
Vol.: (0123456789)
1 3

Meccanica (2022) 57:1413–1428
https://doi.org/10.1007/s11012-022-01512-w

Iterative inverse kinematics for robot manipulators using
quaternion algebra and conformal geometric algebra

L. Lechuga‑Gutierrez · E. Macias‑Garcia ·
G. Martínez‑Terán · J. Zamora‑Esquivel ·
E. Bayro‑Corrochano

Received: 11 July 2021 / Accepted: 26 January 2022 / Published online: 13 April 2022
© Springer Nature B.V. 2022

experiments using a Geomagic Touch Haptic device
are carried out to demonstrate the effectiveness of the
proposed methods.

Keywords Quaternion algebra · Conformal
geometric algebra · Inverse kinematics · Robot
manipulators

1 Introduction

The problem of forward kinematics consists of deter-
mining the position and orientation of the end-effec-
tor on a kinematic chain according to a reference
frame. This problem is usually solved by employing
trigonometric formulas or by the Denavit-Hartenberg
algorithm for large kinematic chains. Although the
methods work correctly, there is a loss of geomet-
ric meaning as the rigid body transformations are
restricted to variations in generic rotations on the
pitch, raw, or roll axes, hindering representation of
an arbitrary rotation angle, as the number of degrees
of freedom of the kinematic chain is increased. Ham‑
ilton [1] manages to express orientations in three
dimensions by employing quaternions, making it pos-
sible to obtain a very intuitive geometric sense to rep-
resent orientations at any reference axis [2, 3].

Inverse kinematics is a technique that allows
determining the required movement of the joints in
a kinematic chain to ensure a desired end-effector
position. The inverse kinematics calculation is a

Abstract This paper presents a set of generalized
iterative algorithms to find the inverse position kine-
matics of n-degree-of-freedom kinematic chains with
revolute joints. As a first approach, an iterative algo-
rithm is developed using the gradient descent method
in Quaternion Algebra to find both the inverse posi-
tion and velocity kinematics solution in redundant
systems closest to their initial configuration. Addi-
tionally, a generalized extension of this approach is
developed employing screw rotors and Conformal
Geometric Algebra, where efficient update rules are
obtained to solve the problem of inverse position
kinematics. Simulation experiments using differ-
ent degree-of-freedom models as well as real-time

L. Lechuga-Gutierrez
Cuerpo Académico de Electrónica y Control, Universidad
Autónomia del Estado de Hidalgo, Mineral de la Reforma,
Hidalgo, Mexico
e-mail: lrlechuga@uaeh.edu.mx

E. Macias-Garcia · G. Martínez-Terán ·
E. Bayro-Corrochano (*)
Departamento de Ingeniería Eléctrica y Ciencias de la
Computación, Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional, Zapopan,
Jalisco, México
e-mail: eduardo.bayro@cinvestav.mx

G. Martínez-Terán
e-mail: gerardo.martinez@cinvestav.mx

J. Zamora-Esquivel
Intel Labs, Zapopan, Jalisco, Mexico
e-mail: julio.c.zamora.esquivel@intel.com

http://orcid.org/0000-0001-7790-1649
http://orcid.org/0000-0003-2571-9460
http://orcid.org/0000-0003-1617-7807
http://orcid.org/0000-0002-0226-0047
http://orcid.org/0000-0002-4738-3593
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-022-01512-w&domain=pdf

1414 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

complex problem that usually requires solving equa-
tions series whose solution is generally not unique
[4]. Traditional kinematic algorithms employ linear
transformations using matrices or tensors, which,
despite their simplicity, involve redundant coeffi-
cients, such as rotation matrices which require nine
coefficients to represent one rotation through an
axis. The formulation of robot kinematics within
the geometric algebra framework has shown attrac-
tive advantages, as the motion of 3D Euclidean
points can be represented by different entities such
as rotors and motors among others [5, 6]. Since geo-
metric algebra is a coordinate-free mathematical
system, it facilitates representing a robot configura-
tion by employing its geometric structure directly.

The main contributions of this paper can be
described as follows:

– A novel set of algorithms based on Quaternion
Algebra and Conformal Geometric Algebra is
proposed to solve the inverse position kinemat-
ics of n-degree-of-freedom kinematic chains with
revolute joints, by employing the gradient descent
algorithm and a proposed error function between
the end-effector and a desired position. For inverse
velocity kinematics, an iterative algorithm based
on Quaternion Algebra is also proposed.

– A Conformal Geometric Algebra library is devel-
oped to perform basic operations (such as sum,
substraction as well as wedge, Clifford, and dot
products) in MATLAB [7], employing geometric
entities.

The rest of the paper is organized as follows: In
Sect. 2, a general background is provided for under-
standing the basic concepts referred to in this work.
In Sect. 3, a set of algorithms using Quaternion Alge-
bra is developed to solve both the inverse position and
velocity kinematics for different n-degree-of-freedom
kinematic chains, while in Sect. 4, a generalized
extension using Conformal Geometric Algebra is also
developed for the inverse position kinematics prob-
lem. In Sect. 5 both proposed algorithms are com-
pared using different update rules and performance
test. In Sect. 6, real-time experiments are carried out
using a Geomagic Haptic Touch device with a PID
controller, employing the algorithms described in
Sect. 2. Finally, in Sect. 7, the conclusions and future
work of the present paper are presented.

2 Preliminaries

2.1 Quaternion algebra

Quaternion Algebra ℍ was invented by W. Hamilton in
1843 [8] while attempting to find an algebraic system
which would work for the ℝ4 space.

The current formalism of vector algebra was sim-
ply extracted from the quaternion product [9] of two
vectors by Gibbs in 1901 . Unit quaternions provide
a mathematical notation to represent orientations and
rotations of objects in three dimensions. Compared to
rotation matrices, they are more efficient and numeri-
cally stable. The quaternions are useful in robotics
and navigation, among other applications [10–12]. A
quaternion can be expressed as the following set:

where i, j, k are called the main imaginary, which
obeys the Hamilton’s rules

2.2 Rotations employing quaternions

One of the most prominent applications for quater-
nions remains their suitability for rotating vectors
through an arbitrary axis [13]. A vector � = [x, y, z]
can be represented as a quaternion v ∈ ℍ through the
following transformation:

while a rotation of magnitude � through a unitary axis
� can be represented by the following quaternion:

or likewise by Euler’s formula:

Then, a rotation of the vector v through an axis � with
� magnitude is given by the quaternion product:

where qpq̃ represents the quaternion multiplication
and q̃ refers to the following quaternion conjugate:

(1)
ℍ = {a + bi + cj + dk ∶ a, b, c, d ∈ ℝ} ⊂ ℂ

2
⊂ ℝ

4,

(2)i2 = j2 = k2 = ijk = −1.

(3)v = 1 + xi + yj + zk,

(4)q = cos
�

2
+ sin

�

2
�,

(5)e
±

�

2
� = cos

�

2
± sin

�

2
�.

(6)v� = qvq̃,

1415Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

A mathematical framework derived from Quaternion
Algebra, known as Dual-Quaternion Algebra can
be employed to obtain the forward kinematics of a
manipulator with prismatic elements [14].

2.3 Conformal geometric algebra

Conformal Geometric Algebra �4,1 is an algebra that
employs the sphere as a basis element. Entities are
represented in this algebra through five basis ei with
the following properties:

where e0 is called the point at origin, and e∞ the point
at infinity. A Euclidean point pe ∈ �3 can be repre-
sented as a conformal point p ∈ �4,1 through the fol-
lowing transformation :

2.4 Screw rotors

A screw rotor can be defined as an entity M ∈ �4,1 of
the following form:

where L ∈ �4,1 is a geometric entity called line,
which is given by a set of two Euclidean vectors
a, b ∈ �3 as :

where Ie = e1e2e3 is denominated the pseudoscalar,
and the operator ∧ the wedge product. Given a con-
formal point p ∈ �4,1 , a rotation of �∕2 around a line
L can be calculated through the following transforma-
tion (Fig. 1) :

(7)q̃ = cos
�

2
− sin

�

2
�.

(8)e2
i
=1, i ∈ {1, 2, 3, 4},

(9)e2
5
= − 1,

(10)e0 =
1

2
(e4 − e5), e∞ = e4 + e5,

(11)p = pe +
1

2
p2
e
e∞ + e0.

(12)M = cos

(
�

2

)
− sin

(
�

2

)
L = e

−
�

2
L
,

(13)L = (a − b)Ie − e∞(a ∧ b)Ie,

where M̃ ∈ �4,1 is the screw rotor conjugate.

2.5 Gradient descent algorithm

The gradient of a multidimensional function f(x)
with x = [x1, ..., xd] ∈ ℝ

d (where d is the number of
dimensions), represents how the function varies with
respect to every one of its d dimensions. In this way,
the gradient gx1 expresses how the function f(x) varies
with respect to x1 [15, 16]. Said gradient is appropri-
ately defined as

The gradient descent algorithm seeks the minimum
f ∗ = f (x∗) of the function (whether it is local or not)
through the following update rule

where x1(h − 1) is the previous value of the variable
x1 in the function f(x) and x1(h) is the next value of
x1 . By applying this update rule, the function f(x)
decreases iteratively once a minimum is reached.

3 Forward and inverse kinematics using
quaternion algebra

In robotics, kinematics is the study of operational
coordinates or articular movements in robots. There
are two types of kinematics: inverse kinematics and

(14)p� = MpM̃ = e
−

𝜃

2
L
pe

𝜃

2
L
,

(15)gx1 =
�f (x)

�x1
.

(16)x1(h) = x1(h − 1) − �
�f (x)

�x1
,

Fig. 1 Rotation of a conformal point employing screw rotors

1416 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

forward kinematics. In this section, a generalized
algorithm based on Quaternion Algebra is proposed
to solve the inverse position and velocity kinematics
of revolute-based kinematic chains.

3.1 Forward kinematics

Forward kinematics is the technique employed to
compute the operating coordinates of every part on
articulated structures, using the configurations asso-
ciated with each link. As a mathematical framework,
Quaternion Algebra offers important advantages over
matrices, as it does not present problems such as
matrix indeterminacy (e.g, the Gimbal Lock [13]).
As an introduction for subsequent sections, the for-
ward kinematics of a two-degree-of-freedom model
employing Quaternion Algebra is discussed.

3.1.1 Two‑degree‑of‑freedom model

As an example, the two-degree-of-freedom system
shown in Fig. 2 is employed. In this system the rota-
tion axes for the links (v1 and v2) are parallel to the Z
axis and can be represented by the set:

which generates a quaternion for every rotation
axis (v1 and v2), as follows:

(17)v1 =0i + 0j + 1k,

(18)v2 =0i + 0j + 1k

The equation that initializes the position of the links
in quaternion form is obtained when all the angles are
initialized (in this case at zero value):

By assembling equations (20) to (22), the forward
kinematics of the model implementing quaternions is
given by

As can be seen in (23), to obtain the model forward
kinematics, each link is associated with the quaterni-
ons that represent the axes of rotation which affect it
(sum of previous movements), and ultimately, only
the corresponding quaternion products are made to
obtain a vector representation of the form

3.2 Inverse position kinematics

The gradient descent represents a standard parameter
update rule in many areas of engineering [17], which
consists of finding a set of parameters that minimizes
a required cost function. This method can be applied
to find the inverse position kinematics as the follow-
ing update rule:

where �⃗𝜃(h) ∈ ℝ
n is the vector of angles associated to

the kinematic chain at the current moment h, �⃗𝜃(h − 1)
∈ ℝ

n is the vector at an earlier time, � is the learn-
ing rate, and �L

��
 is the gradient of the error function

L ∈ ℝ
n with respect to �:

(19)q1 = cos
�1

2
+ sin

�1

2
k,

(20)q2 = cos
�2

2
+ sin

�2

2
k.

(21)p1 =0 + l1i + 0j + 0k,

(22)p2 =0 + l2i + 0j + 0k.

(23)pf = q1p1q̃1 + q1q2p2q̃2q̃1.

(24)pf =

⎡⎢⎢⎢⎣

0

l1 cos(�1) + l2 cos(�1 + �2)

l1 sin(�1) + l2 sin(�1 + �2)

0

⎤⎥⎥⎥⎦

�
1 i j k

�
.

(25)�⃗𝜃(h) = �⃗𝜃(h − 1) − 𝛼
𝜕L(h − 1)

𝜕�⃗𝜃

,

Fig. 2 Two-degree-of-freedom robot model, with two joints;
v
1
 , and v

2

1417Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

where L is proposed according to the linear regres-
sion criterion [18], so it remains:

with pd and pf the desired point and position of
the end-effector manipulator, respectively (in
quaternions).

By decomposing the error function along every
axis the equation (27) can be rewritten as

and since q2 = qq̃,

thus, (26) can be described as

where, by factorizing the right matrix, the following
equation can be obtained:

It can be clearly seen that the right matrix of (32) is
the Jacobian matrix of the system.

(26)𝜕L

𝜕�⃗𝜃

=

⎡
⎢⎢⎢⎢⎢⎣

𝜕L

𝜕𝜃1
𝜕L

𝜕𝜃2

⋮
𝜕L

𝜕𝜃n

⎤
⎥⎥⎥⎥⎥⎦

T

,

(27)L =
(pd − pf)

2

2
, {pd, pf } ∈ ℍ,

(28)L =
[(pdx − pfx)i + (pdy − pfy)j + (pdz − pfz)k]

2

2
,

(29)L =
(pdx − pfx)

2 + (pdy − pfy)
2 + (pdz − pfz)

2

2
,

(30)L =
L
2

x

2
+

L
2

y

2
+

L
2

z

2
;

(31)

⎡⎢⎢⎢⎢⎢⎢⎣

�L

��1
�L

��2
�L

��3

⋮
�L

��n

⎤⎥⎥⎥⎥⎥⎥⎦

T

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Lx

�pfx

��1

+ Ly

�pfy

��1

+ Lz

�pfz

��1

Lx

�pfx

��2

+ Ly

�pfy

��2

+ Lz

�pfz

��2

Lx

�pfx

��3

+ Ly

�pfy

��3

+ Lz

�pfz

��3

⋮

Lx

�pfx

��n

+ Ly

�pfy

��n

+ Lz

�pfz

��n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(32)
𝜕L

𝜕�⃗𝜃

= −[Lx Ly Lz]

⎡
⎢⎢⎢⎢⎣

𝜕Pf x

𝜕𝜃1

𝜕Pf x

𝜕𝜃2

⋯
𝜕Pf x

𝜕𝜃n
𝜕Pf y

𝜕𝜃1

𝜕Pf y

𝜕𝜃2

⋯
𝜕Pf y

𝜕𝜃n
𝜕Pf z

𝜕𝜃1

𝜕Pf z

𝜕𝜃2

⋯
𝜕Pf z

𝜕𝜃n

⎤
⎥⎥⎥⎥⎦
.

According to equation (32), the gradient required
to update the joint values using (25) is

Thus, equation (25) can be generalized to define an
update rule to obtain the joint adjustment as

3.3 Inverse velocity kinematics

The task of inverse velocity kinematics is to deter-
mine the required joint velocity according to the
desired position of the end-effector. This model is
usually obtained by computing the inverse of the
Jacobian matrix and multiplying it by the Euclidean
velocity vector; if the Jacobian matrix is non-square,
the pseudo-inverse must be employed [19, 20]. This
section presents an alternate method for obtaining the
inverse kinematics of velocity.

If the joint velocity vector �⃗�̇�(h) at sample time h
(case in discrete time) is known to be

where �t is the sampling time. Thus, from equation
(34),

If (36) is divided over the sampling time �t it holds
that

thus, if � =
�

�t
 is proposed, the final equation to obtain

the inverse kinematics of velocity can be described as

3.4 Two-degree-of-freedom planar robot example

Equation (34) can be employed to find the inverse
kinematics of a two-degree-of-freedom robot manip-
ulator (Fig. 2). As mentioned previously, the main
problem of calculating the inverse kinematics of a

(33)
𝜕L

𝜕�⃗𝜃

= −LJ.

(34)�⃗𝜃(h) = �⃗𝜃(h − 1) + 𝛼LJ.

(35)�⃗
�̇�(h) =

�⃗𝜃(h) − �⃗𝜃(h − 1)

𝛥t
,

(36)�⃗𝜃(h) − �⃗𝜃(h − 1) = 𝛼LJ.

(37)
�⃗𝜃(h) − �⃗𝜃(h − 1)

𝛥t
=

𝛼LJ

𝛥t
,

(38)�⃗
�̇�(h) = 𝛽LJ.

1418 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

manipulator remains in the configuration of a kin-
ematic chain is not always unique (Fig. 3). To obtain
the inverse kinematics, it is necessary to know the
quaternion forward kinematics and subsequently
derive them with respect to �1 and �2 . Thus, from (23)
the jacobian results:

whose matrix representation (making the correspond-
ing quaternion products) can be represented as

where the error vector associated with the system is:

where pfx and pfy are the operational coordinates for
x and y, respectively, and the points pdx and pdy , are
the desired x and y coordinates for the end-effector.
Finally, the joint update rule is obtained through (34)
in matrix representation as:

where �1(h) and �2(h) are the new angles at the
moment h, �1(h − 1) and �2(h − 1) represent the same
angles at a previous moment, and subindices L and J

(39)J =

[
q1p1q̃1 + q1q2p1q̃2q̃1

q1q2p1q̃2q̃1

]T
,

(40)

J =

[
−l1 sin(�1) − l2 sin(�1 + �2) − l2 sin(�1 + �2)

l1 cos(�1) + l2 cos(�1 + �2) l2 cos(�1 + �2)

]
,

(41)L =
[
pdx − pfx pdy − pfy

]
,

(42)
[
�1(h)

�2(h)

]T
=

[
�1(h − 1) + �(L1J11 + L2J21)

�2(h − 1) + �(L1J12 + L2J22)

]T
,

represent the elements of their respective vectors and
matrices.

As a first experiment, the update rule (42) was
employed to move the system described above to the
desired end-effector position pd = [0.0292, 0.1267] ,
starting from the home position �(0) = [−100.0, 30.0]
with manipulator dimensions l

1
= 0.1m and

l
2
= 0.1m . Figure 4 shows the evolution of the manip-

ulator kinematics from its initial configuration (gray
lines), and how it travels along the trajectory to reach
the desired end-effector position (blue line), ending
with the configuration that satisfies the conditions
(black lines).

The behavior of the mean square error (seen in the
right of Fig. 4) depends on the distance between the
desired point and the end-effector position. As can
be seen, the inverse kinematics using the gradient
descent allows the end-effector to reach the desired
point after 30 iterations with a step of � = 10 . The
vector field of the error gradient concerning the vec-
tor of angles is also presented in Fig. 5. In addition to
the error function’s curve level being superimposed,
it can be observed that there are two minimum zones
(in dark blue).

The two minimum zones are created due to the
manipulator with the proposed architecture (two links
and two degrees of freedom) having two possible con-
figurations for reaching the same point (which is col-
loquially known as elbow up and elbow down), where
the vector field indicates that by employing the pro-
posed initial angles (�1 = −100o and �2 = −30o), one
of the configurations where the manipulator reaches
the desired point is �1 = 27.5416o and �2 = 98.9168o.

Fig. 3 Both robot configurations are shown (elbow up and
elbow down) to reach a desired point Pf

Fig. 4 Evolution of the manipulator kinematics (left) and the
mean square error (right)

1419Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

Figure 6 shows the evolution of the manipulator
kinematics by staring from a different home position
�(0) = [−50.0,−50.0] , and the same desired end-effec-
tor position (pd = [0.0292, 0.1267]). As can be seen,
the desired point is reached through a different configu-
ration; this happens because the vector field carries the
initial conditions to the closest solution (see Fig. 7), so
the presented algorithm can obtain the solution with the
configuration closest to its initial condition, as noted in
the previous experiments.

4 Conformal geometric algebra algorithm
extension

In this section, an extension of the previously pre-
sented algorithm is developed employing Confor-
mal Geometric Algebra, using screw rotors and the
gradient descent algorithm to find the inverse posi-
tion kinematics for n-degree-of-freedom kinematic
chains with revolute joints.

4.1 Forward kinematics

The forward kinematics for a serial robot arm of n
joints (Fig. 8) can be represented by a succession of
screw rotor’s operations as [21]

Fig. 5 Vector field of the error gradient

Fig. 6 Evolution of manipulator kinematics (left) and evolu-
tion of the mean square error (right)

Fig. 7 Vector field of the error gradient

Fig. 8 Forward kinematics of a kinematic chain employing
screw rotors

1420 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

where :

4.2 Inverse position kinematics

By considering pd and pf ∈ �4,1 as the desired, and
the current end-effector position respectively, in Con-
formal Geometric Algebra the distance between both
can be calculated through the squared root [9]:

where equivalently, for the Euclidean points
pde, pfe ∈ �3,0 ∶

According to the error function (48), its partial deri-
vate over the end-effector position can be defined as:

and the partial derivates of the end-effector position
over the joint angles as [21]

Thus, according to the chain rule the full gradient of
the error function over the joint angles can be defined
as:

(43)pf =

n∏
i=1

Mip0

n∏
i=1

M̃n−i+1

(44)Mi =e
−

�i

2
Li = cos

(
�i

2

)
− sin

(
�i

2

)
Li,

(45)Li =(ai − bi)Ie − e∞(ai ∧ bi)Ie,

(46)p0 =p0e +
1

2
p2
0e
e∞ + e0.

(47)d(pd, pf) =
√

−2pd ⋅ pf ,

(48)

L(pd, pf) = −2(pd ⋅ pf)

= pde ⋅ pfe − 2pde ⋅ pfe + p2
de

= (pde − pfe)
2,

(49)
�L

�pf
=

�

�pfe

(
1

2
(pde − pfe)

2

)
= −(pde − pfe),

(50)

𝜕pf

𝜕𝜃j

=
𝜕

𝜕𝜃j

n∏
i=1

Mip0

n∏
i=1

M̃n−i+1

= pf ⋅

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i = pf ⋅ L
�
j
.

where L′
j
 is the line Lj rotated by the previous joints in

the kinematic chain;

By considering the previous gradient definition (51),
and by employing the gradient descent algorithm, an
optimization rule to get the robot configurations �i
can be defined as

where

(51)
�L

��j

=
�L

�pf
⋅
�pf

��j

= −(pde − pfe) ⋅ pf ⋅ L
�
j
,

(52)L�
j
=

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i

(53)
�i(h) = �i(h − 1) − �

�L(pd, pf)

��i(h)

= �i(h − 1) − �(pfe − pde) ⋅ pf ⋅ L
�
i
,

(54)pf =

n∏
i=1

Mip0

n∏
i=1

M̃n−i+1,

Fig. 9 Algorithm employed to solve the inverse position kin-
ematics from two to six joints kinematic chains

1421Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

and M̃ is the screw rotor conjugate of M, defined as

4.3 Algorithm implementation

To evaluate the algorithm different kinematics chains
were employed to solve a proposed set of end-effector
trajectories according the following scheme:

– As a first experiment, different 2D kinematic
chains were employed to reach a set of end-effec-
tor positions, by considering different joint num-
bers.

– As a second experiment, the kinematic arm pre-
sented in Fig. 10 was employed to solve two
end-effector trajectories: an inclined circle and a

(55)L�
j
=

j−1∏
i=1

MiLj

j−1∏
i=1

M̃j−i,

(56)M̃i = e
𝜃i

2
Li = cos

(
𝜃i

2

)
+ sin

(
𝜃i

2

)
Li.

lemniscate of Bernoulli with a length of m = 126
points.

– According to the proposed update rule (53), the
joint position was updated iteratively once the
distance between the end-effector and every point
(47) fell below the threshold L < 0.01 m2.

– For the second experiment, once a point on the
trajectory is reached, the current joint positions
are taken as a starting point for the next calcula-
tion.

Simulations were carried out using MATLAB by
developing a new library [7]. These results are
presented in Fig. 9 for the first experiment in a 2D
space, and in Figs. 11 and 12 for the second experi-
ment using the five-joint kinematic arm in a 3D
space. For visual purposes in the second experi-
ment, an additional quadratic interpolation was

Fig. 10 Use of a 5-DoF kinematic arm, where
l
1
= l

2
= l

3
= 3.0 m. The required end-effector trajectories are

presented on the bottom

Fig. 11 Kinematic arm behavior by employing the inverse
kinematics solution for the inclined circle trajectory. Top: Joint
trajectories calculated for the circular trajectory. Bottom: Arm
behavior

1422 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

carried out from the home position to the first point
solved on the trajectories.

 As can be seen in Fig. 9, the algorithm is capa-
ble of solving the position inverse kinematics for
all cases, making it possible to reach the desired
end-effector position iteratively. On the other hand,
the algorithm is capable of calculating the required
joint positions for both trajectories (Figs. 11, 12).
For additional multimedia resources, consult [22].

5 Algorithm comparison

To compare the algorithms presented in Sects. 3 and
4, the 3-DoF kinematic arm presented in Fig. 13 is
employed, where l

1
= l

2
= 0.4 m. In the following

subsections, the arm’s forward and inverse kinematics
are solved using both algorithms in order to compare
their performance.

5.1 Forward kinematics using quaternions

As seen in Sect. 3, the forward kinematics of the arm
can be modeled by defining the set of quaternions

and links:

which produces the end-effector position in Euclidean
space:

5.2 Forward kinematics using conformal algebra

In a similar way, the forward kinematics of the arm can
be modeled by defining the set of screw rotors:

(57)q1 = cos
�1

2
+ sin

�1

2
j,

(58)q2 = cos
�2

2
+ sin

�2

2
k,

(59)q3 = cos
�2

2
+ sin

�2

2
k,

(60)p1 =0 + 0i + 0j + 0k,

(61)p2 =0 + l1i + 0j + 0k,

(62)p3 =0 + 0i − l2j + 0k,

(63)pf =

⎡⎢⎢⎣

cos(�1)(l1 cos(�2) + l2 sin(�2 + �3))

l1 sin(�2) − l2cos(�2 + �3)

sin(�1)(l1 cos(�2) + l2 sin(�2 + �3))

⎤⎥⎥⎦

Fig. 12 Kinematic arm behavior by employing the inverse
kinematics solution for Bernoulli’s lemniscate trajectory. Top:
Joint trajectories. Bottom: Arm behavior

Fig. 13 Three-degree-of-freedom kinematic chain model

1423Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

where:

5.3 Inverse position kinematics

Once the forward kinematics are calculated usingh
both methods, the gradients presented in Eqs. (32)
and (51) are used to move the end-effector to the
desired position pdes = [0.2, 0.4, 0.2] using the same
home position (�(0) = [180.0, 0.0, 90.0]), learning
rate (� = 0.5) and update rule (gradient descent).

(64)pf =

3∏
i=1

e
−

�i

2
Lip

0

3∏
i=1

e
�i

2
L
3−i+1 ,

(65)p0 =l1e1 − l2e2 +
l2
1
+ l2

2

2
ei + e0,

(66)L1 = − e13,

(67)L2 = − e12,

(68)L3 = − e12 + l1e24 + l2e25. These results are presented in Figs. 14 and 15 for
both algorithms: The first shows the error compari-
son and joints evolution through the update itera-
tions, while the second some 3D positions of the arm
behavior. As can be seen, both algorithms are able
to displace the end-effector to the desired position,
where the same joint values are reached by the algo-
rithms using a similar number of iterations.

As the Gradient Descent is a practical and easily
implementable update rule for optimization, depend-
ing on the initial conditions and the existence of local
minimums, reaching an optimal solution can be diffi-
cult, to afford this problem some improved algorithm
variations have been developed [23, 24] . In practice
any update rule is easily implementable, as the gradi-
ent expressions (Eqs. (32) and (51)) are determined
analytically using both methods.

As a final test, the algorithms were employed to
find the joints required to reach a set of points using
the Adam [23] update rule (� = 0.05 and recom-
mended hyperparameters), according the following
procedure:

– A total set of 200 points distributed in a sphere
of radius r = 0.2 m centered at [0.4, 0.6, 0.0] is
employed.

– The kinematic arm presented in Fig. 13 with home
position at �(0) = [0.0, 90.0, 0.0] was employed,
by considering the dimensions l1 = l2 = 0.6 m.

– For every point, both algorithms were employed
to find the joints required to reach them, starting
from the home position.

– The algorithms were stopped once an error meas-
urement below the limit e < 0.005 m was reached,
then an average of the iterations required to reach
every point was calculated.

Fig. 14 Iterative solution of the inverse position kinematics
using the proposed methods; Quaternion Algebra (Top), and
Conformal Geometric Algebra (Bottom)

Fig. 15 Iterative solution of the inverse position kinematics
using every algorithm. Left: Quaternion Algebra (QA) solu-
tion. Right: Conformal Geometric Algebra (CGA) solution

1424 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

These results are presented in Table 1, where both
methods requires a similar number of iterations to
find the solution. By comparing the methods:

– An advantage of the CGA algorithm is that the
gradients are determined analytically by employ-
ing generic formulas (Eqs. (52) and (51)), while
for the QA method, the forward kinematics
expression must be determine first, and then deri-
vated according the particular configuration of the
arm.

– An advantage of the QA algorithm is that the for-
ward kinematics can be easily transformed into
Euclidean coordinates, while for the CGA method
additional transformations must be developed to
go from the Conformal to the Euclidean space.

6 Geomagic touch implementation

In this section, a Geomagic Touch haptic device is
employed using the Quaternion Algebra algorithm
presented in Sect. 3 to solve its inverse position kin-
ematics, following a proposed end-effector trajectory
in a 3D space.

6.1 Forward kinematics

As a first step, the forward kinematics model of a
Geomagic Touch haptic device is obtained using
quaternions. The device is presented in Fig. 16 [25],
where l1 = l2 = 0.135 m represent the length of its
links, while a = 0.035 m, l4 = l�

1
+ a and l3 = 0.025 m

represent auxiliary physical measurements to obtain
the kinematic model.

Figure 17 shows the model’s free-body scheme,
from which the respective forward kinematics equa-
tions will be generated. The first task is to propose the
equation of each joint when all the angles are at the

initial position (zero), which generates, in the quater-
nion notation, the following:

(69)p1 =0 + 0i + 0j + l1k,

Table 1 Average iterations required to find a solution for the
sphere of points, employing Adam [23] through the QA and
CGA algorithms

Algorithm Required
iterations

QA Algorithm 82.52
CGA Algorithm 64.41

Fig. 16 General structure of the Geomagic Touch haptic
device [25]

Fig. 17 Free-body model of the Geomagic Touch haptic
device, in the Y-X / Z plane (top figure) and in the XZ plane
(bottom figure)

1425Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

whose rotation vectors v1 , v2 and v3 are:

where the rotation quaternions remain

In this particular case, the origin of the coordinates is
out of phase with the origin of the kinematic chain, so
the following quaternion is employed to correct this
offset:

Finally, the equation that describes the movement of
the end-effector (pf) is obtained using

which is the same forward kinematics model used for
the Geomagic Touch haptic device obtained in [25]
using traditional techniques.

6.2 Inverse position kinematics

In this section, the inverse position kinematics of the
Geomagic Touch haptic device are obtained using the
algorithm presented in Sect. 3. The initial conditions
of the angles of the haptic device are �(0) = [57.29,
0,−57.29] (arbitrarily proposed); this configura-
tion results in the end-effector being located at the

(70)p2 =0 + 0i − l2j + 0k,

(71)v1 =0i + 1j + 0k,

(72)v2 =1i + 0j + 0k,

(73)v3 =1i + 0j + 0k,

(74)q1 = cos
�1

2
+ sin

�1

2
j,

(75)q2 = cos
�2

2
+ sin

�2

2
i,

(76)q3 = cos
�3

2
+ sin

�3

2
i.

(77)qd = 0 + 0i + l3j − l4k.

(78)

pf = q1q2L1q̃2q̃1 + q1q2q3L2q̃3q̃2q̃1 + qd

=

⎡⎢⎢⎢⎣

0

− sin(�1)(l1 cos(�2) + l2 sin(�3))

l3 + l1 sin(�2) − l2 cos(�3)

−l4 + cos(�1)(l1 cos(�2) + l2 sin(�3))

⎤⎥⎥⎥⎦
,

initial position pf = [−0.0614, −0.2236,−0.1306] m
in cartesian coordinates, with a desired position at
pd = [0, 0, 0] m (also arbitrary). Figure 19-subfigure
A) shows the three-dimensional vector field created
by the gradient descent algorithm to minimize the
error function. Moreover, it converges to a solution in
which the forward kinematics leads the end-effector
to reach the desired position.

Figure 18 shows the change of the angles through
the first 30 iterations on the left, the Euclidean error
(between the end-effector and the desired position)
and; how it converges to zero on the right (red line).
In summary, if the angles � = [−16.39, 56.51, 49.54]
in (78) are evaluated; it can be seen that the end-effec-
tor reaches the desired coordinates (pf = [0, 0, 0]).

6.3 PID control

In this last subsection, the quaternion-based algo-
rithm developed to calculate the forward and inverse
kinematics is applied to control the position of a Geo-
magic Touch haptic device (Fig. 16) in real-time to
demonstrate that, although the proposed method to
find inverse kinematics is an iterative method, it can
be easily applied to a real-time control system (in this
case, a PID controller).

The control scheme is shown in Fig. 20, where the
desired reference (SP) is a point in the operational
space, which is compared with the coordinates of the
end-effector, and the resulting error is employed to
obtain the required configurations through the inverse
kinematics algorithm. The PID controller gains are as
follows: 3.1 for the proportional, 0.01 for the integral,

Fig. 18 The change of the three angles through the first 30
iterations is shown. On the right, it can be seen how the error
converges to zero through these iterations

1426 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

and 0.3 for the derivative gain, respectively; these
gains were calculated previously with the Ziegler-
Nichols tuning technique [26]. Figure 21 also shows
the desired path in operational space (black line) as
well as the path obtained from the Geomagic Touch
haptic device (red line).

As can be seen, the proposed inverse kinemat-
ics algorithm works correctly, finding the required
joint positions. In Fig. 22, the evolution of each

Fig. 19 End effector path (blue line) and powertrain link con-
figuration (black lines)

Fig. 20 Control scheme for the PID controller applied to the
Geomagic Touch haptic device

Fig. 21 Response of the Geomagic Touch controlled by the
PID control

Fig. 22 Evolution of each angle (in radians) of the Geomagic
Touch device (red line) and inverse kinematics proposed by the
gradient descent algorithm (black line)

1427Meccanica (2022) 57:1413–1428

1 3
Vol.: (0123456789)

angle through the duration of the experiment is
shown separately, whereas in the same case for
Fig. 21, the black lines represent the desired path
created by the gradient descent technique, and the
red lines are the direct reading from the Geomagic
Touch device according the end-effector position.
As can bee seen, the control scheme allows the
haptic to follow the generated trajectory.

7 Conclusions

In this work, a set of algorithms based on gradi-
ent descent was proposed to solve the inverse posi-
tion kinematics for n-degree-of-freedom kinematic
chains with revolute joints. In a first approach
employing Quaternion Algebra, the algorithm was
capable of solving the inverse position and veloc-
ity kinematics for any degree-of-freedom model,
allowing the end-effector to reach any desired point.
Additionally, the algorithm was implemented in
real-time, employing a Geomatic Touch Haptic
device with a PID controller, proving to be robust
and fast enough to be employed in real-time appli-
cations. Finally, an algorithm extension using
Conformal Geometric Algebra was also proposed,
developing update rules that can be easily applied
to any n-degree-of-freedom kinematic chains with
revolute joints for the inverse position kinematics
solution.

In future work, the authors will extend the cur-
rent algorithms to consider kinematic chains with
prismatic joints, as well as other joint configurations,
employing Dual Quaternions and CGA Motors.

Acknowledgements The authors would like to thank CONA-
CYT and CINVESTAV-IPN for the scholarship and the eco-
nomic and technological support for the realization of this
work.

Author Contributions All authors contributed to the study
conception and design of this work. L. Lechuga-Gutierrez:
Paper writing, main contributions in Sects. 2, 3 and 6. E.
Macias-Garcia: Paper writing, document review, main contri-
butions in Sects. 2, 4 and 5. G. Martínez-Terán: Main contribu-
tions in Sect. 6. J. Zamora-Esquivel: Document review, main
contributions in Sects. 4 and 5. E. Bayro-Corrochano: Paper
writing, document review, project supervision.

Funding This work was supported by CONACYT institute
and CINVESTAV-IPN.

Declarations

Conflict of interest The authors have no conflicts of interest
to declare that are relevant to the content of this article.

Code availability The Conformal Geometric Algebra library
developed in this work is available at: github.com/iqedgarmg/
conformal_library while additional multimedia resources at:
drive.google.com/drive/folders/11DfFiQ8wZsfY31VDIK2i-
Mg0rnHeucCM.

Ethical approval Not applicable

Consents to participate Not applicable

Consent for publication Not applicable

References

 1. Hamilton W (1866) Elements of quaternions. Green &
Co, London

 2. Hart C, Francis K, Kauffman H (1994) Visualizing qua-
ternion rotation. ACM Trans Graph 13(3):256–276

 3. Shoemake K (1985) Animating rotation with quaternion
curves. In: Proceedings of the 12th annual conference
on computer graphics and interactive techniques, pp
245–254

 4. Featherstone R (1983) Position and velocity transforma-
tions between robot end-effector coordinates and joint
angles. Int J Robot Res 2(2):35–45

 5. Bayro-Corrochano E, Daniilidis K, Sommer G (2000)
Motor algebra for 3D kinematics: The case of the hand-
eye calibration. J Math Imag Vis 13(2):79–99

 6. Bayro-Corrochano E, Reyes-Lozano L, Zamora-
Esquivel J (2006) Conformal geometric algebra for
robotic vision. J Math Imag Vis 24(1):55–81

 7. Macias-Garcia E, Zamora-Esquivel J, Bayro-Corroch-
ano E (2020) Conformal geometric algebra library for
MATLAB. https:// github. com/ iqedg armg/ confo rmal_
libra ry. Accessed 12 Dec 2020

 8. Hamilton W (1853) Lectures on quaternions. Hodges
and Smith, Dublin

 9. Bayro-Corrochano E (2020) Geometric algebra appli-
cation, vol II: Robot modelling and control. Springer,
London

 10. Goldman R (2010) Rethinking quaternions. Morgan
Claypool 4(1):157–157

 11. Lechuga-Gutierrez L, Medrano-Hermosillo J, Bayro-
Corrochano E (2018) Quaternion spiking neural net-
works control for robotics. In: 2018 IEEE Latin Ameri-
can conference on computational intelligence, pp 1–6

 12. Peijun Y, Keqiang X, Jiancheng L (2011) A design of
reconfigurable satellite control system with reaction
wheels based on error quaternion model. In: 2011 Inter-
national conference on internet computing and informa-
tion services, pp 215–218

https://github.com/iqedgarmg/conformal_library
https://github.com/iqedgarmg/conformal_library

1428 Meccanica (2022) 57:1413–1428

1 3
Vol:. (1234567890)

 13. Vince J (2016) Mathematics for computer graphics.
Springer, London

 14. XiaoLong Y, HongTao W, Yao L, et al (2019) Computa-
tionally efficient inverse dynamics of a class of six-DoF
parallel robots: Dual quaternion approach. J Intell Robot
Sys 94(1):101–113

 15. Cuevas-Jimenez E, Osuna-Enciso J, Oliva-Navarro
D (2016) Optimización, algoritmos programados con
MATLAB. Alfaomega, México

 16. Curry H (1944) The method of steepest descent for
non-linear minimization problems. Quarter Appl
Math 2(3):258–261

 17. Jones M (2005) AI application programming. Charles
River Media, Massachusetts

 18. Hamming R (1973) Numerical methods for scientists and
engineers, 2nd edn. Dover Publications Inc, New York

 19. Fuente J, Santiago J, Román A et al (2014) Handbook on
robotics, vol 25. Springer, Berling, pp 1682–1690

 20. Radavelli L, Martins D, De Pieri E, Simoni R (2015)
Cinemática posicional de robôs via iteração e quatérnios.
Proc Ser Brazilian Soc Comput Appl Math 3(1):1

 21. Bayro-Corrochano E, Zamora-Esquivel J (2007) Differen-
tial and inverse kinematics of robot devices using confor-
mal geometric algebra. Robotica 25(1):43–61

 22. Lechuga-Gutierrez L, Macias-Garcia E, Martinez-Terán
G, Zamora-Esquivel J, Bayro-Corrochano E (2021)

Iterative inverse kinematics for robot manipulators
using quaternion algebra and conformal geometric alge-
bra: supplementary material. drive.google.com/drive/
folders/11DfFiQ8wZsfY31VDIK2i-Mg0rnHeucCM.
Accessed 25 Jun 2021

 23. Kingma D, Ba J (2014) Adam: a method for stochastic
optimization. arXiv: 1412. 6980

 24. Moré J (1978) The Levenberg–Marquardt algorithm:
implementation and theory. In: Numerical analysis.
Springer, Berlin, pp 105–116

 25. Jarillo-Silva A, Domínguez-Ramírez O, Parra-Vega V,
Ordaz-Oliver J (2009) Phantom Omni Haptic device: kin-
ematics and manipulability. In: IEEE electronics, robotics
and automotive mechanics conference, pp 193–198

 26. Ogata K (2010) Ingeniería de control moderna. Pearson
Education, S.A. Madrid

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

http://arxiv.org/abs/1412.6980

	Iterative inverse kinematics for robot manipulators using quaternion algebra and conformal geometric algebra
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quaternion algebra
	2.2 Rotations employing quaternions
	2.3 Conformal geometric algebra
	2.4 Screw rotors
	2.5 Gradient descent algorithm

	3 Forward and inverse kinematics using quaternion algebra
	3.1 Forward kinematics
	3.1.1 Two-degree-of-freedom model

	3.2 Inverse position kinematics
	3.3 Inverse velocity kinematics
	3.4 Two-degree-of-freedom planar robot example

	4 Conformal geometric algebra algorithm extension
	4.1 Forward kinematics
	4.2 Inverse position kinematics
	4.3 Algorithm implementation

	5 Algorithm comparison
	5.1 Forward kinematics using quaternions
	5.2 Forward kinematics using conformal algebra
	5.3 Inverse position kinematics

	6 Geomagic touch implementation
	6.1 Forward kinematics
	6.2 Inverse position kinematics
	6.3 PID control

	7 Conclusions
	Acknowledgements
	References

