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exist many scientific results and an extensive bibli-
ography in regard [1–7]. However, it has been noted 
that only using a reset or adding noise, it is possible 
to evaluate bursting phenomena. This phenomenon 
occurs in a number of different cell types and it con-
sists of a behaviour characterized by brief bursts of 
oscillatory activity alternating with periods of quies-
cence during which the membrane potential changes 
only slowly [8].

Bursting phenomena are becoming more and more 
important and their studies are increasing in many sci-
entific fields (see, f.i. [9] and references therein). For 
example, in the restoration of synaptic connections, it 
appears that some nanoscale memristor devices have 
the potential to reproduce the behavior of a biological 
synapse [10, 11]. This will lead in the future, espe-
cially in case of traumatic injuries, to the introduction 
of electronic synapses to directly connect neurons.

A model that seems to be more mathematically 
appropriate for incorporating nerve cell bursting 
phenomena is the FitzHugh–Rinzel model (FHR). It 
derives from FitzHugh–Nagumo and, differently from 
FHN, consists of three equations just to insert slow 
modulation of the current [1, 12–15]. Indeed, burst-
ing oscillations can be characterized by a system vari-
able that periodically changes from an active phase of 
rapid spike oscillations to a silent phase.

As for the FHR model, the following system is 
considered:
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1  Introduction

Mathematical biophysics models, such as the 
FitzHugh–Nagumo system (FHN), play an important 
role in studying the nervous system, as they can help 
describe biophysical phenomena that are relevant to 
neuronal excitability.

The FHN consists of two differential equations 
that model several engineering applications and there 

M. De Angelis (*) 
Department of Mathematics and Applications “R. 
Caccioppoli”, University of Naples Federico II, Via 
Cinthia 26, 80126 Naples, Italy
e-mail: modeange@unina.it

http://orcid.org/0000-0002-8531-6498
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-022-01489-6&domain=pdf


1036	 Meccanica (2022) 57:1035–1045

1 3
Vol:. (1234567890)

where

and terms �, c, d, h, �, � are positive constants that 
characterize the model’s kinetics. The second order 
term with D > 0 can be associated to the axial current 
in the axon, and it derives from the Hodgkin- Huxley 
theory for nerve membranes. Indeed, if b represents 
the axon diameter and ri is the resistivity, the spatial 
variation in the potential V gives the term (b∕4ri)Vxx 
from which term Duxx derives (see f.i. [16]), and in 
[9] an analysis on contribution due to this term has 
been developed. Furthermore, when the fast variable 
u simulates the membrane potential of a nerve cell, 
while the slow variable w and the super-slow vari-
able y determine the corresponding number densities 
of ions, the model (1) simulates the propagation of 
impulses from one neuron to another, and studies on 
solutions can help in testing the responses of the vari-
ous models in neuroscience.

Several methods have been developed to find exact 
solutions related to partial differential equations and 
an extensive bibliography on the study of analytical 
behaviors exists (see,f.i [17–23]). The aim of this 
paper is to determine a priori estimates for the FHR 
solution by means of suitable properties of the funda-
mental solution H(x, t),  showing how the effects due 
to the initial perturbation are vanishing when t tends 
to infinity, and simultaneously, as time increases, the 
effect of the nonlinear source remains bounded.

The paper is organized as follows: in Sect.  2 we 
define the mathematical problem and report some 
of the results already proved in [9], as well as other 
results well known in literature. In Sect. 3, some prop-
erties related to the fundamental solution H(x,  t) are 
obtained and, in a subsection, some relationships on 
convolutions which characterize the explicit solution, 
are highlighted. In Sect. 4, estimates on convolution 
are proved and in Sect.  5, the solution is expressed 
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⎪⎪⎪⎨⎪⎪⎪⎩
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� t
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(2)f (u) = u ( a − u ) ( u − 1 ) ( 0 < a < 1 ),

by means of these particular convolution integrals. 
Finally, in Sect. 6, a priori estimates are showed.

2 � Mathematical considerations

Indicating by T  an arbitrary positive constant, let us 
consider the set:

𝛺T = {(x, t) ∶ x ∈ ℜ, 0 < t ≤ T}.

Moreover, if

represent the initial values, then from (1)2,3, one 
deduces:

Besides, letting

system (1) becomes

and hence, when
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In order to determine the solution of problem (8), let 
us consider the following functions:

where J1(z) is the Bessel function of first kind and 
order 1.

In [9] it has been verified that function H(x, t) : 

represents the fundamental solution of the parabolic 
operator

and the following theorem has been proved:

T h e o r e m   1   I n  t h e  h a l f - p l a n e 
ℜe s > max( − a, −𝛽𝜀,−𝛿d ) the Laplace integral Lt H 
converges absolutely for all x > 0, and it results:

where

Moreover, function H(x,t) satisfies some properties 
typical of the fundamental solution of heat equation, 
such as: 

(a)	   H(x, t) ∈ C∞,  t > 0, x ∈ ℜ,

(8)

⎧⎪⎪⎨⎪⎪⎩
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t
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�
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(b)	    for fixed t > 0, H and its derivatives are van-
ishing exponentially fast as |x| tends to infinity.

(c)	    In addition, it results lim
t→0

H(x, t) = 0, for any 
fixed 𝜂 > 0, uniformly for all |x| ≥ �. 	�  ◻

To obtain results of existence and uniqueness for the 
problem (8), the theorem of fixed point can be applied 

and therefore, also according to [24], for initial term 
and source function we shall admit:

Assumption A  Initial data u0 is continuously differ-
entiable and bounded together with its first derivative. 
The source term F(x,  t, u) is defined and continuous 
on the following set:

Besides, for each K > 0 and |u| < K, F( x, t, u ) is uni-
formly Lipschitz

continuous in (x, t) for each compact set of �T and 
it is bounded for bounded u.

Then, for all ( u1, u2), there exists a positive con-
stant WF such that:

	�  ◻

As a consequence, when the fundamental solution 
H(x, t) and source function F(x, t, u) satisfy theorem 1 
and Assumption A, respectively, indicating by u(x, t) 
a solution of problem P, then u assumes this form:

On the other hand, if u(x,  t) is a continuous and 
bounded solution of (17), it is possible to prove that 
u satisfies (8).

Consequently, it is possible to conclude that

(15)Z = {(x, t, u) ∶ (x, t) ∈ 𝛺T ,−∞ < u < ∞}.

(16)|F( x, t, u1 ) − F( x, t, u2)| ≤ WF |u1 − u2|.

(17)

u(x, t) =∫
ℜ

H(x − �, t) u0(�) d�

+ ∫
t

0

d� ∫
ℜ

H(x − �, t − �) F [ �, �, u(�, � ) ] d�.
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Theorem 2  Initial value problem (8) admits a unique 
solution only if (17) admits a unique continuous and 
bounded solution. 	�  ◻

Besides, by means of fixed point theorem,(and 
extensive proofs can be found, f.i., in [24–29]), it is 
possible to prove the following theorem:

Theorem 3  When Assumption A is satisfied, then the 
initial value problem (8) admits a unique regular solu-
tion u(x, t) in �T . 	�  ◻

In this case, taking into account the source term 
F(x,  t) defined in (7), solution (17) assumes the fol-
lowing form:

and this formula, together with relations (4), allows 
us to determine also v(x, t) and y(x, t) in terms of the 
data.

3 � Some properties related to H(x,t)

In order to obtain a priori estimates and asymptotic 
effects, some properties related to the fundamental 
solution H need to be evaluated.

More precisely, formula (18) shows the need to 
evaluate the convolution of the fundamental solution 
H with respect to time and space.

Consequently, this section will include a first 
part where two theorems involving some properties 
related to H(x, t) are showed, and a subsection where 
some premises allowing to prove properties related to 
convolution integrals, will be stated.

Let us start indicating by
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; C(t) =

e−�dt − e−�� t

�� − �d

three positive functions, then the following theorem 
holds:

Theorem 4  The solution function H defined in (11) 
satisfies the following estimate:

Proof  Since

from (9) it results:

and hence:

Moreover, from (10) and by means of (22), it results:

Consequently one obtains:

(20)

�H� ≤ e
−

x
2

4D t

2
√
�Dt

�
e
− a t + t�A(t) + � t

�
1 +

�t

�a − ���
�

B(t) +
�t

�a − ��� C(t)
�

(21)�J1( 2
√

� y (t − y) )� ≤ √
� y (t − y) (y ≤ t)

�H1(x, t)� ≤ e
−

x2

4D t

2
√
�Dt

�
e− a t + � t �

t

0

e−a y e−�� ( t− y ) dy

�

(22)

�H1(x, t)� ≤ e
−

x2

4D t

2
√
�Dt

�
e− a t + � t

e−�� t − e−at

a − ��

�
.

|H2| ≤ ∫

t

0

e−
x2

4Dy

2
√

�Dy

[

e− a y + � y e−�� y − e−ay
a − ��

]

e−�d(t−y) �y dy.



1039Meccanica (2022) 57:1035–1045	

1 3
Vol.: (0123456789)

Hence, according to (11), for (22) and (23), theorem 
holds. 	�  ◻

Now, let us introduce as I0 the modified Bessel 
function of the first kind and order 0,  and let

The following theorem holds:

Theorem 5  The fundamental solution H(x, t) defined 
in (11) satisfies the following estimates:

Besides, indicating by

one has:

Proof  Considering that

we will firstly focus on the integral involving H1, and 
then on that involving H2.

Since it results:

(23)
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e
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�

+
� t

�a − ���
e
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−��t
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�

(24)l = min(a, ��), q = min{a, ��, �d},
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√
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� + �t
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0
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ℜ
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(30)H = H1 − H2,

from (9) one obtains:

with

Now, taking into account that

and

for b = t∕2 and s = a − ��, one has:

Consequently, as for
I1(−z) = −I1(z) I0(z) = I0(−z) I1(|z|) ≤ I0(|z|), 

it results:

Now, being I0(|z|) < e|z| , from (36) one deduces that

where l is defined in (24)1.
As for function H2, taking into account that 

|J1| ≤ 1, from (10) and by means of (37), it results:
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Hence, returning to the previous reasoning, one 
obtains:

from which, along with (36), (26) is proved.
Moreover, from (38), an inequality analogous to 

(37) can be obtained. In this way, according to (30), 
(27) follows, too.

Lastly, since it results

from (36) and (38), property (29) can be proved. 	
� ◻

3.1 � Premises on convolution integrals referring to the 
solution

In order to determine the estimates related to the solu-
tion, it is necessary to highlight every convolution 
integrals that characterize the solution itself. There-
fore, in this subsection convolutions K� and H� will 
be introduced and, by means of them, solution u(x, t) 
will be expressed (Formula 52).

Hence, let us consider

and let

�
ℜ

�H2(x − �, t)� d� ≤ √
� �

t

0

�
e−ay +

√
�� y e−ly

�
e−�d(t−y)

�
y

t − y
dy.
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�
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�H2� ≤
√
� � t

�
e
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�d+a

2
t
I0

�
�d − a

2
t

�

+
√
� � t e

−
�d+l

2
t
I0

�
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2
t

��

(39)
∫

∞

0

e−pt t I0(bt) dt =p (
√
p2 − b2)−3 Re p > �Re b�

(40)
∫

∞

0

e−pt t2 I0(bt) dt =(
√
p2 − b2)−3∕2

�
3p2

p2 − b2
− 1

�
Re p > �Re b�,

(41)

K�(x, t) ≡ �
t

0

e−�d (t−y) H1(x, y) J0 ( 2
√
� y(t − y) ) dy

(42)g1(x, t) ∗ g2(x, t) = ∫
t

0

g1(x, t − �)g2(x, �) d�

be the convolution with respect to t.
In [9] it has been proved that:

and

Now, denoting by

it results:

and as a consequence, from (44), one one:

Moreover, let us denote by

the convolution with respect to the space, and

Since (43) and (47), it results:

and

Consequently, given (18) , we get:

(43)e− �d t ∗ H = K�

(44)e− � � t ∗ H = K� + (�d − ��)e−�� t ∗ K� .

(45)

H� = ∫
t

0

e−�� (t−�)d� ∫
�

0

H1 (x, y) e
−�d(�−y)J0( 2

√
�y(� − y))dy

(46)e− �� t ∗ K� = H� ,

(47)e− � � t ∗ H = K� + (�d − ��)H� .

(48)g1(x, t)♢ g2(x, t) = ∫
ℜ

f1(�, t)g2(x − �, t) d�

(49)

H ⊗ F = ∫
t

0

d𝜏 ∫
ℜ

H(x − 𝜉, t − 𝜏) F [ 𝜉, 𝜏, u(𝜉, 𝜏) ] d𝜉.

(50)

⎧⎪⎪⎨⎪⎪⎩

H ⊗ e−𝛿dt = ∫
ℜ

K𝛿(𝜉, t) d𝜉,

H ⊗ e−𝛽𝜀 t = ∫
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�
K𝛿 + (𝛿d − 𝜀𝛽)H𝛿

�
d𝜉

(51)

⎧⎪⎨⎪⎩

H ⊗ (y0(x) e
−𝛿dt) = y0 ♢K𝛿

H ⊗ (w0(x) e
−𝛽𝜀t) = w0♢[K𝛿 + (𝛿d − 𝜀𝛽)H𝛿 ].
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and this formula explicitly shows all the convolutions 
involved in the solution u(x, t).

4 � On convolutions involving functions K
�
 and H

�

Formula (52) shows that an analysis of the solution 
directly implies estimates on both H(x, t) and on func-
tions K� , H� , defined in (41) and (45).

For this, let us consider A(t),B(t),C(t), �(t) defined 
in (19) and (25), respectively. Moreover, let

with q defined by (24)2 .
In addition,

The following theorems hold:

Theorem 6  Function K�(x, t)defined in (41) satisfies 
the following estimates:

(52)

u(x, t) = H ♢ u0(x) + K𝛿 ♢ (y0(x) − w0(x)) + H ⊗𝜑(u)

+ (𝜀𝛽 − 𝛿d)H𝛿 ♢w0(x) +
c

𝛽
H𝛿 ♢

(
𝛿d − 𝜀𝛽)

+ H ⊗

(
h

d
−

c

𝛽

)
+ K𝛿 ♢

(
c

𝛽
−

h

d

)

(53)E(t) =
e−qt − e−�dt

�d − q
L(t) =

e−qt − e−��t

�� − q

(54)M =
1

��d − q��qd
�
q + �d + �(

√
� +

√
�)
�q2 + �2d2

�dq

�
+ 2�2

√
��

�
q3 + �3d3

(q�d)2

��

(55)N =
1

��� − q�q��
�
q + �� + �(

√
� +

√
�)
�q2 + �2�2

��q

�
+ 2�2

√
��

�
q3 + �3�3

(q�d)2

��

(56)g(t) =
�(t)

|�� − �d|
[
E(t) + L(t)

]

(57)h(t) =
�(t)

(�� − �d)2

[
L(t) + (1 + t(�d − ��

]
E(t).

(58)�
ℜ

||K�(x, t)
|| ≤ �(t)E(t);

(59)�
t

0

d� �
ℜ

||K�(x, �)
||dx ≤ M.

Proof  By means of (43) and property (27) on 
∫
ℜ
|H(�, t)|d� , inequality (58) follows.
By this estimate, according to (25), and taking into 

account that

(59) holds, too.
Moreover, because of (43), it results

and inequality (60) follows. 	�  ◻

Theorem 7  Referring to (45), function H�(x, t) satis-
fies the inequalities below:

Proof  According to (46), one has:

(60)�
t

0

e−�d�d� �
ℜ

||K�(x, t − �)||dx ≤ t �(t)E(t)

(61)∫

t

0
y e−�y ≤ 1∕�2; ∫

t

0
y2 e−�y ≤ 2∕�3

(t > 0, � > 0),

(62)e−�dt ∗ K� = e−�dt ∗ H ∗ e−�dt = (t e−�dt) ∗ H

(63)�
ℜ

|H�(x, t)| dx ≤ g(t)

(64)�
t

0

d� �
ℜ

||H�(x, t − �)||dx ≤ M + N

|�� − �d|

(65)�
t

0

e−�d�d� �
ℜ

||H�(x, t − �)||dx ≤ h(t).

(66)
�

t

0

e−���d� �
ℜ

||H�(x, t − �)||dx ≤ t �(t)

|�d − q|
[
C(t) + L(t)

]
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with, since (43), it results:

where C(t) is defined in (19)3. Hence, since (27), ine-
quality (63) holds.

Consequently, also (64) follows.
Estimate (65) is proved by means of

Finally, taking into account that

(67)
∫
ℜ

|H�(x, t)| dx = ∫
t

0

e−��� d� ∫
ℜ

||K�(x, t − �)||dx

(68)e−��t ∗ K� = e−��t ∗ H ∗ e−�dt = C(t) ∗ H(x, t)

(69)
e−�dt ∗ H� = e−�dt ∗ K� ∗ e−��t = (t e−�dt) ∗ e−��t ∗ H.

from (58), (66) is proved, too. 	�  ◻

5 � Analysis of solution

In order to analyse functions u(x,  t),  w(x,  t),   and 
y(x, t),  it appears necessary to make explicit the inte-
grals of convolutions involving functions H� and K� 
whose estimates have been established in the previous 
section.

Therefore, since (52), by means of convolution 
properties, we get:

Moreover, as for functions w(x, t) and y(x, t) defined 
in (4), according to (43), (46) and (47), since (71), the 
following integrals must be considered:

(70)
e−��t ∗ H� = e−��t ∗ K� ∗ e−��t = (t e−��t) ∗ K� ,

(71)

u(x, t) =∫
t

0

d� ∫
ℜ

H(x − �, t − �)� [�, �, u(�, �)]d�

+

(
h

d
−

c

�

)[
∫

t

0

d� ∫
ℜ

H(x − �, t − �)d� − ∫
ℜ

K�(x − �, t)d�

]

+ ∫
ℜ

K�(x − �, t)
[
y0(�) − w0(�)

]
d� − (�d − ��)∫

ℜ

H�(x − �, t)w0(�)d�

+
c

�
(�d − ��)∫

ℜ

H�(x − �, t)d� + ∫
ℜ

H(x − �, t) u0(�) d�.

(72)

∫
t

0

e−��(t−�)u(x, �)d� =∫
ℜ

K�(x − �, t)u0(�) d�

+ ∫
t

0

d� ∫
ℜ

K�(x − �, t − �)

[
� [�, �, u(�, �)] +

h

d
−

c

�

]
d�

+ (�d − ��)∫
t

0

d� ∫
ℜ

H�(x − �, t − �)
[
� [�, �, u(�, �)] +

h

d
−

c

�

]
d�

+ (�d − ��)∫
t

0

e−��(t−�)d� ∫
ℜ

H�(x − �, �)
[ c
�
− w0(�)

]
d�

+ ∫
ℜ

H�(x − �, t)
[
y0(�) − w0(�) −

h

d
+

c

�
+ (�d − ��)u0(�)

]
d�
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and

6 � Estimates of solution

As for the analysis of solutions of the non linear reac-
tion diffusion model, there exists a large bibliogra-
phy. In particular in [30, 31] the existence of bounded 
solutions is proved.

Therefore, in the class of bounded solutions, let 
us assume initial data and function �(x, t, u) satisfy 
Assumption A, and let

with � defined in (5) and Z defined in (15).
In order to give a priori estimates of the solution of 

FHR system, the following theorem is proved:

Theorem  8  If function �(x, t, u) and initial data 
uo(x), wo(x), yo(x) are compatible with Assumption 
A, then the problem (1)–(3) satisfies the following 
estimates:

(73)

∫
t

0

e−�d(t−�)u(x, �)d� =∫
ℜ

K�(x − �, t)u0(�) d�

+ ∫
t

0

d� ∫
ℜ

K�(x − �, t − �)

[
� [�, �, u(�, �)] +

h

d
−

c

�

]
d�

+ ∫
t

0

e−�d(t−�)d� ∫
ℜ

K�(x − �, �)
[
y0(�) − w0(�) −

h

d
+

c

�

]
d�

+ (�d − ��)∫
t

0

e−�d(t−�)d� ∫
ℜ

H�(x − �, �)
[ c
�
− w0(�)

]
d�.

|| u0 || = sup
ℜ

| u0 ( x ) |, ||w0 || = sup
ℜ

|w0 ( x ) |,

|| y0 || = sup
ℜ

| y0 ( x ) |,

||u|| = sup
�T

| u(x, t) ||�|| = sup
Z

|� ( x, t, u) |

(74)

|u(x, t)| ≤ ||u0(x)|| �(t) e−qt +
(
||�|| + ||||

h

d
−

c

�

||||
)
S

+

(
||y0|| + ||w0)|| +

||||
h

d
−

c

�

||||
)

�(t) E(t)

+

(
||w0|| + c

�

)
(|�d − ��|) g(t);

where constants q, S, M, N are introduced in 
(24)2 , (28), (54), and (55), respectively.

Besides, functions C(t), �(t), E(t), L(t), g(t), h(t) 
are defined in ( 19)3 (25),  (53)1,2,  (56), and  (57).

Proof  According to (71) and by means of inequali-
ties (27), (29), (58), and (63), estimate (74) follows.

As for inequalities (75) and (76), functions defined 
in (4) have to be considered.

More precisely, from (4)1 and (72), taking into 
account inequalities (58), (59), (63), (64) and (66), 
estimate (75) is proved.

noindent Analogously, from (4)2 and (73), for 
(58)–(60) and (65), also (76) holds.

	�  ◻

(75)

|w(x, t)| ≤ ||w0|| e−��t + c

�
+ � ||u0|| �(t) E(t)

+ �

(
||�|| + ||||

h

d
−

c

�

||||
)
(2M + N)+

+ �
|�d − ��|
|�d − q|

[
c

�
+ ||w0(x)||

]
t �(t)

[
C(t) + L(t)

]

+ �

[
||y0|| + ||w0|| +

||||
c

�
−

h

d

|||| + |�d − ��| ||u0||
]
g(t);

(76)

|y(x, t)| ≤ ||y0||e− �dt +
h

d
+ �||u0||�(t)E(t)+

+ �

[
||y0|| + ||w0|| +

||||
c

�
−

h

d

||||
]
t �(t)E(t)+

�

[
||�|| + ||||

h

d
−

c

�

||||
]
M + (�d − ��)

(
||w0|| + c

�

)
h(t)
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Remark  These estimates show that the solution 
of the FitzHugh–Rinzel system is bounded for all t. 
Besides, when t tends to infinity, the effect of the non 
linear term �(x, t) is bounded, while the effects of ini-
tial perturbances u0(x),w0(x), y0(x) are vanishing.
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