance without and under perturbations, 

for both controllers, along with their performance in the uncer-
tain frictional environment, according to Formulas (13) and 
(14)

Δ Open-loop controller Closed-loop
Neural Network controller

Neural Network 
and open-loop 
comparison

Distance without perturbation

6.065 6.135

Mean (± SD) distance 
affected by perturba-
tions

Relative changes between 
non- and perturbed dis-
tance (%)

Mean (± SD) distance 
affected by perturba-
tions

Relative changes between 
non- and perturbed dis-
tance (%)

Relative changes 
across both 
controllers’ results 
(%)

0.00 6.065 (± 0) 0 6.135 (± 0) 0 1.16
0.01 6.069 (± 0.0094) 0.07 6.139 (± 0.0026) 0.06 1.16
0.02 6.074 (± 0.012) 0.15 6.138 (± 0.0044) 0.03 1.04
0.03 6.040 (± 0.024) − 0.41 6.133 (± 0.040) − 0.04 1.54
0.04 6.068 (± 0.018) 0.06 6.159 (± 0.038) 0.39 1.49
0.05 6.087 (± 0.056) 0.37 6.130 (± 0.015) − 0.09 0.70
0.06 6.042 (± 0.034) − 0.38 6.108 (± 0.040) − 0.45 1.10
0.07 5.999 (± 0.031) − 1.08 6.139 (± 0.033) 0.06 2.33
0.08 6.048 (± 0.019) − 0.27 6.087 (± 0.057) − 0.79 0.64
0.09 5.978 (± 0.037) − 1.44 6.079 (± 0.029) − 0.93 1.69
0.10 5.976 (± 0.076) − 1.47 6.076 (± 0.039) − 0.98 1.67
0.11 5.951 (± 0.043) − 1.88 6.162(± 0.086) 0.44 3.55
0.12 5.904(± 0.054) − 2.66 6.151 (± 0.32) 0.25 4.19
0.13 5.846 (± 0.050) − 3.61 6.214 (± 0.18) 1.28 6.29
0.14 5.873 (± 0.11) − 3.16 6.114 (± 0.085) − 0.35 4.10
0.15 5.864 (± 0.062) − 3.32 6.058 (± 0.11) − 1.27 3.31
0.16 5.775 (± 0.098) − 4.78 6.179 (± 0.068) 0.71 6.99
0.17 5.803 (± 0.11) − 4.32 6.020 (± 0.38) − 1.88 3.74
0.18 5.638 (± 0.044) − 7.05 5.929 (± 0.078) − 3.36 5.17
0.19 5.614 (± 0.071) − 7.44 5.736 (± 0.14) − 6.50 2.19
0.20 5.443 (± 0.251) − 10.25 5.584 (± 0.12) − 9.00 2.57
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where �c—the relative change for the open-loop 
or neural closed-loop controller (%), z0—the dis-
tance covered by the system under the value of the Δ 
parameter equal to 0, zp—the distance covered by the 
system under the non-zero value of the Δ parameter.

The known values of the distance covered by the 
pendulum capsule drive in the uncertain frictional 
environment led us to the performance comparison 
of both controllers in these conditions. The relative 
changes of the distance under perturbations between 
the open-loop and neural closed-controller have been 
calculated as follows:

where �P—the relative change between the open-loop 
and neural closed-loop controller (%), zOL—the dis-
tance covered by the system under the perturbations, 
for the open-loop controller, zNN—the distance cov-
ered by the system under the perturbations, for the 
neural closed-loop controller.

Please note that the parameters of the open-loop 
controller were calculated with regard to the Formula 
(8) and presented in (9). On the other hand, the NN 
controller ones originate from the computation per-
formed in the second stage of this research, according 
to Formula (10).

The distance covered by the pendulum capsule 
drive in the uncertain frictional environment pre-
sented in Table  3 shows that the NN controller is 
more resistant to friction changes than the open-loop 
controller. The first significant decrease in the dis-
tance appears much earlier in the open-loop control-
ler, starting from a value of 0.07 corresponding to 
0.10–0.13 in the NN one. The higher the Δ parameter 
value, the more noticeable the difference. The close-
up look of the covered distance consideration for 
open-loop and NN controllers is presented in Fig. 8.

The impact of the varying coefficient of friction on 
the distance covered by the pendulum capsule drive 
calculated within the use of relative changes is pre-
sented in Figs. 9 and 10. The main observation is that 
the higher the Δ parameter value, the bigger decrease 
in the distance, especially for the open-loop control. 

(13)�C =
zp−z0

z0
⋅ 100%

(14)�P =
zNN−zOL

zOL
⋅ 100%

It is worth nothing that as Δ varies from 0 to 0.16, 
the relative change of distance is of the order of 1% 
when the NN controller is applied. In contrast, the 
open-loop controller suffers a four times larger loss 
of efficiency for the same increase of Δ . The greatest 
noticeable change for both controllers appears with a 
Δ parameter value of 0.20, resulting in a 10.25% and 
9% decrease in the distance for the open-loop control-
ler and the NN one respectively. While for large val-
ues of the Δ parameter the performance of both con-
trollers decreases (although to a different extent, as 
said), it is interesting to note that, quite surprisingly, 
for very small values of the Δ parameter the maxi-
mum distance increases with respect to the unper-
turbed case Δ = 0 suggesting a kind of beneficial 
effect of uncertainties on �.

The analysis of perturbed distances comparison 
performed for both controllers proves that the neural 
network controller is more resistant to changes occur-
ring in the environment with a varying range of the 
coefficient of friction. Hence, the most significant dis-
cernible increase in performance is equal to + 7%.

Fig. 8   Distance covered by the pendulum capsule drive in the 
uncertain frictional environment vs. the open-loop and neural 
network controller
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5 � Summary and conclusions

In this study, a novel approach to the pendulum 
capsule drive control with the use of a neural net-
work (NN) as a closed-loop controller is presented. 
The novelty in this research is the use of an opti-
mized open-loop control function as the basis of the 
designed controller. The dependence between the out-
put of the open-loop controller and the system state 
variables is determined by the NN.

One of the major aims of this research was to test 
and evaluate the robustness of the novel control-
ler compared with the original open-loop control. 
Thus, the study was divided into three parts. In the 

preliminary research we created a default architecture 
of a NN predictive model that was tested for various 
configurations concerning different numbers of neu-
rons, as well as the activation functions for hidden 
and output layers. Within this stage the performance 
of each model was measured with the R2 and MSE 
tools. This allowed the selection of nine NN models 
with the highest correlation score between the refer-
ence and predicted data. The parameters of NN mod-
els gathered in this training have been implemented 
in the pendulum capsule drive simulated controller 
to calculate the distance covered by the system in the 
dimensionless time interval. The highest distance was 
achieved for the NN model consisting of 50 neurons 

Fig. 9   Relative changes 
between the distance with-
out and under perturbations 
(Δ) for the open-loop and 
NN controller

Fig. 10   The performance 
comparison of the open-
loop and neural closed-loop 
controller in the environ-
ment with varying friction 
coefficient introduced by Δ 
parameter value
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in the hidden layer along with the ReLU used as an 
activation function and a linear one applied for the 
output.

Subsequently, the top-performing artificial NN 
model was tested in the last part of the study, consid-
ering the robustness of the controller and its reliabil-
ity in the uncertain frictional environment introduced 
by the varying friction coefficient range between the 
capsule shell and the underlying surface. Without any 
perturbations the neural network controller achieved 
a 1.16% higher performance than the open-loop. The 
variations of the coefficient of friction range proved 
the NN more resistant to the perturbations occurring 
in the system with a maximum of + 7% advantage 
over the open-loop controller. In fact, the changes 
between the distance without and under perturbations 
occurred much slower, and remained at the 1% level 
much longer. Meanwhile, in the open-loop controller 
the increasing value was constantly observed, exceed-
ing some trial scores achieved in the NN controller at 
least 4 times.

Results presented in this study confirm that the 
NN controller works more efficiently compared to the 
original open-loop controller and proves the higher 
level of robustness in an environment where pertur-
bations occur. It seems that the neural closed-loop 
controller could be an alternative option to the clas-
sic ones in many applications of the mechanical field, 
especially for non-smooth and discontinuous systems 
(as the one considered in this work). Moreover, it 
could significantly simplify the closed-loop control-
lers’ systems design where only the open-loop control 
is available.
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Appendix

In this appendix the proposed method of training 
the closed-loop neural network controller by means 
of an existing open-loop optimal control function is 
presented on a simple, mathematical pendulum. The 
purpose of using such a trivial system is to explain 
the principle of the proposed algorithm as simply as 
possible. In this manner, the essence of the method 
can be easily shown without all the nuisances that 

Fig. 11   Simple pendulum 
system

http://creativecommons.org/licenses/by/4.0/
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may appear when the controlled object is more com-
plex. The scheme of the analyzed system is presented 
in Fig. 11.

The equation of motion of the simple pendulum 
with a driving torque M and with a linear damping 
−c𝛼̇ is as follows.

The following dimensionless quantities are intro-
duced: 𝜏 = 𝜔t, 𝛼

�

=
d𝛼

d𝜏
=

𝛼̇

𝜔
, 𝛼�� =

d2𝛼

d𝜏2
=

𝛼̈

𝜔2
, 𝜁 =

c

2m𝜔l2
,

u =

M

m�2l2
 where � =

√
g

l
 . Application of these sym-

bols in the formula (15) yields the following dimen-
sionless form of the equation of motion.

It is assumed that the control u is bounded: 
u ∈ [−umax, umax] . Moreover, the following 

(15)ml2𝛼̈ = −mglsin(𝛼) − c𝛼̇ +M

(16)��� = −sin(�) − 2��� + u

dimensionless values of the parameters have been 
adopted: � = 0.1, umax = 0.2.

Suppose that the objective is to maximize the 
amplitude of pendulum’s swinging in a shortest pos-
sible time. Obviously, such goal is accomplished by 
increasing the mechanical energy of the pendulum 
which in turn is done by applying the maximum pos-
sible torque to the pendulum in the direction of its 
instantaneous rotational velocity. This strategy is a 
direct consequence of the work-energy principle [26]. 
In such a manner, the optimal control (see Fig.  12) 
along with the optimal trajectory (see Fig. 13) of the 
pendulum system (Eq.  16) can be easily generated. 
Now, the control u(�) , presented in Fig. 12, is a func-
tion of the dimensionless time � only and can be con-
sidered an optimal open-loop control. All the gener-
ated data can be connected in one dataset containing 

Fig. 12   Open loop optimal control of the pendulum system 
(Eq. 16)

Fig. 13   Optimal trajectory of the pendulum system (Eq. 16)

Fig. 14   The header and the initial rows of the dataset conta-
ing the optimal open-loop control u(�) (Fig.  12) and the cor-
responding optimal trajectory (Fig. 13)

Fig. 15   Control values u(x1, x2) returned by the neural network 
trained using the dataset presented in Fig. 14. The neural net-
work easily detected that the control u(x1, x2) must be simply 
equal umax for positive x2 and −umax for negative x2
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4 columns: dimensionless time � , state variables 
x1 = �(�), x2 = ��(�) and the optimal open-loop con-
trol u(�) (see Fig. 14).

Now, the closed-loop optimized controller can be 
created by training a neural network on the dataset 
presented in Fig. 14. In such network, the state vari-
ables x1 = �(�), x2 = ��(�) are the input values and 
the corresponding values of the control function u(�) 
are the output values (the target of our prediction). In 
such a manner, the dependence of the optimal control 
on time is removed. Instead, an approximate closed-
loop optimal control, i.e., the function u(x1, x2) , can 
be obtained.

In the presented case, the underlying dependence 
between u and x1, x2 is trivial:

u attains the maximum value umax for positive x2 
and the minimum value −umax for negative x2 , being 
independent from x1 . Therefore, almost any one-layer 
neural network can detect such an obvious relation-
ship. In the numerical tests, a one-hidden-layer net-
work has been used. Similarly as in the main part of 
the paper, the hidden layer contained neurons with 
“ReLU” activation function whereas the output layer 
uses the sigmoid [24, 31]. It turned out that even one 
neuron in the hidden layer enables detection of the 
proper relationship. The heatmap depicting the con-
trol value u for different states x1, x2 is presented in 
Fig.  15 whereas comparison of trajectories with the 
open-loop optimal control and the closed-loop neural 
network-based one is presented in Fig. 16.
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