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experiments using a Geomagic Touch Haptic device 
are carried out to demonstrate the effectiveness of the 
proposed methods.
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geometric algebra · Inverse kinematics · Robot 
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1 Introduction

The problem of forward kinematics consists of deter-
mining the position and orientation of the end-effec-
tor on a kinematic chain according to a reference 
frame. This problem is usually solved by employing 
trigonometric formulas or by the Denavit-Hartenberg 
algorithm for large kinematic chains. Although the 
methods work correctly, there is a loss of geomet-
ric meaning as the rigid body transformations are 
restricted to variations in generic rotations on the 
pitch, raw, or roll axes, hindering representation of 
an arbitrary rotation angle, as the number of degrees 
of freedom of the kinematic chain is increased. Ham‑
ilton [1] manages to express orientations in three 
dimensions by employing quaternions, making it pos-
sible to obtain a very intuitive geometric sense to rep-
resent orientations at any reference axis [2, 3].

Inverse kinematics is a technique that allows 
determining the required movement of the joints in 
a kinematic chain to ensure a desired end-effector 
position. The inverse kinematics calculation is a 
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complex problem that usually requires solving equa-
tions series whose solution is generally not unique 
[4]. Traditional kinematic algorithms employ linear 
transformations using matrices or tensors, which, 
despite their simplicity, involve redundant coeffi-
cients, such as rotation matrices which require nine 
coefficients to represent one rotation through an 
axis. The formulation of robot kinematics within 
the geometric algebra framework has shown attrac-
tive advantages, as the motion of 3D Euclidean 
points can be represented by different entities such 
as rotors and motors among others [5, 6]. Since geo-
metric algebra is a coordinate-free mathematical 
system, it facilitates representing a robot configura-
tion by employing its geometric structure directly.

The main contributions of this paper can be 
described as follows:

– A novel set of algorithms based on Quaternion 
Algebra and Conformal Geometric Algebra is 
proposed to solve the inverse position kinemat-
ics of n-degree-of-freedom kinematic chains with 
revolute joints, by employing the gradient descent 
algorithm and a proposed error function between 
the end-effector and a desired position. For inverse 
velocity kinematics, an iterative algorithm based 
on Quaternion Algebra is also proposed.

– A Conformal Geometric Algebra library is devel-
oped to perform basic operations (such as sum, 
substraction as well as wedge, Clifford, and dot 
products) in MATLAB [7], employing geometric 
entities.

The rest of the paper is organized as follows: In 
Sect. 2, a general background is provided for under-
standing the basic concepts referred to in this work. 
In Sect. 3, a set of algorithms using Quaternion Alge-
bra is developed to solve both the inverse position and 
velocity kinematics for different n-degree-of-freedom 
kinematic chains, while in Sect.  4, a generalized 
extension using Conformal Geometric Algebra is also 
developed for the inverse position kinematics prob-
lem. In Sect.  5 both proposed algorithms are com-
pared using different update rules and performance 
test. In Sect. 6, real-time experiments are carried out 
using a Geomagic Haptic Touch device with a PID 
controller, employing the algorithms described in 
Sect. 2. Finally, in Sect. 7, the conclusions and future 
work of the present paper are presented.

2  Preliminaries

2.1  Quaternion algebra

Quaternion Algebra ℍ was invented by W. Hamilton in 
1843 [8] while attempting to find an algebraic system 
which would work for the ℝ4 space.

The current formalism of vector algebra was sim-
ply extracted from the quaternion product [9] of two 
vectors by Gibbs in 1901 . Unit quaternions provide 
a mathematical notation to represent orientations and 
rotations of objects in three dimensions. Compared to 
rotation matrices, they are more efficient and numeri-
cally stable. The quaternions are useful in robotics 
and navigation, among other applications [10–12]. A 
quaternion can be expressed as the following set:

where i,  j,  k are called the main imaginary, which 
obeys the Hamilton’s rules

2.2  Rotations employing quaternions

One of the most prominent applications for quater-
nions remains their suitability for rotating vectors 
through an arbitrary axis [13]. A vector � = [x, y, z] 
can be represented as a quaternion v ∈ ℍ through the 
following transformation:

while a rotation of magnitude � through a unitary axis 
� can be represented by the following quaternion:

or likewise by Euler’s formula:

Then, a rotation of the vector v through an axis � with 
� magnitude is given by the quaternion product:

where qpq̃ represents the quaternion multiplication 
and q̃ refers to the following quaternion conjugate:

(1)
ℍ = {a + bi + cj + dk ∶ a, b, c, d ∈ ℝ} ⊂ ℂ

2
⊂ ℝ

4,

(2)i2 = j2 = k2 = ijk = −1.

(3)v = 1 + xi + yj + zk,

(4)q = cos
�

2
+ sin

�

2
�,

(5)e
±

�

2
� = cos

�

2
± sin

�

2
�.

(6)v� = qvq̃,
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A mathematical framework derived from Quaternion 
Algebra, known as Dual-Quaternion Algebra can 
be employed to obtain the forward kinematics of a 
manipulator with prismatic elements [14].

2.3  Conformal geometric algebra

Conformal Geometric Algebra �4,1 is an algebra that 
employs the sphere as a basis element. Entities are 
represented in this algebra through five basis ei with 
the following properties:

where e0 is called the point at origin, and e∞ the point 
at infinity. A Euclidean point pe ∈ �3 can be repre-
sented as a conformal point p ∈ �4,1 through the fol-
lowing transformation : 

2.4  Screw rotors

A screw rotor can be defined as an entity M ∈ �4,1 of 
the following form:

where L ∈ �4,1 is a geometric entity called line, 
which is given by a set of two Euclidean vectors 
a, b ∈ �3 as : 

where Ie = e1e2e3 is denominated the pseudoscalar, 
and the operator ∧ the wedge product. Given a con-
formal point p ∈ �4,1 , a rotation of �∕2 around a line 
L can be calculated through the following transforma-
tion (Fig. 1) : 

(7)q̃ = cos
�

2
− sin

�

2
�.

(8)e2
i
=1, i ∈ {1, 2, 3, 4},

(9)e2
5
= − 1,

(10)e0 =
1

2
(e4 − e5), e∞ = e4 + e5,

(11)p = pe +
1

2
p2
e
e∞ + e0.

(12)M = cos

(
�

2

)
− sin

(
�

2

)
L = e

−
�

2
L
,

(13)L = (a − b)Ie − e∞(a ∧ b)Ie,

where M̃ ∈ �4,1 is the screw rotor conjugate.

2.5  Gradient descent algorithm

The gradient of a multidimensional function f(x) 
with x = [x1, ..., xd] ∈ ℝ

d (where d is the number of 
dimensions), represents how the function varies with 
respect to every one of its d dimensions. In this way, 
the gradient gx1 expresses how the function f(x) varies 
with respect to x1 [15, 16]. Said gradient is appropri-
ately defined as

The gradient descent algorithm seeks the minimum 
f ∗ = f (x∗) of the function (whether it is local or not) 
through the following update rule

where x1(h − 1) is the previous value of the variable 
x1 in the function f(x) and x1(h) is the next value of 
x1 . By applying this update rule, the function f(x) 
decreases iteratively once a minimum is reached.

3  Forward and inverse kinematics using 
quaternion algebra

In robotics, kinematics is the study of operational 
coordinates or articular movements in robots. There 
are two types of kinematics: inverse kinematics and 

(14)p� = MpM̃ = e
−

𝜃

2
L
pe

𝜃

2
L
,

(15)gx1 =
�f (x)

�x1
.

(16)x1(h) = x1(h − 1) − �
�f (x)

�x1
,

Fig. 1  Rotation of a conformal point employing screw rotors
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forward kinematics. In this section, a generalized 
algorithm based on Quaternion Algebra is proposed 
to solve the inverse position and velocity kinematics 
of revolute-based kinematic chains.

3.1  Forward kinematics

Forward kinematics is the technique employed to 
compute the operating coordinates of every part on 
articulated structures, using the configurations asso-
ciated with each link. As a mathematical framework, 
Quaternion Algebra offers important advantages over 
matrices, as it does not present problems such as 
matrix indeterminacy (e.g, the Gimbal Lock [13]). 
As an introduction for subsequent sections, the for-
ward kinematics of a two-degree-of-freedom model 
employing Quaternion Algebra is discussed.

3.1.1  Two‑degree‑of‑freedom model

As an example, the two-degree-of-freedom system 
shown in Fig. 2 is employed. In this system the rota-
tion axes for the links ( v1 and v2 ) are parallel to the Z 
axis and can be represented by the set:

which generates a quaternion for every rotation 
axis ( v1 and v2 ), as follows:

(17)v1 =0i + 0j + 1k,

(18)v2 =0i + 0j + 1k

The equation that initializes the position of the links 
in quaternion form is obtained when all the angles are 
initialized (in this case at zero value):

By assembling equations (20) to (22), the forward 
kinematics of the model implementing quaternions is 
given by

As can be seen in (23), to obtain the model forward 
kinematics, each link is associated with the quaterni-
ons that represent the axes of rotation which affect it 
(sum of previous movements), and ultimately, only 
the corresponding quaternion products are made to 
obtain a vector representation of the form

3.2  Inverse position kinematics

The gradient descent represents a standard parameter 
update rule in many areas of engineering [17], which 
consists of finding a set of parameters that minimizes 
a required cost function. This method can be applied 
to find the inverse position kinematics as the follow-
ing update rule:

where �⃗𝜃(h) ∈ ℝ
n is the vector of angles associated to 

the kinematic chain at the current moment h, �⃗𝜃(h − 1) 
∈ ℝ

n is the vector at an earlier time, � is the learn-
ing rate, and �L

��
 is the gradient of the error function 

L ∈ ℝ
n with respect to �:

(19)q1 = cos
�1

2
+ sin

�1

2
k,

(20)q2 = cos
�2

2
+ sin

�2

2
k.

(21)p1 =0 + l1i + 0j + 0k,

(22)p2 =0 + l2i + 0j + 0k.

(23)pf = q1p1q̃1 + q1q2p2q̃2q̃1.

(24)pf =

⎡⎢⎢⎢⎣

0

l1 cos(�1) + l2 cos(�1 + �2)

l1 sin(�1) + l2 sin(�1 + �2)

0

⎤⎥⎥⎥⎦

�
1 i j k

�
.

(25)�⃗𝜃(h) = �⃗𝜃(h − 1) − 𝛼
𝜕L(h − 1)

𝜕�⃗𝜃

,

Fig. 2  Two-degree-of-freedom robot model, with two joints; 
v
1
 , and v

2
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where L is proposed according to the linear regres-
sion criterion [18], so it remains:

with pd and pf  the desired point and position of 
the end-effector manipulator, respectively (in 
quaternions).

By decomposing the error function along every 
axis the equation (27) can be rewritten as

and since q2 = qq̃,

thus, (26) can be described as

where, by factorizing the right matrix, the following 
equation can be obtained:

It can be clearly seen that the right matrix of (32) is 
the Jacobian matrix of the system.

(26)𝜕L

𝜕�⃗𝜃

=

⎡
⎢⎢⎢⎢⎢⎣

𝜕L

𝜕𝜃1
𝜕L

𝜕𝜃2

⋮
𝜕L

𝜕𝜃n

⎤
⎥⎥⎥⎥⎥⎦

T

,

(27)L =
(pd − pf )

2

2
, {pd, pf } ∈ ℍ,

(28)L =
[(pdx − pfx)i + (pdy − pfy)j + (pdz − pfz)k]

2

2
,

(29)L =
(pdx − pfx)

2 + (pdy − pfy)
2 + (pdz − pfz)

2

2
,

(30)L =
L
2

x

2
+

L
2

y

2
+

L
2

z

2
;

(31)

⎡⎢⎢⎢⎢⎢⎢⎣

�L

��1
�L

��2
�L

��3

⋮
�L

��n

⎤⎥⎥⎥⎥⎥⎥⎦

T

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Lx

�pfx

��1

+ Ly

�pfy

��1

+ Lz

�pfz

��1

Lx

�pfx

��2

+ Ly

�pfy

��2

+ Lz

�pfz

��2

Lx

�pfx

��3

+ Ly

�pfy

��3

+ Lz

�pfz

��3

⋮

Lx

�pfx

��n

+ Ly

�pfy

��n

+ Lz

�pfz

��n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(32)
𝜕L

𝜕�⃗𝜃

= −[Lx Ly Lz]

⎡
⎢⎢⎢⎢⎣

𝜕Pf x

𝜕𝜃1

𝜕Pf x

𝜕𝜃2

⋯
𝜕Pf x

𝜕𝜃n
𝜕Pf y

𝜕𝜃1

𝜕Pf y

𝜕𝜃2

⋯
𝜕Pf y

𝜕𝜃n
𝜕Pf z

𝜕𝜃1

𝜕Pf z

𝜕𝜃2

⋯
𝜕Pf z

𝜕𝜃n

⎤
⎥⎥⎥⎥⎦
.

According to equation (32), the gradient required 
to update the joint values using (25) is

Thus, equation (25) can be generalized to define an 
update rule to obtain the joint adjustment as

3.3  Inverse velocity kinematics

The task of inverse velocity kinematics is to deter-
mine the required joint velocity according to the 
desired position of the end-effector. This model is 
usually obtained by computing the inverse of the 
Jacobian matrix and multiplying it by the Euclidean 
velocity vector; if the Jacobian matrix is non-square, 
the pseudo-inverse must be employed [19, 20]. This 
section presents an alternate method for obtaining the 
inverse kinematics of velocity.

If the joint velocity vector �⃗�̇�(h) at sample time h 
(case in discrete time) is known to be

where �t is the sampling time. Thus, from equation 
(34),

If (36) is divided over the sampling time �t it holds 
that

thus, if � =
�

�t
 is proposed, the final equation to obtain 

the inverse kinematics of velocity can be described as

3.4  Two-degree-of-freedom planar robot example

Equation (34) can be employed to find the inverse 
kinematics of a two-degree-of-freedom robot manip-
ulator (Fig.  2). As mentioned previously, the main 
problem of calculating the inverse kinematics of a 

(33)
𝜕L

𝜕�⃗𝜃

= −LJ.

(34)�⃗𝜃(h) = �⃗𝜃(h − 1) + 𝛼LJ.

(35)�⃗
�̇�(h) =

�⃗𝜃(h) − �⃗𝜃(h − 1)

𝛥t
,

(36)�⃗𝜃(h) − �⃗𝜃(h − 1) = 𝛼LJ.

(37)
�⃗𝜃(h) − �⃗𝜃(h − 1)

𝛥t
=

𝛼LJ

𝛥t
,

(38)�⃗
�̇�(h) = 𝛽LJ.
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manipulator remains in the configuration of a kin-
ematic chain is not always unique (Fig. 3). To obtain 
the inverse kinematics, it is necessary to know the 
quaternion forward kinematics and subsequently 
derive them with respect to �1 and �2 . Thus, from (23) 
the jacobian results:

whose matrix representation (making the correspond-
ing quaternion products) can be represented as

where the error vector associated with the system is:

where pfx and pfy are the operational coordinates for 
x and y, respectively, and the points pdx and pdy , are 
the desired x and y coordinates for the end-effector. 
Finally, the joint update rule is obtained through (34) 
in matrix representation as:

where �1(h) and �2(h) are the new angles at the 
moment h, �1(h − 1) and �2(h − 1) represent the same 
angles at a previous moment, and subindices L and J 

(39)J =

[
q1p1q̃1 + q1q2p1q̃2q̃1

q1q2p1q̃2q̃1

]T
,

(40)

J =

[
−l1 sin(�1) − l2 sin(�1 + �2) − l2 sin(�1 + �2)

l1 cos(�1) + l2 cos(�1 + �2) l2 cos(�1 + �2)

]
,

(41)L =
[
pdx − pfx pdy − pfy

]
,

(42)
[
�1(h)

�2(h)

]T
=

[
�1(h − 1) + �(L1J11 + L2J21)

�2(h − 1) + �(L1J12 + L2J22)

]T
,

represent the elements of their respective vectors and 
matrices.

As a first experiment, the update rule (42) was 
employed to move the system described above to the 
desired end-effector position pd = [0.0292, 0.1267] , 
starting from the home position �(0) = [−100.0, 30.0] 
with manipulator dimensions l

1
= 0.1m and 

l
2
= 0.1m . Figure 4 shows the evolution of the manip-

ulator kinematics from its initial configuration (gray 
lines), and how it travels along the trajectory to reach 
the desired end-effector position (blue line), ending 
with the configuration that satisfies the conditions 
(black lines).

The behavior of the mean square error (seen in the 
right of Fig. 4) depends on the distance between the 
desired point and the end-effector position. As can 
be seen, the inverse kinematics using the gradient 
descent allows the end-effector to reach the desired 
point after 30 iterations with a step of � = 10 . The 
vector field of the error gradient concerning the vec-
tor of angles is also presented in Fig. 5. In addition to 
the error function’s curve level being superimposed, 
it can be observed that there are two minimum zones 
(in dark blue).

The two minimum zones are created due to the 
manipulator with the proposed architecture (two links 
and two degrees of freedom) having two possible con-
figurations for reaching the same point (which is col-
loquially known as elbow up and elbow down), where 
the vector field indicates that by employing the pro-
posed initial angles ( �1 = −100o and �2 = −30o ), one 
of the configurations where the manipulator reaches 
the desired point is �1 = 27.5416o and �2 = 98.9168o.

Fig. 3  Both robot configurations are shown (elbow up and 
elbow down) to reach a desired point Pf

Fig. 4  Evolution of the manipulator kinematics (left) and the 
mean square error (right)



1419Meccanica (2022) 57:1413–1428 

1 3
Vol.: (0123456789)

Figure  6 shows the evolution of the manipulator 
kinematics by staring from a different home position 
�(0) = [−50.0,−50.0] , and the same desired end-effec-
tor position ( pd = [0.0292, 0.1267] ). As can be seen, 
the desired point is reached through a different configu-
ration; this happens because the vector field carries the 
initial conditions to the closest solution (see Fig. 7), so 
the presented algorithm can obtain the solution with the 
configuration closest to its initial condition, as noted in 
the previous experiments.

4  Conformal geometric algebra algorithm 
extension

In this section, an extension of the previously pre-
sented algorithm is developed employing Confor-
mal Geometric Algebra, using screw rotors and the 
gradient descent algorithm to find the inverse posi-
tion kinematics for n-degree-of-freedom kinematic 
chains with revolute joints.

4.1  Forward kinematics

The forward kinematics for a serial robot arm of n 
joints (Fig. 8) can be represented by a succession of 
screw rotor’s operations as [21]

Fig. 5  Vector field of the error gradient

Fig. 6  Evolution of manipulator kinematics (left) and evolu-
tion of the mean square error (right)

Fig. 7  Vector field of the error gradient

Fig. 8  Forward kinematics of a kinematic chain employing 
screw rotors
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where : 

4.2  Inverse position kinematics

By considering pd and pf ∈ �4,1 as the desired, and 
the current end-effector position respectively, in Con-
formal Geometric Algebra the distance between both 
can be calculated through the squared root [9]:

where equivalently, for the Euclidean points 
pde, pfe ∈ �3,0 ∶

According to the error function (48), its partial deri-
vate over the end-effector position can be defined as:

and the partial derivates of the end-effector position 
over the joint angles as [21]

Thus, according to the chain rule the full gradient of 
the error function over the joint angles can be defined 
as:

(43)pf =

n∏
i=1

Mip0

n∏
i=1

M̃n−i+1

(44)Mi =e
−

�i

2
Li = cos

(
�i

2

)
− sin

(
�i

2

)
Li,

(45)Li =(ai − bi)Ie − e∞(ai ∧ bi)Ie,

(46)p0 =p0e +
1

2
p2
0e
e∞ + e0.

(47)d(pd, pf ) =
√

−2pd ⋅ pf ,

(48)

L(pd, pf ) = −2(pd ⋅ pf )

= pde ⋅ pfe − 2pde ⋅ pfe + p2
de

= (pde − pfe)
2,

(49)
�L

�pf
=

�

�pfe

(
1

2
(pde − pfe)

2

)
= −(pde − pfe),

(50)

𝜕pf

𝜕𝜃j

=
𝜕

𝜕𝜃j

n∏
i=1

Mip0

n∏
i=1

M̃n−i+1

= pf ⋅

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i = pf ⋅ L
�
j
.

where L′
j
 is the line Lj rotated by the previous joints in 

the kinematic chain;

By considering the previous gradient definition (51), 
and by employing the gradient descent algorithm, an 
optimization rule to get the robot configurations �i 
can be defined as

where

(51)
�L

��j

=
�L

�pf
⋅
�pf

��j

= −(pde − pfe) ⋅ pf ⋅ L
�
j
,

(52)L�
j
=

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

(53)
�i(h) = �i(h − 1) − �

�L(pd, pf )

��i(h)

= �i(h − 1) − �(pfe − pde) ⋅ pf ⋅ L
�
i
,

(54)pf =

n∏
i=1

Mip0

n∏
i=1

M̃n−i+1,

Fig. 9  Algorithm employed to solve the inverse position kin-
ematics from two to six joints kinematic chains
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and M̃ is the screw rotor conjugate of M, defined as

4.3  Algorithm implementation

To evaluate the algorithm different kinematics chains 
were employed to solve a proposed set of end-effector 
trajectories according the following scheme:

– As a first experiment, different 2D kinematic 
chains were employed to reach a set of end-effec-
tor positions, by considering different joint num-
bers.

– As a second experiment, the kinematic arm pre-
sented in Fig.  10 was employed to solve two 
end-effector trajectories: an inclined circle and a 

(55)L�
j
=

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i,

(56)M̃i = e
𝜃i

2
Li = cos

(
𝜃i

2

)
+ sin

(
𝜃i

2

)
Li.

lemniscate of Bernoulli with a length of m = 126 
points.

– According to the proposed update rule (53), the 
joint position was updated iteratively once the 
distance between the end-effector and every point 
(47) fell below the threshold L < 0.01 m2.

– For the second experiment, once a point on the 
trajectory is reached, the current joint positions 
are taken as a starting point for the next calcula-
tion.

Simulations were carried out using MATLAB by 
developing a new library [7]. These results are 
presented in Fig. 9 for the first experiment in a 2D 
space, and in Figs. 11 and 12 for the second experi-
ment using the  five-joint kinematic arm in a 3D 
space. For visual purposes in the second experi-
ment, an additional quadratic interpolation was 

Fig. 10  Use of a 5-DoF kinematic arm, where 
l
1
= l

2
= l

3
= 3.0 m. The required end-effector trajectories are 

presented on the bottom

Fig. 11  Kinematic arm behavior by employing the inverse 
kinematics solution for the inclined circle trajectory. Top: Joint 
trajectories calculated for the circular trajectory. Bottom: Arm 
behavior
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carried out from the home position to the first point 
solved on the trajectories.

  As can be seen in Fig. 9, the algorithm is capa-
ble of solving the position inverse kinematics for 
all cases, making it possible to reach the desired 
end-effector position iteratively. On the other hand, 
the algorithm is capable of calculating the required 
joint positions for both trajectories (Figs.  11, 12). 
For additional multimedia resources, consult [22].

5  Algorithm comparison

To compare the algorithms presented in Sects. 3 and 
4, the 3-DoF kinematic arm presented in Fig.  13 is 
employed, where l

1
= l

2
= 0.4 m. In the following 

subsections, the arm’s forward and inverse kinematics 
are solved using both algorithms in order to compare 
their performance.

5.1  Forward kinematics using quaternions

As seen in Sect. 3, the forward kinematics of the arm 
can be modeled by defining the set of quaternions

and links:

which produces the end-effector position in Euclidean 
space:

5.2  Forward kinematics using conformal algebra

In a similar way, the forward kinematics of the arm can 
be modeled by defining the set of screw rotors:

(57)q1 = cos
�1

2
+ sin

�1

2
j,

(58)q2 = cos
�2

2
+ sin

�2

2
k,

(59)q3 = cos
�2

2
+ sin

�2

2
k,

(60)p1 =0 + 0i + 0j + 0k,

(61)p2 =0 + l1i + 0j + 0k,

(62)p3 =0 + 0i − l2j + 0k,

(63)pf =

⎡⎢⎢⎣

cos(�1)(l1 cos(�2) + l2 sin(�2 + �3))

l1 sin(�2) − l2cos(�2 + �3)

sin(�1)(l1 cos(�2) + l2 sin(�2 + �3))

⎤⎥⎥⎦

Fig. 12  Kinematic arm behavior by employing the inverse 
kinematics solution for Bernoulli’s lemniscate trajectory. Top: 
Joint trajectories. Bottom: Arm behavior

Fig. 13  Three-degree-of-freedom kinematic chain model
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where:

5.3  Inverse position kinematics

Once the forward kinematics are calculated usingh 
both methods, the gradients presented in Eqs. (32) 
and (51) are used to move the end-effector to the 
desired position pdes = [0.2, 0.4, 0.2] using the same 
home position ( �(0) = [180.0, 0.0, 90.0] ), learning 
rate ( � = 0.5 ) and update rule (gradient descent).

(64)pf =

3∏
i=1

e
−

�i

2
Lip

0

3∏
i=1

e
�i

2
L
3−i+1 ,

(65)p0 =l1e1 − l2e2 +
l2
1
+ l2

2

2
ei + e0,

(66)L1 = − e13,

(67)L2 = − e12,

(68)L3 = − e12 + l1e24 + l2e25. These results are presented in Figs. 14 and 15 for 
both algorithms: The first shows the error compari-
son and joints evolution through the update itera-
tions, while the second some 3D positions of the arm 
behavior. As can be seen, both algorithms are able 
to displace the end-effector to the desired position, 
where the same joint values are reached by the algo-
rithms using a similar number of iterations.

As the Gradient Descent is a practical and easily 
implementable update rule for optimization, depend-
ing on the initial conditions and the existence of local 
minimums, reaching an optimal solution can be diffi-
cult, to afford this problem some improved algorithm 
variations have been developed [23, 24] . In practice 
any update rule is easily implementable, as the gradi-
ent expressions (Eqs. (32) and (51)) are determined 
analytically using both methods.

As a final test, the algorithms were employed to 
find the joints required to reach a set of points using 
the Adam [23] update rule ( � = 0.05 and recom-
mended hyperparameters), according the following 
procedure:

– A total set of 200 points distributed in a sphere 
of radius r = 0.2 m centered at [0.4, 0.6, 0.0] is 
employed.

– The kinematic arm presented in Fig. 13 with home 
position at �(0) = [0.0, 90.0, 0.0] was employed, 
by considering the dimensions l1 = l2 = 0.6 m.

– For every point, both algorithms were employed 
to find the joints required to reach them, starting 
from the home position.

– The algorithms were stopped once an error meas-
urement below the limit e < 0.005 m was reached, 
then an average of the iterations required to reach 
every point was calculated.

Fig. 14  Iterative solution of the inverse position kinematics 
using the proposed methods; Quaternion Algebra (Top), and 
Conformal Geometric Algebra (Bottom)

Fig. 15  Iterative solution of the inverse position kinematics 
using every algorithm. Left: Quaternion Algebra (QA) solu-
tion. Right: Conformal Geometric Algebra (CGA) solution
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These results are presented in Table  1, where both 
methods requires a similar number of iterations to 
find the solution. By comparing the methods:

– An advantage of the CGA algorithm is that the 
gradients are determined analytically by employ-
ing generic formulas (Eqs. (52) and (51)), while 
for the QA method, the forward kinematics 
expression must be determine first, and then deri-
vated according the particular configuration of the 
arm.

– An advantage of the QA algorithm is that the for-
ward kinematics can be easily transformed into 
Euclidean coordinates, while for the CGA method 
additional transformations must be developed to 
go from the Conformal to the Euclidean space.

6  Geomagic touch implementation

In this section, a Geomagic Touch haptic device is 
employed using the Quaternion Algebra algorithm 
presented in Sect. 3 to solve its inverse position kin-
ematics, following a proposed end-effector trajectory 
in a 3D space.

6.1  Forward kinematics

As a first step, the forward kinematics model of a 
Geomagic Touch haptic device is obtained using 
quaternions. The device is presented in Fig. 16 [25], 
where l1 = l2 = 0.135 m represent the length of its 
links, while a = 0.035 m, l4 = l�

1
+ a and l3 = 0.025 m 

represent auxiliary physical measurements to obtain 
the kinematic model.

Figure  17 shows the model’s free-body scheme, 
from which the respective forward kinematics equa-
tions will be generated. The first task is to propose the 
equation of each joint when all the angles are at the 

initial position (zero), which generates, in the quater-
nion notation, the following:

(69)p1 =0 + 0i + 0j + l1k,

Table 1  Average iterations required to find a solution  for the 
sphere of points, employing Adam [23] through the QA and 
CGA algorithms

Algorithm Required 
iterations

QA Algorithm 82.52
CGA Algorithm 64.41

Fig. 16  General structure of the Geomagic Touch haptic 
device [25]

Fig. 17  Free-body model of the Geomagic Touch haptic 
device, in the Y-X / Z plane (top figure) and in the XZ plane 
(bottom figure)
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whose rotation vectors v1 , v2 and v3 are:

where the rotation quaternions remain

In this particular case, the origin of the coordinates is 
out of phase with the origin of the kinematic chain, so 
the following quaternion is employed to correct this 
offset:

Finally, the equation that describes the movement of 
the end-effector ( pf  ) is obtained using

which is the same forward kinematics model used for 
the Geomagic Touch haptic device obtained in [25] 
using traditional techniques.

6.2  Inverse position kinematics

In this section, the inverse position kinematics of the 
Geomagic Touch haptic device are obtained using the 
algorithm presented in Sect. 3. The initial conditions 
of the angles of the haptic device are �(0) = [57.29, 
0,−57.29] (arbitrarily proposed); this configura-
tion results in the end-effector being located at the 

(70)p2 =0 + 0i − l2j + 0k,

(71)v1 =0i + 1j + 0k,

(72)v2 =1i + 0j + 0k,

(73)v3 =1i + 0j + 0k,

(74)q1 = cos
�1

2
+ sin

�1

2
j,

(75)q2 = cos
�2

2
+ sin

�2

2
i,

(76)q3 = cos
�3

2
+ sin

�3

2
i.

(77)qd = 0 + 0i + l3j − l4k.

(78)

pf = q1q2L1q̃2q̃1 + q1q2q3L2q̃3q̃2q̃1 + qd

=

⎡⎢⎢⎢⎣

0

− sin(�1)(l1 cos(�2) + l2 sin(�3))

l3 + l1 sin(�2) − l2 cos(�3)

−l4 + cos(�1)(l1 cos(�2) + l2 sin(�3))

⎤⎥⎥⎥⎦
,

initial position pf = [−0.0614, −0.2236,−0.1306] m 
in cartesian coordinates, with a desired position at 
pd = [0, 0, 0] m (also arbitrary). Figure  19-subfigure 
A) shows the three-dimensional vector field created 
by the gradient descent algorithm to minimize the 
error function. Moreover, it converges to a solution in 
which the forward kinematics leads the end-effector 
to reach the desired position.

Figure 18 shows the change of the angles through 
the first 30 iterations on the left, the Euclidean error 
(between the end-effector and the desired position) 
and; how it converges to zero on the right (red line). 
In summary, if the angles � = [−16.39, 56.51, 49.54] 
in (78) are evaluated; it can be seen that the end-effec-
tor reaches the desired coordinates ( pf = [0, 0, 0]).

6.3  PID control

In this last subsection, the quaternion-based algo-
rithm developed to calculate the forward and inverse 
kinematics is applied to control the position of a Geo-
magic Touch haptic device (Fig.  16) in real-time to 
demonstrate that, although the proposed method to 
find inverse kinematics is an iterative method, it can 
be easily applied to a real-time control system (in this 
case, a PID controller).

The control scheme is shown in Fig. 20, where the 
desired reference (SP) is a point in the operational 
space, which is compared with the coordinates of the 
end-effector, and the resulting error is employed to 
obtain the required configurations through the inverse 
kinematics algorithm. The PID controller gains are as 
follows: 3.1 for the proportional, 0.01 for the integral, 

Fig. 18  The change of the three angles through the first 30 
iterations is shown. On the right, it can be seen how the error 
converges to zero through these iterations
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and 0.3 for the derivative gain, respectively; these 
gains were calculated previously with the Ziegler-
Nichols tuning technique [26]. Figure 21 also shows 
the desired path in operational space (black line) as 
well as the path obtained from the Geomagic Touch 
haptic device (red line).

As can be seen, the proposed inverse kinemat-
ics algorithm works correctly, finding the required 
joint positions. In Fig.  22, the evolution of each 

Fig. 19  End effector path (blue line) and powertrain link con-
figuration (black lines)

Fig. 20  Control scheme for the PID controller applied to the 
Geomagic Touch haptic device

Fig. 21  Response of the Geomagic Touch controlled by the 
PID control

Fig. 22  Evolution of each angle (in radians) of the Geomagic 
Touch device (red line) and inverse kinematics proposed by the 
gradient descent algorithm (black line)



1427Meccanica (2022) 57:1413–1428 

1 3
Vol.: (0123456789)

angle through the duration of the experiment is 
shown separately, whereas in the same case for 
Fig.  21, the black lines represent the desired path 
created by the gradient descent technique, and the 
red lines are the direct reading from the Geomagic 
Touch device according the end-effector position. 
As can bee seen, the control scheme allows the 
haptic to follow the generated trajectory.

7  Conclusions

In this work, a set of algorithms based on gradi-
ent descent was proposed to solve the inverse posi-
tion kinematics for  n-degree-of-freedom kinematic 
chains with revolute joints. In a first approach 
employing Quaternion Algebra, the algorithm was 
capable of solving the inverse position and veloc-
ity kinematics for any degree-of-freedom model, 
allowing the end-effector to reach any desired point. 
Additionally, the algorithm was implemented in 
real-time, employing a Geomatic Touch Haptic 
device with a PID controller, proving to be robust 
and fast enough to be employed in real-time appli-
cations. Finally, an algorithm extension using 
Conformal Geometric Algebra was also proposed, 
developing update rules that can be easily applied 
to any n-degree-of-freedom kinematic chains with 
revolute joints for the inverse position kinematics 
solution.

In future work, the authors will extend the cur-
rent algorithms to consider kinematic chains with 
prismatic joints, as well as other joint configurations, 
employing Dual Quaternions and CGA Motors.
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