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computational results are compared with the corre-
sponding results obtained by using single phase lag 
theory proposed by Lord and Shulman (LS model)LS 
model single phase lag model (LS model).

Keywords Photo thermal waves · Dual phase lag 
heat conduction · Normal mode analysis · Non-local 
effect

Abbreviations 
T   Temperature
T0  Reference temperature
u  Displacement vector
N  Carrier density
�ij  Stress components
eij  Strain components
� , �  Lame’ constants, � = (3� + 2�)�t
�t  Thermal expansion coefficient
dn  Coefficient of electronic deformation
�n  Difference of deformation potential 

of conduction and valence band and 
�n = (3� + 2�)dn

�ij  Kronecker delta
K  Thermal conductivity
�  Mass density
cv  Specific heat at constant volume
Eg  Energy gap of the semiconductor
DE  Carrier diffusion coefficient
�  Photo-generated carrier lifetime
�T  Phase-lag due to temperature gradient

Abstract Non-local theory comprises a unique 
characteristics by analyzing the effects of all points 
of the body on a single point of the material. The 
present study enlightens the propagation of photo-
thermal waves in a semiconductor by adopting the 
two phase lag theory of thermoelasticity in the frame 
of non-local effect. Normal mode analysis has been 
employed to obtain the exact expressions of the field 
quantities such as temperature, components of the 
displacement, carrier density, and components of 
the stress. Each field quantity is found to be influ-
enced by the non-local parameter as well as phase 
lags. Quantitative results are determined in the time-
domain by adopting a suitable technique of Laplace 
transform inversion which exhibit the influence of the 
non-locality effect on the distributions of field vari-
ables. Significant differences have been attributable to 
the studied fields due to the non-locality effect. Also, 
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�q  Phase-lag due to heat flux vector
� =

1

�

�N0

�T
  N0 : carrier concentration at a temperature 
T

1 Introduction

The theory of generalized thermoelasticity is seeking 
the attention of researchers and scientists for the last 
thirty years due to its potentiality to predict the finite 
speed of thermal waves which is in contrast with 
the concept of the classical theory of thermoelastic-
ity. Also, this theory exhibits several applications in 
various fields such as physics, geophysics, chemistry, 
aeronautics, nuclear reactors, mineral exploration, 
earth quake prediction and modern engineering. The 
classical theory is described by Fourier’s law which 
supports the parabolic nature of heat conduction i.e. 
infinite speed of thermal waves which may be appli-
cable in particular situations such as high heat flux 
problems, problems with large spatial dimension, etc. 
but ultimately this theory is found to be incapable for 
realistic outcomes of several concrete problems. Biot 
[1] presented the detailed formulation of the classi-
cal theory of thermoelasticity based on the Fourier 
law of heat conduction. However, this theory gained 
popularity as an efficient model to study the coupling 
effect of the thermal and elastic fields. But, due to its 
parabolic nature of thermal conduction, several new 
concepts such as modifying consecutive equations, 
the concept of phase-lags, introducing new consecu-
tive variables as well as involve non-local concepts, 
etc. have been executed by researchers. Later on, Lord 
and Shulman [2] (LS) proposed a model by insert-
ing one relaxation time parameter in Fourier’s law of 
heat conduction. This model predicts the hyperbolic 
nature of the heat conduction equation. Further, the 
generalization of the LS model was established by 
Green and Lindsay [3] (GL). Dhaliwal and Sherief 
[4] extended the LS theory to the problems with 
an anisotropic medium. After that, it was noticed 
that the materials involving higher values of relaxa-
tion times of heat propagation were needing a new 
approach apart from the LS theory and GL theory of 
thermoelasticity. Then, three new theories have been 
constructed by Green and Naghdi [5–7]. These theo-
ries are attributed as Green-Naghdi I theory of ther-
moelasticity (GN-I), Green-Naghdi II theory of ther-
moelasticity (GN-II), and Green-Naghdi III theory of 

thermoelasticity (GN-III). Tiwari and Mukhopadhyay 
[8] studied magneto-thermoelastic problem under the 
purview of GN-II theory of thermoelasticity. A study 
of thermoelastic damping in micromechanical resona-
tors under unified generalized thermoelasticity for-
mulation is given by Kumar and Kumar [9].

Further, it was noticed that micro and nano engi-
neering are of higher demand; therefore, a more gen-
eralized model was investigated by Tzou [10, 11] and 
Chandrasekharaiah [12, 13]. Tzou [10] inserted two 
phase lag parameters: one corresponding to the heat 
flux vector and the other for the temperature gradient 
in the Fourier law of heat conduction equation and 
this law achieved fame as a dual phase lag heat con-
duction model. Dual phase lag theory specifies the 
interactions among electrons and phonons that occur 
at a microscopic level and act as the delaying sources. 
Many problems are solved by the researchers with 
the concept of phase lags [14–17]. El-Karamany and 
Ezzat [18] published an article on the dual-phase-lag 
thermoelasticity theory. Magaña and Quintanilla [19] 
studied existence and uniqueness of phase-lag ther-
moelasticity. Rezazadeh et  al. [20] gave an analysis 
of bias DC voltage effect on thermoelastic damping 
ratio in short nano-beam resonators based on nonlo-
cal elasticity theory and dual-phase-lagging heat con-
duction model.

The semiconductor elastic materials as silicon 
have multifold applications in the prospect of mod-
ern physics like transducers, resonators, sensors, fil-
ters, etc. Photothermal technologies are extensively 
used in studying the vibrations and microelectonic 
structures due to its unique propertities such as non- 
contact and non-destructive. Photothermal theory and 
semiconductor materials have a very strong bond-
ing due to their huge importance in nano-materials 
technology such as solar cells. A mechanical change 
and thermal load are observed when a semiconductor 
elastic medium is excited by photothermal.

The excitation of short elastic pulses by photother-
mal are useful in several different branches of science. 
These studies are helpful for the monitoring of laser 
drilling, the photoacoustic microscope, laser anneal-
ing, fusion phenomena, etc. Several studies [21, 22] 
based on structures of semiconductors were enacted 
in the last few decades.

For the first time, Gordon et  al. [23] derived the 
method of photothermal. They introduced the elec-
tronic deformations of the photothermal spectroscopy. 
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The photothermal systems are found to be useful in 
measuring the electric as well as a temperature effect 
of semiconductor materials [24–26]. Kreuzer [27] 
used photoacoustic spectroscopy in the sensitivity 
analysis. Further, Song et  al. [28, 29] presented the 
generalized thermoelastic vibration of the optically 
excited semiconducting microcantilevers and the 
bending of semiconducting cantilevers. Song et  al. 
[30] propounded the reflection of photothermal waves 
in a semiconducting medium under a generalized the-
ory of thermoelasticity. Lotfy [31] derived the elas-
tic wave motions for a photothermal medium using 
the dual-phase-lag model in presence of an internal 
heat source and gravitational field. By adopting the 
concept of photothermal theory, the two-temperature 
plane strain problem for a semiconducting medium 
was analyzed by Abo-Dahab and Lotfy [32]. More-
over, Lotfy and Sarkar [33] applied the definition of 
memory-dependent derivative for photothermal semi-
conducting medium in two-temperature generalized 
thermoelasticity theory. Hobiny and Abbas [34] dem-
onstrated the photothermal waves in an unbounded 
semiconductor medium with a cylindrical cavity. The 
photothermal wave in one-dimensional semiconduct-
ing material was investigated by [35, 36]. Zenkour 
[37, 38] discussed a refined multi-phase-lags theory 
for photothermal waves of a gravitated semiconduct-
ing half-space. Recently, Khamis et  al. [39] stated a 
thermal-piezoelectric problem of a semiconductor 
medium during photo-thermal excitation. Lotfy and 
Abo-Dahab [40] studied about the two-dimensional 
problem of two temperature generalized thermoe-
lasticity with normal mode analysis under thermal 
shock problem. Also the effect of variable thermal 
conductivity during the photothermal diffusion pro-
cess of semiconductor medium was shown by Lotfy 
[41]. Khamiset al. [42] demonstated the photothermal 
excitation processes with refined multi dual phase-
lags theory for semiconductor elastic medium. Later 
on, Lotfy et  al. [43] published an article about the 
response of electromagnetic and Thomson effect of 
semiconductor medium due to laser pulses and ther-
mal memories during photothermal excitation.

Nonlocal continuum theory is attracting the 
researchers due to its character to investigate the 
influence of all the points of the material at its sin-
gle physical point. In the nineteenth-century, Eringen 
[44–46] proposed the non-local theory to deal with 
small-scale structure problems. The main idea behind 

this theory is that the interacting forces between mate-
rial points exhibit a far-reaching property. Tzou [11] 
shows that non-local phenomenon exhibits the same 
characteristic as the concept of phase lags as phase-
lag captures the ultrafast response in femtosecond, 
non-locality effect reveals the physical mechanism 
at the nanoscale. Later, Tzou and Guo [47] demon-
strated the thermal conduction model which phase-
lag and nonlocal responses. Non-local thermoelastic 
wave propagation in the plates is investigated by Inan 
and Eringen [48]. Dhaliwal [49] derived the energy 
equation as well as the work equation in the non-local 
generalized theory of thermoelasticity. The effect of 
non-local thermoelasticity on buckling of axially 
functionally graded nano-beams was introduced by 
Lei et  al. [50]. Lim et  al. [51] worked on a higher-
order non-local elasticity and strain gradient theory. 
Tiwari and Kumar [52] investigated the plane wave 
propagation in non-local thermoelasticity. Othman 
and Lotfy [53] analysed the effect of rotation on plane 
waves in generalized thermo‐microstretch elastic 
solid with one relaxation time. Othman and Said [54] 
investigated 2D problem of magneto-thermoelasticity 
fiber-reinforced medium under temperature depend-
ent properties with three-phase-lag model. Also, Oth-
man et al. [55] shown the effect of the gravity on the 
photothermal waves in a semiconducting medium 
with an internal heat source and one relaxation time. 
Effect of semiconducting medium with temperature 
dependent properties under LS and DPL theories was 
revealed by Othman et al. [56, 57]. Sarkar et al. [58] 
presented the effect of the laser pulse on transient 
waves in a non-local thermoelastic medium under 
Green-Naghdi theory. Propagation of the photother-
mal waves in a semiconducting medium under L-S 
theory was given by Othman et al. [59]. Sarkar et al. 
[60] presented the propagation of photothermal waves 
using the LS model of thermoelasticity.

Authors’ believe that study of photothermal 
waves in a semoiconducting medium in context of 
dual phase lag thermoelasticity theory with non-
local effect has not been performed till now. There-
fore, the aim of the present article is to establish 
a new non-local thermoelastic model in the frame 
of two relaxation times for the photothermal wave 
propagation in a semiconducting medium. Ana-
lytical results are derived for the field quantities 
– displacements, stresses, temperature, and carrier 
density by adopting the method of normal mode 
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analysis. Computational calculations are rendered 
for silicon material and graphically presented in the 
studied physical fields. The results reveal that there 
are significant effects of the phase lags and non-
locality on the thermoelastic interactions inside the 
semiconductor medium.

2  Formulation of the problem and basic equations

On the basis of theoretical analysis of the heat trans-
port process in a semiconductor, one can retrieve 
three different types of waves—thermal waves, 
elastic waves, and coupled plasma waves inside the 
medium simultaneously. An isotropic homogene-
ous semiconducting medium has been taken into 
account (Fig. 1).

Thermal, elastic, and coupled plasma conduction 
equation for our problem can be written in the fol-
lowing way [25–27, 37]:

(1)
�ui,jj + (� + �)ui,i − �T,i − �nN,i = �

(
1 − �2∇2

)
u,tt,

(2)
K
(
1 + 𝜏T

𝜕

𝜕t

)
∇2T

=

(
1 + 𝜏q

𝜕

𝜕t

)(
𝜌cvṪ + 𝛾T0ė

)
−

Eg

𝜏
N,

The constitutive relations are

� = a0e0 represents the elastic nonlocal parameter 
with a dimension of length where a0 , e0 , denote an 
internal characteristic length and a material constant, 
respectively.

Assuming that the direction of the plane strain 
state is the xy-plane, then the displacement vector u 
takes the following form

In order to obtain the governing equations into 
a more convenient form, we introduce the follow-
ing non-dimensional quantities in the governing 
equations:

Displacement components u and v can be written 
in the terms of displacement potentials Φ(x, y, t) and 
Ψ(x, y, t) in the following way

Using Eqs. (6)–(8) in Eqs. (1)–(3), we obtain the 
following equations in the non-dimensional form 
(primes are omitted for the sake of simplicity):

(3)DE∇
2N −

N

�
+ �T =

�N

�t
.

(4)
(
1 − �2∇2

)
�ij = 2�eij +

[
�e − �T − �nN

]
�ij,

(5)eij =
1

2

(
ui,j + uj,i

)
, i, j = 1, 2, 3.

(6)u = [u, v, 0](x, y, t)

(7)

(

x′, y′, u′, v′
)

= 1
C1�

(x, y, u, v),

(

t′, �′0
)

= 1
�
(t, �0), T ′ =

�
(� + 2�)

T ,

N′ =
�n

(� + 2�)
N, �′

ij =
1
�
�ij,

C2
1 =

� + 2�
�

, � = K
�cvC2

1

.

(8)u = Φ,x + Ψ,y, v = Φ,y + Ψ,x

(9)
[(

1 + �2
�2

�t2

)
∇2 −

�2

�t2

]
Φ − T − N = 0,

(10)
[(

1 + �2
�2

�t2

)
∇2 − r2

0

�2

�t2

]
Ψ = 0,

Fig. 1  Schematic representation of semiconducting medium
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 With the help of Eq. (4), the following expressions of 
the stress components have been obtained:

 Here, r2
0
=

�+2�

�
 , r1 =

�2T0

K�(�+2�)
 , r2 =

�Eg�t

�cv�dn
 , and 

r3 =
�K�dn

�cv�tDE

.

3  Solutions of the problem

In order to find the solution of the present problem, 
we employed normal mode analysis.

Since, harmonic waves are travelling in xy—plane; 
therefore, all the physical quantities can be decom-
posed in the following way-

where b is representing the wave number in the 
y-direction,  i reflects the complex quantity, � is a 
complex constant and f ∗ is presenting the amplitude 
of the field quantity f .

Using transformation (16) in Eqs. (9)–(12), we get

(11)

[

(

1 + �T
�
�t

)

∇2 −
(

�
�t

+ �q
�2

�t2

)]

T

− r1

(

�
�t

+ �q
�2

�t2

)

∇2Φ + r2N = 0,

(12)
[
∇2 −

K�

�cv�DE

−
K�

�cvDE

�

�t

]
N + r3T = 0.

(13)

(
1 − �2∇2

)
�xx = r2

0
u,x +

(
r2
0
− 2

)
v,y − r2

0
T − r2

0
N,

(14)

(
1 − �2∇2

)
�yy = (r2

0
− 2)u,x + r2

0
v,y − r2

0
T − r2

0
N,

(15)
(
1 − �2∇2

)
�xy = u,y + v,x.

(16)f (x, y, t) = f ∗(x)e�t+iby.

(17)
(

d2

dx2
− p1

)
Φ∗ − p0T

∗ − p0N
∗ = 0,

(18)
(

d2

dx2
− p2

2

)
Ψ∗ = 0,

(19)

−p3

(
d2

dx2
− b2

)
Φ∗ +

(
d2

dx2
− p4

)
T∗ + p5N

∗ = 0,

p0 =
1

1+�2�2
 , p1 = b2 +

�2

1+�2�2
 , p2 =

√
b2 +

r2
0
�2

1+�2�2
 , 

p3 =
r1�(1+�q�)

(1+�T�)
 , p4 = b2 +

�(1+�q�)

(1+�T�)
 , p5 =

r2

(1+�T�)
 , 

p6 = b2 +
K

�cvDE

(
� +

�

�

)
.

Φ∗,Ψ∗ , T∗ and N∗ represent the amplitudes of 
Φ,Ψ, T ,N, respectively.

For non-trivial solution of Eqs. (17), (19), (20), the 
determinant of the factor matrix should be equal to 
zero

On eliminating Φ∗(x) , T∗(x) and N∗(x) from the 
Eqs. (17), (19), and (20), we obtain the following 
decoupled sixth-order ordinary differential equation 
involving ( Φ∗, T∗,N∗) as

where A = p1 + p0p3 + p4 + p6 , 
B = p1

(
p4 + p6

)
+ p0p3

(
b2 + p6 + r3

)
+ p4p6 − r3p5, 

C = p1
(
p4p6 − r3p5

)
+ p0p3b

2(p6 + r3).
After factorizing, Eq. (22) can be expressed as

where �2
i
 ( i = 1, 2, 3 ) denote the roots of the following 

characteristic equation

The solution of Eq.  (23) which is bounded for 
x → ∞ , is obtained as

(20)r3T
∗ +

(
d2

dx2
− p6

)
N∗ = 0.

(21)

⎢⎢⎢⎢⎢⎣

�
d2

dx2
− p1

�
−p0 −p0

−p3

�
d2

dx2
− b2

� �
d2

dx2
− p4

�
p5

0 r3

�
d2

dx2
− p6

�

⎥⎥⎥⎥⎥⎦
= 0.

(22)

[
d6

dx6
− A

d4

dx4
+ B

d2

dx2
− C

]
{Φ∗(x), T∗(x),N∗(x)} = 0,

(23)

(

d2
dx2

− �21

)(

d2
dx2

− �22

)(

d2
dx2

− �23

)

{Φ∗(x),T∗(x),N∗(x)} = 0.

(24)�6 − A�4 + B�2 − C = 0.

(25)Φ∗(x) =

3∑
n=1

Mne
−�nx,
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The solution of Eq. (18) can be written as

Here, Mn ( n = 1, 2, 3, 4 ) are representing the coef-
ficients and H1n =

(�2n−p1)(�
2
n
−p6)

p0(�2n−p6)−r3
 , H2n =

r3H1n

p6−�
2
n

.
Using Eqs. (8), (16), (25), and (28), we obtain the 

following analytical expressions of the components of 
the displacement

Using Eqns. (13)–(16) and (25)–(30), exact analyt-
ical expressions of the components of the stress can 
be expressed as

where

(26)T
∗(x) =

3∑
n=1

H1nMne
−�nx,

(27)N
∗(x) =

3∑
n=1

H2nMne
−�nx.

(28)Ψ∗(x) = M4e
−p2x.

(29)u∗ =

3∑
n=1

Mne
−�nx + ibM4e

−p2x,

(30)v∗ =

3∑
n=1

ibMne
−�nx + p2M4e

−p2x.

(31)�∗
xx
=

3∑
n=1

H3nMne
−�nx − H34M4e

−p2x,

(32)�∗
yy
=

3∑
n=1

H4nMne
−�nx + H34M4e

−p2x,

(33)�∗
xy
= −

3∑
n=1

H6nMne
−�nx − H64M4e

−p2x.

 s1 =
s

DE

4  Boundary conditions

We have to choose the values of the coefficients 
Mn(n = 1, 2, 3, 4) in such a way so that the boundary 
conditions on the surface x = 0 take the form

(34)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

M1

M2

M3

M4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

H31 H32 H33

H61 H62 H63

�1H11
(

�1 + s1
)

H21

�2H12
(

�2 + s1
)

H22

�3H13
(

�3 + s1
)

H23

−H34

H64

0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−m∗
1

0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(35)
�xx = −m1 = −m∗

1
e�t+iby, �xy = 0,

�T

�x
= 0 DE

dN

dx
= sN.

Fig. 2  Distribution of horizontal displacement u with distance 
x
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m∗
1
 and s are constants.

Applying the boundary conditions (35) at the sur-
face x = 0 , we obtain a system of four equations and 
we find the values of the coefficients Mn(n = 1, 2, 3, 4) 
by adopting the inversion of the matrix of order four 
in the following way

(36)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

M1

M2

M3

M4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

H31 H32 H33

H61 H62 H63

�1H11
(

�1 + s1
)

H21

�2H12
(

�2 + s1
)

H22

�3H13
(

�3 + s1
)

H23

−H34

H64

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−m∗
1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 3  Distribution of vertical displacement v with distance x

Fig. 4  Distribution of temperature T  with distance x

Fig. 5  Distribution of carrier density N with distance x

Fig. 6  Distribution of stress component �xx with distance x

Fig. 7  Distribution of stress component �yy with distance x
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s1 =
s

DE

.

5  Numerical results

The previous section exhibits the analytical solu-
tions of the field quantities – displacement compo-
nents, temperature, stress components, and carrier 
density. In order to predict the clear picture of these 
field quantities, present section aims to determine the 
numerical results of the field quantities for the non-
dimensional time t = 0.05.

The graphical results have been examined in two 
separate groups. The first group reveals the difference 
between two the theories of heat conduction—single 

Fig. 8  Distribution of stress component �xy with distance x

Fig. 9  Distribution of horizontal displacement u with distance 
x

Fig. 10  Distribution of vertical displacement v with distance x

Fig. 11  Distribution of temperature T  with distance x

Fig. 12  Distribution of carrier density N with distance x
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phase lag theory (LS model) and dual phase lag the-
ory (DPL model) so that the effect of the phase lags 
on the behavior of different field quantities has been 
characterized (Figs.  1, 2, 3, 4, 5, 6, 7). The second 
group describes the influence of the non-local elas-
tic parameter � on the behavior of different physical 
fields (Figs. 8, 9, 10, 11, 12, 13, 14).

For numerical simulation, Silicon material has 
been selected. The physical parameters for Silicon are 
assumed as [25, 46, 47]:

� = 3.64 × 10
10Nm−2 , � = 5.46 × 10

10kgm−1s−2 , 
�t = 3 × 10

−6k−1 , K = 150wm−1k−1 , s = 2ms−1, � = 2.33 × 10
3kgm−3 , 

cv = 695Jkg−1k−1 , b = 1.2, T0 = 300K , m∗
1
= 1 , � = 5 × 10

−5 , 
� = �0 + i� , �0 = 1 , � = 0.03 , r3 = −450 , 
DE = 2.5 × 10

−3m2s−1,dn = −9 × 10
−31m3 ,Eg = 1.12ev , 

�T = 0.03 , �q = 0.04 , y = 0.05.

The physical data outlined above has been used 
to calculate the distributions of the real part of the 
horizontal displacement component u , vertical dis-
placement component v , the temperature T  , the car-
rier density N, and the stress components �xx , �yy , and 
�xy . All the physical variables are considered in non-
dimensional form.

5.1  Effect of phase lags

Figure 2 demonstrates the behaviour of the horizon-
tal component u of the displacement against the dis-
tance x for the non-dimensional time t = 0.05 . It can 
be observed from Fig. 2 that the displacement curves 
for dual-phase-lag (DPL) and single-phase-lag (LS) 
models start from the surface of the semiconduct-
ing medium with the positive values and gradually 
decreases in the direction of the increasing distance 
and vanish around the range 4 ≤ x ≤ 5 . But we 
observe that the curve representing single phase lag 
model i.e. LS model differs in the highest manner at 
the beginning from the curve representing dual phase 
lag model and this difference decreases as the values 
of the distance increases and the difference becomes 
negligible for the value of the distance greater than 2. 
It may be noticed from the above figure, dual phase 
lag model of heat conduction suppresses the values of 
the component of displacement which implies the less 
dissipation of energy and consequently provides the 
waves of less attenuation compared to the LS model 
of heat conduction with single phase lag. This nature 
of the horizontal component u of the displacement 
shows that the insertion of phase lag in the heat con-
duction equation has a very prominent influence on 
the horizontal component of the displacement field.

Figure  3 characterizes the variations of the verti-
cal component v of the displacement versus the dis-
tance x. In contrast with the horizontal component u , 
vertical component v begins from the negative value 
at the boundary of the semiconducting medium and 
moves towards the positive direction as the distance 
increases for ( 0 ≤ x ≤ 1.5 ). After reaching a peak 
value in the positive direction, the curves start to 
decrease as the distance increases for ( 1.5 < x ≤ 6 ) 
and fade away after passing the distance nearer to 6. 
Impact of the phase lags is noticed to be more promi-
nent on the vertical component of the displacement 
field and we observe that the addition of the relaxa-
tion times in the heat conduction equation decreases 

Fig. 13  Distribution of stress component �xx with distance x

Fig. 14  Distribution of stress component �yy with distance x
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the values of the vertical component and this effect is 
observed to be most significant at the peak value.

One remarkable point is noticed that horizontal 
and vertical both components of the displacement 
field vanish at the bounded region which shows the 
finite speed of thermoelastic waves.

Figure  4 describes the variations of the tempera-
ture profiles against the distance for DPL and LS 
models. The trend of the variation of the temperature 
profile begins from a constant value on the bound-
ary of the semiconducting medium but it increases 
for small values of the distance nearer to 1 and starts 
decreasing after crossing the distance equal to 1 and 
reaches to zero at the distance nearer to 5. Constant 
nature of temperature field at the boundary of the 
semiconducting medium satisfies the boundary con-
dition. Similar to the displacement profiles, the val-
ues of the temperature are found to be higher for the 
Lord-Shulman (LS) model compared to the corre-
sponding profile of dual phase lag model. The influ-
ence of phase lags is most prominent at the maximum 
value of the temperature. Attractiveness of dual phase 
lag model can be understood in such a way that high 
values of temperature increases thermal stress inside 
the medium which may reduce the structural ability 
of the material.

Figure  5 states the nature of the carrier density 
with respect to the distance for DPL and LS mod-
els. The profiles of the carrier density start from the 
negative value on the boundary of the medium and 
goes towards the positive direction exponentially 
and ultimately reaches zero. This distributions of 
carrier density is observed to be continuous, smooth 
and exponential function satisfying the boundary 
condition. This kind of propagation mode satisfies 
the elastic properties of semiconducting materials. 
It is noticed from the figure that the curve represent-
ing the LS model differs in the beginning from the 
curve of the dual-phase-lag model, but after passing 
some distance nearer to 4 and inside the semicon-
ducting medium, the curves converge until they all 
fade. An important observation that can be observed 
from the figure is that the profile of the carrier den-
sity in the case of the Lord-Shulman (LS) model is 
spread and faded faster than in the case of the dual-
phase-lag (DPL) model. This figure also shows that 
the presence of the phase lags is influential in the 
propagation of the waves.

Figure  6 presents the variations of the stress 
component �xx distributions with respect to the dis-
tance for LS and DPL models. Starting from a nega-
tive value on the boundary of the semiconducting 
medium, the stress profile moves towards the posi-
tive direction and finally reaches to zero. The effect 
of phase lags is clearly visible in the profiles of the 
stress distribution. This effect is significant at the 
beginning and as the distance passes, both curves 
converge and vanish nearer the distance x = 3.

Further, an important point comes from the fig-
ure that the stress profile under dual phase lag 
(DPL) model shows lower stress compared to the 
stress profile for the Lord-Shulman model (LS 
model). Hence, we can conclude that the waves in 
context of dual phase lag model are less attenuated 
as they dissipate less amount of energy due to low 
values of thermal stress compared to the LS model 
of heat conduction. In this way, dual phase lag 
model proves itself a better model for the physical 
system.

Figure 7 depicts the variations of the stress compo-
nent �yy with respect to the distance for LS and DPL 
models. Similar to Fig. 6, the curves representing the 
stress component �yy start from a negative value on 
the boundary of the medium and then move towards 
the positive direction and after passing some distance, 
the profiles disappear. It is noticed that the domain 
of influence is greater for Lord and Shulman model 
compared to the corresponding profile of dual phase 
lag model and therefore it can be concluded that the 
dual phase lag model is found to be more efficient 
compared to the Lord-Shulman model.

Figure 8 indicates the nature of the stress compo-
nent �xy versus the distance for Lord Shulman and the 
dual phase lag models. Unlike the Figs. 6, 7, 8 shows 
that the values of the stress profile are always posi-
tive. The trend of variation of the profile is such that 
it starts from a very small value close to zero but it 
increases as the distance increases and after provid-
ing a peak value, it starts decreasing and ultimately 
vanishes for the higher values of the distance. Here, 
the Lord-Shulman model predicts higher values of 
stress compared to the stress profile for dual phase lag 
model. Thus, it can be concluded again that the role 
of phase lag is strongly visible on the variations of 
each field quantity.
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5.2  Effect of elastic non-local parameter

The variations of the distribution of displacement 
component  u versus the distance x are presented in 
Fig. 9, which provides the values of the displacement 
component for the non-local and local dual phase 
lag (DPL) models. The figure shows the effect of the 
elastic non-local parameter � on the displacement 
behavior. The case � = 0 represents the case of the 
local DPL model and non-zero values of � exhibit the 
non-local DPL model. Starting from a constant value 
at the boundary of the semiconducting medium, dis-
placement profiles begin to decrease as the distance 
increases. It is observed from the figure that the dis-
placement component has the maximum value on the 
boundary of the semiconducting medium. Further, we 
observe that the profile representing the local theory 
differs at the beginning from the profiles of the non-
local theory, but after passing the distance and inside 
the material the curves converge until they all vanish. 
An important observation that can be obtained from 
the figure is that the wave propagation in the case 
of the non-local theory fades faster compared to the 
local one. Moreover, we find a piece of important 
information from the figure that for a higher value of 
the elastic non-local parameter exhibits low values 
of the displacement compared to the profiles having 
a low value of an elastic non-local parameter. This 
result shows the adorableness of the insertion of non-
local parameter on the governing equations.

Figure 10 displays the variation of the distribution 
of displacement component v versus the distance x 
which gives the values of the displacement compo-
nent for the non-local and local dual phase lag (DPL) 
models. The figure shows the effect of the elastic non-
local parameter � on the behaviour of the displace-
ment component v . Here, the trend of variation of the 
vertical component of displacement profile is found to 
be different compared to the profile of the horizontal 
component of the displacement profile. Starting from 
a negative value, the profile of the vertical component 
of the displacement moves towards the positive val-
ues and after reaching a maximum value it goes down 
as the distance achieves a higher value. It is visible 
that the influence of elastic non-local parameters are 
much prominent on the profiles of the vertical dis-
placement. This influence is found to be highest at the 
maximum value. Further, we observe that the profile 
representing the local theory has the greatest domain 

of influence and the domain of influence of the profile 
decreases when an elastic non-local parameter has a 
non-zero value. Similar to the profiles of horizontal 
displacement, vertical displacement in the case of the 
non-local theory fades faster compared to the local 
one. Moreover, we find important information from 
the figure that the higher value of the elastic non-local 
parameter predicts low values of the displacement. 
Here, the values of the displacement component dif-
fer in the significant way when non-local parameter 
is found to be absent and in this way absence of non-
local parameter become a big cause of high energy 
loss.

Figure  11 displays the characteristics of the tem-
perature with respect to the distance for the local and 
non-local dual phase lag model. The influence of the 
elastic non-local parameter � on the temperature dis-
tribution has been analyzed by assuming different 
values which are 0, 0.15, and 0.30. The case of � = 0 , 
corresponds to the case of the local dual phase lag 
model. Non-zero values of elastic non-local param-
eter � , represent the non-local dual phase lag model.

It is noticed from Fig.  11 that the temperature 
profiles begin at the surface of the semiconduct-
ing medium with very small values 1 and then they 
increase until they reach their maximum value and 
then steadily decrease in the direction of increasing 
the distance until it approaches zero. The tempera-
ture values for the non-local dual phase lag model 
( 𝜉 > 0) are smaller than those for the local dual phase 
lag model ( � = 0) . This result implies that the effects 
of non-locality reduce the values of the temperature 
and when the value of the non-local elastic parameter 
increases, the values of the temperature decrease, and 
therefore the domain of influence of the temperature 
profile decreases for the higher value of the elas-
tic non-local parameter. Moreover, the differences 
between local and non-local are found to be more sig-
nificant initially (for small values of the distance).

Figure  12 refers to the behaviour of the carrier 
density versus the distance for the local and non-local 
dual phase lag model. From Fig.  12, it is observed 
that the profiles start from a negative value, move 
towards the positive direction, and ultimately dis-
appear. The maximum rate of decay is found in the 
range 0.4 ≤ x ≤ 4. An important fact comes from the 
figure that the profiles of the non-local model fade 
earlier compared to the local one. Further, the pro-
file under the local dual phase lag model provides 
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minima. Similar to the previous figures, the effect of 
non-locality decreases the values of the profiles of 
carrier density also.

Figure 13 clarifies the variations of the stress com-
ponent �xx with respect to the distance for the non-
local and local dual-phase-lag models. Profiles of 
stress start from a negative value on the boundary of 
the semiconducting medium then move towards the 
positive direction and finally reaches to zero. Non-
local effect is found to be similar to previous figures 
and the difference between non-local and local is 
found to be prominent in the initial stage, later, the 
profiles of stress converge and vanish for the distance 
nearer to 4. This Figure supports the efficiency of the 
non-local model compared to the local one as stress 
is found to be very less under the non-locality effect 
compared to the local model.

Figure  14 states the variations of the stress com-
ponent �yy against the distance for non-local and 
local dual phase lag model. The trend of variations 
of �yy resembles with the �xx . However, the values 
of the stress component �yy are higher compared to 
the corresponding values of the stress component 
�xx . The effect of non-locality is similar to Fig.  13 
but this effect is less compared to the previous figure 
(Fig. 13). But, this figure also clarifies that the non-
local model is more effective and capable to predict 
better results compared to the local model.

Figure  15 visualizes the variations of the stress 
component �xy against the distance for non-local and 
local dual phase lag model. In this case, the values of 
the stress are found to be positive. The influence of 

the non-locality effect reduces the values of the stress 
and proves itself better compared to the local model.

6  Conclusions

The motive of the present work is to develop a new 
non-local thermoelastic model in the frame of two 
phase lags for photothermal wave propagation. A 
semiconducting medium has been assumed to study 
photothermal waves. The analytical solutions have 
been obtained by adopting the method of normal 
mode analysis which covers a wide range of problems 
in thermoelasticity. This method is capable to provide 
exact solutions without any assumed restrictions on 
the actual physical quantities that appear in the gov-
erning equations of the physical problem considered. 
The effect of significantly different parameters, such 
as non-local elastic parameters and the presence of 
phase lags on different distributions, has been ana-
lyzed. Thorough discussion and study, the following 
conclusions are revealed-

1. Distributions of all physical quantities such as 
horizontal and vertical components of the dis-
placement, temperature, carrier density, and 
thermal stress appear clearly in a limited region 
near the surface of the semiconducting medium 
and these effects gradually disappear outside this 
region after a certain period of time. This physi-
cal phenomenon demonstrates the fact that photo-
thermal waves propagate at a finite speed inside 
the medium contrary to the traditional theories 
which predict the infinite speed of the thermal 
wave.

2. The profiles representing the distributions of field 
quantities- temperature, components of the dis-
placement, carrier density, and components of the 
stress temperature vanish earlier for higher values 
of the non-local elastic parameter. However when 
the non-local elastic parameter is consider to be 
zero i.e. all the field quantities obtain higher val-
ues which become an important reason of high 
dissipation of energy. High values of temperature 
generate high values of thermal stress which may 
reduce the structural ability of the material. This 
result concludes that the non-local dual-phase-lag 

Fig. 15  Distribution of stress component �xy with distance x
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model proves itself a more efficient model com-
pared to the case of without non-local effect.

3. When the results are compared to the corre-
sponding results predicted by the Lord-Shulman 
model, we observe that the results under the pur-
view of dual-phase-lag model attain lower values 
as compared to the results predicted by the Lord-
Shulman model. This result implies that the role 
of phase lags in the heat conduction equation is 
found to be very significant. Insertion of phase 
lags reduces the values of the field quantities and 
proves itself a better and more accurate model.

4. All the field quantities are found to be continuous 
and smooth in nature.

5. It can further be concluded that the non-local 
parameter exhibits important effects that prove 
the non-local thermoelasticity model different 
and more realistic than other previous models. 
Moreover, the insertion of phase lags makes the 
heat conduction model more accurate and realis-
tic.

6. We believe that the present investigation will 
provide important pieces of information for the 
development of more accurate and realistic non-
local thermoelastic mathematical models in mod-
ern technology.

For industrial purpose especially in microelec-
tronic devices, excitation of thermal waves in semi-
conductor materials exhibit prominent role. This type 
of study can be beneficial for the design and analy-
sis of the thermal, plasma and a pulsed laser coated 
materials, and several various engineering practices 
related to interface analysis and design.

There are many applications of photo-thermal 
excitation in a semiconducting medium. Present 
investigation can be incorporated in the designs of 
actuators, transducers, resonators, filters, sensors and 
electric circuits
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