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mode shapes with the original space truss finite ele-
ment model. More importantly, to further design the 
active vibration controller of the space truss based on 
the equivalent beam model, the LQR vibration con-
troller is designed when the space truss is subjected to 
periodic and impulse excitations. The control moment 
is applied to the full-scale finite element model of the 
space truss and the numerical simulations prove the 
effectiveness of the designed LQR vibration control-
ler for the vibration suppression of the space truss. 
Results indicate that the established equivalent beam 
model is valid and particularly convenient for the 
vibration suppression of the large space truss, which 
can successfully settle the difficulty caused by the 
high degree of freedom of the finite element model of 
the large truss to its vibration controller design.

Keywords  Large flexible space truss · Dynamic 
modeling · Analytical method · Vibration control

1  Introduction

During the service period of large-scale space struc-
ture after its deployment and locking, it could be 
subjected to periodic thermal excitation caused by 
entering and leaving the earth’s shadow, and transient 
excitation caused by the attitude adjustment, unbal-
anced inertia force, as well as the space debris, etc. 
[1, 2]. The large truss structures have the character-
istics of large size, great flexibility, light weight, and 

Abstract  Dynamic equivalent modeling is conveni-
ent to the vibration controller design of large space 
truss structures. Consequently, it is important to study 
the effectiveness of designed vibration controller of 
the original truss structures based on the equivalent 
dynamic models. In this study, the dynamic modeling 
and vibration control for a large flexible space truss 
are investigated. The space truss is typical periodic 
triangular prism structure which consists of beams 
and rods. Considered the transverse deformation of 
the whole structure, the equivalent dynamic model 
of the space truss is established using energy equiva-
lence principle. The fourth-order governing equations 
of the cantilevered equivalent beam model are derived 
and solved by adopting the Hamilton principle and 
the Galerkin method to achieve its discrete dynamic 
model. To obtain analytical mode shapes of the estab-
lished equivalent model, an exact analytical approach 
is exploited for purpose of constructing state space 
equation of the space truss. Then the validity and 
accuracy of the equivalent beam model are demon-
strated by comparing the natural frequencies and 
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weak damping, which induce the low frequencies 
and weak ability of resisting deformation result in 
the slow decay of dynamic response [3]. Therefore, 
in order to improve service quality, prolong struc-
tural life and reduce energy consumption, the vibra-
tion rapid suppression of large truss structures has 
become a hot and vital topic [4]. The dynamic analy-
sis of the large flexible space trusses using the finite 
element method (FEM) is a common way. However, 
the degree-of-freedom of the finite element model is 
too large to design vibration controller conveniently 
and the numerical simulation generally bears a huge 
amount of computational resources, as pointed out 
in Ref. [5]. In order to overcome those drawbacks of 
FEM, equivalent modeling methodology is called for 
the dynamic analysis and vibration control for truss 
structures [6–8].

The large truss structures are distributed parameter 
systems consequently infinite dimensional in theory 
and very large dimensional in practice [9]. Distrib-
uted control system needs to install a large number 
of light and simple actuators and its mechanical and 
dynamic characteristics, meanwhile, cannot be sig-
nificantly changed [10]. Owing to those characteris-
tics, the study on the dynamics and control of large 
flexible space truss structures has been paid atten-
tion by many researchers [11, 12]. Gaul et  al. [13] 
presented an approach for vibration suppression of 
quadrangular truss structure based on the reduced 
model. Park and Kim [14] used a dry friction damper 
to reduce transient vibrations of a quadrangular space 
truss and the multi-dof truss model is reduced order 
by modal transformation. A fast prototyping method 
was developed by Gosiewski and Koszewnik for the 
active vibration control system of 3D truss structure. 
In view of the finite element modeling conception, 
they reduced the mathematical model and decoupled 
the TITO system into SISO system [15]. Applying 
the finite element model of truss structure, Carval-
hal et al. [16] and Luo et al. [17] presented a modal 
control strategy and designed experiment to sup-
press the structural vibration, respectively. However, 
this method will become quite involved for the large 
and complexity trusses. The integrated optimiza-
tion of actuator placement and vibration control for 
piezoelectric adaptive truss was investigated by Li 
and Huang [18] based on the dynamic finite element 
model and LQG method. It should be mentioned that 
the modes obtained from FEM are numerical form 

rather than analytical expressions, which cause the 
discretization process of this method too tedious to 
model the large-scale truss structures. Meanwhile, 
it will consume plenty of CPU resources with the 
increase of the model size.

Recently, the intelligent control (such as the neu-
ral network, fuzzy logic, etc.) of distributed parameter 
system has made progress. Li et  al. [19] proposed a 
decentralized adaptive fuzzy control method for the 
optimal vibration control of T truss structure based 
on sliding control method. To improve the vibration 
suppression performance of structure, Luo et al. [20] 
developed a hybrid control algorithm and a fuzzy 
controller for large ring truss and checked the valid-
ity by experiment. Yan and Yam [21] adopted genetic 
algorithms to search optimal number and locations of 
actuators for suppressing the vibration of the space 
truss. Lin and Zheng [22] developed an genetic algo-
rithm for vibration control of rotating truss structure 
according to the neuro-fuzzy control. Although, the 
intelligent control is an alternative approach to sup-
press the vibration of the distributed parameter sys-
tems, here existing many issues in such designs (like 
selection of basis function, appropriate choice of 
fuzzification, etc.), which need further attention [23].

For the active vibration control based on the 
dynamics concept, one of the challenges in the con-
trol law design of truss structures is the requirement 
of model order reduction to deal with such high 
degree of freedom systems. According to the estab-
lished equivalent continuum model, the existing 
vibration control methods can be effectively applied 
to the distributed parameter system, which is one of 
the important advantages compared with FEM [24]. 
Typically, the equivalent continuum modeling con-
ception of lattice structures employing the energy 
equivalence principle was proposed by Noor [25]. 
Similarly, applying the equivalent modeling method, 
an equivalent beam model of beamlike truss with pin 
joints is established in Ref. [26]. For the pin-jointed 
double-layer hoop space antenna truss, Guo et al. [27] 
obtained an equivalent hoop beam model and com-
pared the natural frequencies and mode shapes with 
the finite element model of original truss structure. 
Different from the pin-jointed truss structures, the 
equivalent micropolar beam model was formulated 
using the micropolar elasticity theory for the rigid-
jointed truss structures [28]. Karttunen et  al. [29] 
derived a 1-D micropolar Timoshenko beam finite 
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element model for bending vibration of the web-core 
beam assuming flexible joint have a linear rotational 
stiffness. An equivalent dynamic model was con-
structed for the hoop truss employing Timoshenko 
beam theory [30]. Besides, Liu et  al. [8] developed 
a dynamic equivalent modeling method for complex 
space antenna truss with initial stress and estab-
lished an equivalent nonlinear beam model consid-
ering the geometric nonlinearity of the beamlike 
truss in Ref. [31]. Zhang et  al. [32] investigated the 
nonlinear dynamic behavior of a beam-ring struc-
ture to imitate the circular truss antenna subjected 
to the periodic thermal excitation. Lamberson and 
Yang [33] designed the feedback controller of plate-
like truss using its equivalent continuum model and 
analyzed the natural characteristics of the system. 
Salehian et al. [6] built a continuum model of a space 
radar antenna truss with pin joints for the purpose 
of the vibration suppression utilizing LQR method. 
To obtain the required transfer function of a hybrid 
model constructed by beams and rods, Bennett and 
Kwatny [34] gave the process of solution and estab-
lished the state space model for the system. The flex-
ible structure was divided into multiple autonomous 
substructures taking advantage of the equivalent 
modeling concept and the distributed cooperative 
control with a decentralized sensor and actuator was 
implemented [35]. Although the dynamic equivalent 
modeling methodology for truss structures has been 
investigated by many researchers, there are quite a 
few researches focused on the active vibration con-
trol of large space trusses based on the equivalent 
continuum models. However, it is necessary to study 
whether the classical control methods can be used to 
design the vibration controller of the original truss 
structures and our work fills this gap in this paper.

The objective of this paper is to derive the partial 
differential equations of motion of a large flexible 
space truss and to design LQR vibration controller 
using the derived PDEs based on the equivalent con-
tinuum model. Differing from the existing vibration 
control strategy researches for large space trusses, 
we extend the approach developed in Ref. [36] to 
solve the PDE of the equivalent beam model of the 

space truss and construct sate space model for the 
space truss adopting the analytical mode shapes. 
The organization of the article is as follows: The 
equivalent dynamic model of the large space truss 
with cantilevered boundary condition is constructed 
in Sect.  2. Section  3 presents an analytical solution 
method to obtain the state space model for the space 
truss. In Sect.  4, the accuracy and effectiveness of 
the equivalent beam model are assessed by compar-
ing the results with those of the space truss. And, the 
vibration suppressions of the equivalent beam model 
and the space truss subjected to periodic and impulse 
excitations also are studied. Finally, Sect. 5 concludes 
this investigation.

2 � The equivalent dynamic model of space truss

In this section, the equivalent modeling method for 
the space truss and its equivalent dynamic model are 
presented briefly.

2.1 � Description of space truss

The large space truss structure has a similar configu-
ration with that of in Ref. [31]. The triangular prism 
beamlike truss is shown in Fig. 1. The o-xyz is defined 
as the Cartesian coordinate system, of which the ori-
gin is at the fixed end and x-axis is along the central 
axis of the space truss.

2.2 � Establishment of equivalent beam model

Firstly, separating a repeating element from the space 
truss and building the coordinate system (see Fig. 2), 
the detailed derivation process about the equivalent 

Fig. 1   The space truss after fully expanded state
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modeling and the symbolic representation can refer 
to the Ref. [8]. The displacement components of the 
repeating element are expressed as

where ux0 , uy0 , uz0 , �x0 , �y0 and �z0 are displacement 
and rotation components at the center of the spatial 
repeating element; �x0 , �y0 , �z0 , �xy0 , �xz0 , �yz0 , �x0 , �y0 
and �z0 are strain and curvature measures evaluated 
corresponding position.

The equivalent continuum model of the space truss 
shown in Fig. 3 is established employing the energy 

(1)
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equivalence principle. Its equivalent stiffness and 
mass can be defined as [31]

where EIz denotes the equivalent bending stiffness; 
GAxy denotes the shearing stiffness. �A is the mass per 
unit length; Jz is the rotational inertia per unit length; 
L is the length of the repeating element. The repre-
sentations of strain and kinetic energy coefficients 
C22 , C66 , B22 , B66 see the Appendix A in Ref. [31].

The space truss is regular triangular prism and 
symmetric about x axis thus the bending vibration 
forms on y and z directions are same. The bending 
and torsion vibrations are not coupled. Therefore, the 
bending vibration of the space truss on o-xy plane is 
studied in this paper. The strain energy due to bend-
ing and shearing deformations stored energy in sys-
tem, and kinetic energy of the equivalent beam model 
can be obtained as

(2)EIz =
C22

L
, GAxy =

C66

L
.

(3)�A =
B22

L
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1
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(
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1

12
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)
.

Fig. 2   The repeating element of the space truss structure

Fig. 3   Equivalent beam model of the space truss
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where the dot and prime notations denote the differ-
entiations with respect to the time t and coordinate x, 
respectively. Subsequently, employing the Hamilton 
principle, the expression is written as

where �WF and �WD are the work done by the exter-
nal force and viscous damping, respectively.

It is assumed that the space truss is subjected to 
periodic displacement excitation ws(t) = w0 sin(Ωt) at 
the fixed end and the control moment Mc(t) is acted 
on the free end of the structure. Substituting Eqs. (4)-
(5) into Eq. (6), the governing equations of the equiv-
alent beam model are expressed as

Combining Eqs. (7) and (8) to eliminate the vari-
ation �z , the governing equation of transverse deflec-
tion uy is given by

where Mc(t) represents control moment; cd and cr are 
viscous damping coefficients for transverse displace-
ment and rotation, respectively; The dot denotes the 
differentiation with respect to the time. Superscripts 
(4) and (3) stand for fourth and third derivations with 
respect to the time.

The following boundary conditions for the can-
tilevered equivalent beam model are expressed as 
follows:

(6)∫
t2

t1

(
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)
dt = 0
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where M and S stand for the moment and shearing 
force, respectively.

3 � Analytical solution method and vibration 
controller design

In this section, an analytical solution method is 
exploited to obtain the mode shapes of the equivalent 
beam model. Then, the discrete dynamic model of the 
equivalent beam model is achieved using the Galerkin 
method. Finally, the vibration controller is designed 

based on the Linear Quadratic Regulator (LQR) con-
trol method in order to achieve the vibration suppres-
sion of the space truss.

(10)M = −EIz�
�
z
, S = −GAxyu

�
y
+ GAxy�z.

3.1 � Analytical modes

To solve the natural frequencies and modal shapes of 
the equivalent beam model, the solution of the gov-
erning equation of Eq.  (9) can refer to the method 
displayed in Ref. [36]. The transverse displacement 
uy(x, t) is selected as

(11)uy(x, t) = Uy(x)e
i�t
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where Uy(x) is the amplitude of uy ; � is the circular 
frequency.

Introducing the differential operator D = d∕dx and 
dropping the external excitation and control moment 
items, the Eq. (9) becomes four order ordinary differ-
ential equation and can be obtained as follows:

where

Setting the solution in form of Uy(x) = e�x , the 
characteristic equation of the differential equation 
Eq. (12) is then given by

Equation  (14) can be further simplified to be a 
square equation, as

where �=�2.
Utilizing the technique similar to the one presented 

in [36], the solution Uy(x) can be given in terms of 
trigonometric and hyperbolic functions. Assuming 
the roots of the Eq.  (15) are � and � , the solution 
Uy(x) can be expressed as

where A1 − A4 are constants and

The displacement and force boundary conditions 
for the cantilevered equivalent beam model are as 
follows.

For the fixed end:

(12)
(
aD4 + bD2 + c

)
Uy(x) = 0

(13)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩
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EIz ⋅ GAxy
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(14)a�4 + b�2 + c = 0

(15)a�2 + b� + c = 0

(16)
Uy(x) = A1 cosh �x + A2 sinh �x + A3 cos �x + A4 sin �x

(17)

⎧⎪⎨⎪⎩

�=
��
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For the free end:

In order to obtain the unknown coefficients 
A1 − A4 , substituting Eq. (16) into the boundary Eqs. 
(18)-(19) yields the characteristic equations

where H is the matrix of 4 × 4 dimensions; A is the 
unknown coefficient vector expressed as

The necessary and sufficient condition for nonzero 
solutions in the vector A of Eq. (20) is that the deter-
minant of H must be set up as

Thus, the natural frequencies of the equivalent 
beam model can be obtained by Eq. (22). The mode 
functions can be determined further, where the coef-
ficients A1 − A4 are yielded by solving Eq. (20) com-
bining with the boundary conditions Eqs. (18) and 
(19).

3.2 � LQR controller design

As shown Eq. (9), the dynamic model is a distributed 
parameter system described by partial differential 
equations, which contains infinite number of degrees 
of freedom and is difficult to be directly used for the 
calculations of dynamic response and design of vibra-
tion controller. Therefore, the Galerkin method is 
adopted to reduce the order of the system and the first 
three modes are taken to obtain the discrete dynamic 
model expressed by ordinary differential equations.

The transverse displacement of the equivalent 
beam model is assumed as the following approximate 
series expansions:

in which Uyi(x) is the ith mode function for the trans-
verse motion and qi(t) is the corresponding general-
ized coordinate in transverse direction. Considering 

(18)Uy
|||x=0 = 0, Θz

||x=0 = 0

(19)M|x=Lt = 0, S|x=Lt = 0

(20)�� = �

(21)� = [A1,A2,A3,A4]
T

(22)|�(�)| = 0

(23)uy(x, t) =

∞∑
i=1

Uyi(x)qi(t)
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the first three order mode shapes and having the 
� = [q1, q2, q3]

T , Eq.  (23) is substituted into Eq.  (9) 
and the resultant equation is multiplied by the cor-
responding mode shape Uyi(x) and integrated from 0 
to 1, which yields the following ordinary differential 
equations:

where D, E, M, C and K are 3 × 3 matrices; q is state 
vector; Q and S are vectors of external excitation and 
control moment, respectively. Superscripts (4) and (3) 
represent the fourth and third derivations with respect 
to the time.

Using the linear quadratic regulator (LQR) 
method, vibration controller is designed for vibra-
tion suppression based on discrete dynamic model of 
the equivalent model for the purpose of suppressing 
the vibration of the large space truss. The state space 
model of the system can be obtained from Eq. (24), as

where A is 12 × 12 matrix; B and F is 12 × 1 vectors; 
and

The control moment Mc is defined as

where G is the control gain matrix. Mc minimizes a 
quadratic performance index that is a cost function of 
the system state and control input

(24)𝐃𝐪(4) + 𝐄𝐪(3) +𝐌𝐪̈ + 𝐂𝐪̇ +𝐊𝐪 = 𝐐ẅs + 𝐒Mc

(25)�̇ = �� + �ẅs + �Mc

(26)𝐙 = [𝐪T, 𝐪̇T, 𝐪̈T,𝐪(3)T]T

(27)Mc = −��

(28)J =
1

2 ∫
∞

0

[
�T�Z + RM2

c

]
dt

where Q is a semi-positive definite matrix and R is a 
positive weighting scalar. The gain matrix G can be 
given by

where P satisfies the solution of the following Riccati 
equation:

Thus, the control moment Mc is expressed as 
follows:

Obviously, according to the equivalent beam 
model of the large space truss, low order discrete 
dynamic model of the space truss can be obtained 
based on equivalent modeling concept. Actually, 
comparing with FEM, the mode approach can signifi-
cantly reduce the number of degree of freedom for the 
system and thus increases computational efficiency.

4 � Comparative results analysis of equivalent 
beam model and space truss

From the natural characteristic and dynamic response 
aspects, the comparisons of the space truss and its 
equivalent beam model are investigated in this section 
to validate the effectiveness of the designed vibration 
controller. The model parameters of the space truss 
refer to those of Ref. [31]. The thicknesses of longe-
rons and diagonal are 2 mm and 4 mm, respectively.

4.1 � Natural characteristics

The natural characteristics of the equivalent beam 
model obtained by Eq.  (9) are given and compared 
with the results of the space truss obtained by the 
business software ANSYS to verify the validity. The 
first three order modes of structures are selected and 
compared in this subsection.

Table 1 shows the first three vibration frequencies 
for the equivalent beam model and the space truss 
obtained by Eq. (9) and FEM, respectively. The rela-
tive errors can be obtained by

(29)� = R−1�T�

(30)�� + �T� − ��R−1�T� +� = �

(31)Mc = −R−1�T��

Table 1   The first three frequencies of the equivalent beam 
model and space truss

Frequency 
order

Space truss (Hz) Equivalent beam 
model (Hz)

Re (%)

1 0.2999 0.3024 0.82
2 1.5622 1.5633 0.07
3 3.6092 3.5974 -0.33
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where fEBM and fDT represent the frequencies 
obtained by equivalent beam model and space truss, 
respectively. The space truss model established by 
FEM has 2160 beam elements and 216 link elements. 
That means the dimension of the computing matrix 
of the finite element model is very large compared 
with the Eq.  (9), which has the matrix with 4 × 4 
dimensions. According to Table  1, it can be known 
from the relative errors that results of the equivalent 
beam model are precise enough and in good agree-
ment those of space truss, where the maximum error 
is no more than 0.82%. That demonstrates the validity 
of the equivalent beam model by analytical algorithm.

(32)Re =
f
EBM

− f
DT

f
DT

× 100%
The first three mode shapes are shown in Fig.  4, 

where it can be seen that the results obtained by space 
truss and the equivalent beam model are coincided 
well. The validity of the equivalent beam model is 
further verified. Furthermore, the mode functions 
of equivalent beam model are expressed by analyti-
cal forms, which is an advantage not available to the 
finite element method.

The analytical mode shapes may lead the investi-
gations of vibration controller design and nonlinear 
analysis in analytical algorithm to become convenient 
for the large space truss.

4.2 � Dynamic response and vibration suppression

In this subsection, the dynamic responses of the 
equivalent beam model and space truss are exhibited 

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

1.5
(a)

N
or

m
al

iz
ed

 p
ar

am
et

er
s

x (m)

Space truss
Equivalent beam model

0 20 40 60 80 100
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
(b)

N
or

m
al

iz
ed

 p
ar

am
et

er
s

x (m)

Space truss
Equivalent beam model

0 20 40 60 80 100
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
(c)

N
or

m
al

iz
ed

 p
ar

am
et

er
s

x (m)

Space truss
    Equivalent beam model

Fig. 4   The first three mode shapes of space truss and equivalent beam model: a 1st mode, b 2nd mode and c 3rd mode
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under different external excitations to validate that 
the designed control law can effectively suppress 
the vibration of the space truss. Moreover, the effect 
of the damping and control parameters is analyzed 
to check attenuation of equivalent beam model and 
space truss. The vibration control of the space truss is 
implemented using the control moment obtained from 
the equivalent beam model.

4.2.1 � Periodic excitation

The cantilevered end of the space truss is subjected to 
sinusoidal displacement excitation ws(t) = w0 sin(Ωt) . 
The dynamic responses of the space truss and equiva-
lent beam model under w0 = 0.05 m and Ω= 0.25 Hz 
are shown in Fig. 5. It can be seen clearly from the 
Fig.  5a and b that the displacement time histories 
in 30  s of the two systems without LQR controller 
have a similar trend and the curves are substantially 

identical. The frequency of external excitation Ω is 
close to the first natural frequency �1=0.30 Hz and 
thus the vibration amplitude of two systems is rela-
tively large resulting in resonance behavior. Let feed-
back control parameters R = 1 and Q = diag(10,000,0
00,000…1)12×12. In Fig. 5c and d are shown the space 
truss and equivalent beam model with LQR control-
ler. It can be immediately observed that the vibra-
tion of the two systems is suppressed well and the 
maximum amplitude of uy(x, t) from 0.41  m reduce 
to approximate 0.08 m. Meanwhile, it can be known 
that the vibration suppression effect of the space truss 
and the equivalent beam model is coincident and the 
results reveal the designed LQR vibration controller 
based on the equivalent beam model can effectively 
suppress the dynamic responses, which demonstrates 
the validity and advantages in the vibration controller 
design of the large space truss based on the dynamic 
equivalent modelling.

Fig. 5   Responses at the free end with w0 = 0.05 m, Ω= 0.25 Hz a space truss without control, b equivalent beam model without 
control, c space truss with control and d equivalent beam model with control
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Fig. 6   Control state with 
w0 = 0.05 m, Ω= 0.2 Hz a 
dynamic responses of space 
truss and equivalent beam 
model at free end and b 
control moment
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Varying the amplitude w0 and frequency Ω of 
the external excitation, the parameter influences 
on the structural dynamic responses and vibration 
control are investigated. The time histories under 
w0 = 0.05 m and Ω = 0.2 Hz is illustrated to show 
the validity study and effect analysis, as shown in 
Fig. 6. As is evident, it can be seen that the uncon-
trolled and control dynamic responses at fixed end 
obtained from full-scale finite element model of 
the space truss are different obviously, as shown 
the full lines in Fig.  6a. The vibration amplitude 
of the space truss can be reduced by approximate 
50% after implementing active control moment.  

The results demonstrate that the designed LQR 
vibration controller can suppress significantly the 
vibration displacement of the original space truss 
based on the proposed equivalent beam model. In 
addition, it can also be observed from the Fig.  6a 
that the dynamic response curves of the space truss 
and equivalent beam model are agree excellently, 
which can verify the equivalent beam model and 
achieve the control effect of the space truss utiliz-
ing its equivalent beam model. Figure 6b illustrates 
the control moment acted on the equivalent beam 
model and space truss. It can be found that the con-
trol moment changes periodically and the maximum 
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Fig. 8   Comparisons of displacement between space truss and equivalent beam model under uy(Lt, 0) = 0.05 m a without control and 
b LQR control
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values is 1586 N ⋅m , which can be acted on the 
space truss using piezoelectric patches.

It is then of interest to analyze the dynamic 
responses of the space truss when w0 = 0.1 m and 
Ω= 0.2 Hz . The results are shown in Fig.  7a for 
uncontrolled and controlled systems. Inspecting these 
plots, we note that the dynamic response curves for 
the controlled space truss and the controlled equiva-
lent beam model have a similar trend in 100 s, which 
implies that the equivalent beam model can also 
capture the dynamic behavior under this load case. 

To assess the designed LQR controller, the dynamic 
responses of the uncontrolled and controlled space 
truss are compared, as shown in Fig. 7a, which pre-
sents that the LQR controller has excellent vibration 
suppression on the space truss and the maximum 
reduced rate of the vibration amplitude reaches up to 
50% approximately. The comparisons demonstrate 
further the validity of the LQR controller to sup-
press successfully the vibration of the large space 
truss. Figure  7b plots diagrams of control moment 
and its maximum value is 3171 N ⋅m . It can be found 
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that the required control moment increases with the 
increase w0 of to achieve same control effect.

4.2.2 � Impulse excitation

To investigate comprehensively the influence of the 
designed controller based on the equivalent beam 
model on the vibration suppression of the space truss, 
the numerical comparisons between the equivalent 
beam model and space truss are presented with differ-
ent structural initial displacements caused by impulse 
excitation. The uncontrolled and controlled dynamic 
responses of the equivalent beam model and space 

truss for initial displacements at the cantilevered end, 
namely uy(Lt, 0) = 0.05 m, 0.1 m, 0.2 m, 0.3 m , are 
depicted in Figs. 8, 9, 10 and 11. The damping param-
eters is cd = 0.2640 N s/m

2 and cr = 0.4756 N s . It 
can be seen from Figs. 8a–11a that the free vibration 
responses of the equivalent beam model match well 
with those of the space truss using full-scale finite ele-
ment model in four different initial displacement con-
ditions. The correctness of the proposed equivalent 
beam model is checked without controller. According 
to the number of the degree of freedom of the discrete 
dynamic model, the full state feedback control param-
eter is set to Q = diag(10,000,000)12×12. As shown the 
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full lines in Figs. 8b–11b, the dynamic responses of 
the equivalent beam model are suppressed rapidly and 
significantly with the active vibration controller com-
paring with the corresponding dynamic responses in 
Figs. 8a–11a. More importantly, in order to study the 
active vibration control of the large space truss, the 
vibration control law in four conditions is applied to 
the space truss using ANSYS software to analyze the 
vibration suppression of the truss system. The numer-
ical results (see the broken lines in Figs.  8b–11b) 
show that the designed vibration controller based on 
the equivalent beam model can also play a good per-
formance on the vibration control of the space truss. 
It should be noted that the designed LQR vibration 
controller based on the equivalent beam model can 
suppress well the vibration of the space truss compar-
ing with the uncontrolled system, but the vibration 
amplitude does not rapidly attenuate to zero in the 
late stage since the existence of the small inevitable 
equivalent error between the equivalent beam model 
and space truss. The micro vibration can be attenu-
ated by damping effect and it will be discussed in 
next part.

4.2.3 � Parameter analysis

This part investigates the influence of the damping 
and control parameter on the dynamic responses of 
the space truss and equivalent beam model. Simul-
taneously, the effectiveness of the designed LQR 
controller based on the equivalent beam model 

for suppressing the vibration of the space truss is 
explored by varying parameters.

(a)	 Analysis of control parameter
 According to the optimal control theory, the 

weight matrix Q affects the convergence speed 
of the control variable. The LQR vibration con-
troller is designed based on the first three modes 
of the equivalent beam model and the influence 
of the weight matrix Q on the control conver-
gence speed of the two systems including the 
space truss and equivalent beam model is dis-
cussed. The parameters for the numerical calcu-
lations: cd = 0.2640 N ⋅ s/m

2 , cr = 0.4756 N ⋅ s 
and uy(Lt, 0) = 0.05 m . Figure  12a shows the 
transverse displacement curves of the space truss 
and equivalent beam model at the fixed end with 
weight matrix Q = diag(1,000,000)12×12, which 
reveals that the LQR controller can also play a 
good control effect on the space truss compared 
with the equivalent beam model. The control 
moment required to complete the suppression of 
the system vibration is performed in Fig. 12b and 
its maximum value is 814.2 N ⋅m . For the weight 
matrix Q = diag(100,000,000)12×12, as shown 
in Fig. 13a, it can be seen that the vibration dis-
placements of the space truss and equivalent 
beam model can be rapidly suppressed and the 
maximum required control moment (as shown in 
Fig. 13b) is 971.4 N ⋅m . The results indicate that 
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the attenuation rate of vibration displacements 
of two systems increases as the weight matrix 
Q increases. The investigation demonstrates that 
LQR vibration controller designed based on the 
first three mode shapes of the equivalent beam 
model can plays a consistent and good control 
performance on the equivalent beam model and 
space truss. Additionally, the vibration displace-
ments of the systems fluctuate obviously and 
attenuate to zero slowly when the values of Q 
is relatively small. In summary, it is an effective 
and important strategy to design the vibration 
controller for the large space truss based on the 
dynamic equivalent modeling concept.

(b)	 Analysis of damping parameter

dynamic responses of two systems with LQR 
controller and the control performance is good. 
Similarly, for the case of cd = 0.3960 N ⋅ s/m

2 
and cr = 0.7133 N ⋅ s , the attenuation rate of 
dynamic responses increases and agrees well 
shown in Fig.  15a. Comparing with Fig.  14b, it 
can be seen that the influence of the damping on 
the attenuation rate of the equivalent beam model 
is weak, but it can promote the attenuation of the 
micro vibration of the space truss, which is an 
advantage to reach to zero quickly for the micro 
vibration.

5 � Concluding remarks

The LQR vibration controller was designed based on 
the equivalent beam model to suppress the vibration 
of the large space truss, which addressed successfully 
the difficulty of vibration controller design due to 
high degree of freedom of the finite element model. 
In this paper, an efficient equivalent beam model was 
established to capture the dynamic behaviors of the 
cantilevered space truss and obtain the state space 
model. The stiffness and mass of the equivalent beam 
model was achieved combining the geometrical rela-
tionship of Timoshenko beam. The Hamilton princi-
ple was employed to found the fourth-order governing 
equations of the equivalent beam model. Specially, an 
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Fig. 15   Displacements of space truss and equivalent beam model under cd = 0.3960 N ⋅ s/m
2 and cr = 0.7133 N ⋅ s a without con-

trol and b LQR control

 
Selecting the initial displacement uy(Lt, 0) = 0.05 m 
of the space truss at the free end and weight 
matrix Q = diag(10,000,000)12×12, the influence 
of damping on the dynamic behaviors is dis-
cussed. The dynamic responses of the uncon-
trolled space truss and equivalent beam model are 
presented in Fig.  14a with the damping param-
eters cd = 0.1320 N ⋅ s/m

2 and cr = 0.2378 N ⋅ s . 
It can be observed clearly that the free vibration 
responses of the two systems attenuate slowly 
in the case of low damping and are coincided 
between the space truss and equivalent beam 
model, which verifies the effectiveness of the 
equivalent beam model. Figure  14b gives the 



1032	 Meccanica (2022) 57:1017–1033

1 3
Vol:. (1234567890)

analytical solution method was exploited to establish 
the discrete dynamic model and construct state space 
model for the space truss. The first three natural fre-
quencies and mode shapes of the equivalent beam 
model were validated by simulating the space truss in 
ANSYS and the results were in good agreement with 
those of the original space truss.

After the analytical solution of mode shapes of the 
equivalent beam model, the LQR vibration controller 
was designed under periodic and impulse excitations 
and its effectiveness on the vibration suppression of 
the space truss was studied based on the equivalent 
beam model. The results were verified by applying 
the control law obtained from the equivalent beam 
model to the full-scale finite element model of the 
space truss. To check the designed controller compre-
hensively, external excitation, damping and control-
ler parametric studies were carried out. The vibration 
controller can play a good performance under differ-
ent external excitations. Remarkably, vibration con-
trol strategies based on the modal approach of equiva-
lent beam model can significantly reduce the number 
of degrees of freedom for space truss system and thus 
increase computational efficiency.

The vibration control strategy and theoretical 
framework for designing the controller of the space 
truss provide a new way to achieve effective vibration 
suppression for the large truss structures in aerospace 
and civil applications, etc.
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