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Abstract For the accurate calculation of the time-

varying mesh stiffness (TVMS) of helical gear pairs, a

novel method is proposed in this paper. This proposed

method can predict the TVMS based on the gear

accuracy grade or the measurement coordinates of the

tooth surface. The abnormal meshing phenomena

caused by manufacturing errors (MEs), assembly

errors (AEs), and tooth modifications (TMs), such as

the loss of contact of tooth pairs, out-of-line meshing,

and eccentric loads, are considered in the calculation

process. The proposed method was verified to be

effective for both spur and helical gear pairs. The

effects of MEs, AEs, and TMs on the TVMS of helical

gear pairs were also investigated. The results showed

that the pitch, helix, and misalignment deviations were

the main influencing factors of the TVMS in MEs and

AEs. Both profile modification and lead crowning

reduced the mean of the TVMS. The proposed method

is expected to provide accurate TVMS excitation data

of gear transmission systems for dynamic analysis.

Keywords Mesh stiffness � Manufacturing errors �
Assembly errors � Profile modification � Lead
crowning

List of symbols

a Standard center distance

between two gears

Ax Area of section

B, Bi Width of tooth and slice

Ca, Cb Maximum modification

amounts of profile

modification and lead

crowning

CF Correction factor considering

coupling effect between

adjacent slices

dx Coefficient defined in Fig. 7

DDZ
g

Minimum distance from arc

CDZ
g center to arc CDZ

p

DDZ
p

Minimum distance from arc

CDZ
p center to arc CDZ

g

DDZ
gp

Minimum distance between

arc CDZ
g and CDZ

p

e Calculation accuracy

ec Coefficient of modification

curve

eig, e
i
p

Initial gaps between axial

slices

E Young’s modulus
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Esni, Esns Lower and upper deviations

of tooth thickness

fpt Single pitch deviation

Fp Total cumulative pitch

deviation

Fa Total profile deviation

Fb Helix deviation

G Shear modulus

h, hx Coefficients defined in Fig. 7

i Index of discrete elements

along tooth width

ic Index of contacted tooth pairs

ig, ip Index of slices where

Hertzian contact center is

located on gear and pinion

Ix Area moment of inertia

j Index of discrete elements

along tooth profile

kija Axial compressive stiffness

kijb Bending stiffness

kijf Stiffness considering gear

fillet-foundation deflection

k�f , k
i�
f

Correction foundation

stiffnesses of gear and slice

kth ic Hertzian contact stiffness

kmesh Time-varying mesh stiffness

kijs Shear stiffness

kttooth p;g ic Tooth stiffness of nominal

slice StN ic on tooth pair ic
L Coefficient defined in Fig. 7

L1, L2 Profile modification length

and half of lead crowning

length

L*, M*, P*, Q* Coefficients in Eq. (27)

n Index of teeth

n1, n2 Number of discrete elements

along tooth width and profile

n3 Number of contact tooth pairs

n4 Number of nominal slices on

contact tooth pair ic
nlg, nlp Half of number of

uncontacted slices between

current and last contact slices

on gear and pinion

nng, nnp Half of number of

uncontacted slices between

current and next contact slices

on gear and pinion

R Reference radius

rb Radius of base circle

rDZg , rDZp Radii of arcs CDZ
g and CDZ

p

rnijL , rnijR
Radii of circles where control

points of elements Rnij
L and

Rnij
R are located

Rpt(1), REs(1), Ra(1),

Rb(1)

Variables with a value range

of [0, 1] and obey different

probability distributions

S1, S2 Modification distances of

profile modification and lead

crowning

Sf Coefficient defined in Fig. 7

Si, Sig, S
i
p

Axial slices

StN Nominal slice

t Index of contacted nominal

slices

Tg Output torque of gear

uf Coefficient defined in Fig. 7

Wi
F

Weighting factor of the slice

Si

Wk Base tangent length

x Coefficient defined in Fig. 7

z Number of teeth

Xij
c , Y

ij
c , Z

ij
c

Coordinates of center of

curvature corresponding to

control point of discrete

element

X1ij
L , Y1ij

L , Z1ij
L , X1ij

R ,

Y1ij
R , Z1ij

R

Theoretical coordinates of

element control point on

surfaces of first tooth

Xnij
MEL, Y

nij
MEL, Z

nij
MEL,

Xnij
MER, Y

nij
MER, Z

nij
MER

Coordinates of element

control point considering

manufacturing errors (MEs)

Xnij
TML, Y

nij
TML, Z

nij
TML,

Xnij
TMR, Y

nij
TMR, Z

nij
TMR

Coordinates of element

control point considering

MEs and tooth modifications

(TMs)

Xnij
AEL, Y

nij
AEL, Z

nij
AEL,

Xnij
AER, Y

nij
AER, Z

nij
AER

Coordinates of element

control point considering

MEs, TMs, and assembly

errors (AEs)

Greek symbols

b Helix angle of reference circle

bj Coefficient defined in Fig. 7

df, dg Foundation deflections
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dtN ic
Comprehensive deflection of nominal

slice

dtic Total deflection of contact center of

nominal slice

D1, D2 Modification amounts of profile

modification and lead crowning

Dsum Total amount of TMs

Dx, Dy Center distance deviations along X-axis

and Y-axis

DZ Distance between centers of arc CDZ and

arc corresponding to element control

point

Dh1, Dh2 Rotation steps of gear and pinion

Dhc Angle parameter used for calculating

center coordinates of arc CDZ

DhnijMEL,

DhnijMER

Angle parameters used for generating

tooth surfaces with MEs in Eqs. (5) and

(6)

DhnijTML,

DhnijTMR

Angle parameters used to generate tooth

surfaces with TMs in Eqs. (12) and (13)

Rnij
L , Rnij

R
Discrete elements on tooth surfaces

RDZ Plane perpendicular to Z-axis

CDZ Arc on discrete element

t Poisson’s ratio

h1, h2 Rotation angles of gear and pinion

during iterative process for calculating

time-varying mesh stiffness (TVMS)

hf Coefficient defined in Fig. 7

u, c Misalignment deviations on XBpZ-plane

and YBpZ-plane

g, k Correction coefficients of foundation

stiffness

Acronyms

AEs Assembly errors

FEM Finite element method

MEs Manufacturing errors

TCA Tooth contact analysis

TMs Tooth modifications

TVMS Time-varying mesh stiffness

1 Introduction

Gear transmissions are widely used in various types of

mechanical equipment, such as automobiles, heli-

copters, and shearers, to transmit power and motion.

As the popularity of electric vehicles grows, the

requirements on the noise, vibration, and harshness

(NVH) performances of automobile are becoming

increasingly stringent, which has become a subject of

great relevance in recent years. The sources of

vibration and noise of gear transmission systems are

commonly divided into internal and external excita-

tions, and the time-varying mesh stiffness (TVMS) is

one of the most important internal excitations [1].

Therefore, the accurate calculation of the TVMS is of

great significance for the analysis and control of the

vibrations and noise of gear transmission systems.

In previous studies, analytical methods and the

finite element method (FEM) were the two most

important methods for calculating the TVMS [2]. The

FEM has been generally accepted and is widely used

due to its accuracy and its ability to calculate the

stiffnesses of arbitrary bodies with complex shapes

[3]. For example, Wang and Howard [4] and Yuan

et al. [5] investigated the effects of different loads on

the TVMS of spur and helical gear pairs, respectively.

Ma et al. [6] investigated the influence of different

amounts of profile modification on the TVMS of spur

gear pairs. Shao et al. [7] investigated the effects of

gear faults on the TVMS of spur gear pairs and

obtained the relationship between the TVMS and the

gear vibrations. Cooley et al. [8] compared the

differences between the local slope method and the

average slope method in calculating the TVMS by the

FEM. In addition, the FEM is often used to verify the

accuracy of analytical methods [9, 10]. With the

development of computing technology in recent years,

although the FEM has been used in various fields,

there are still many problems in the calculation of the

TVMS. On the one hand, the calculation accuracy of

the FEM depends on the mesh quality, which is related

to the mesh size. In general, the mesh size is difficult to

approximate at the micrometer level, which is the size

range of manufacturing errors (MEs), to ensure the

calculation efficiency and cost. On the other hand, the

MEs of each tooth, such as pitch deviations, are

different in practice, and different tooth meshing

sequences also affect the calculation results of the

TVMS. However, to avoid very large finite element

models, usually only some of the teeth of the gear pair

are considered in the model. Therefore, the FEM is not

an effective method to calculate the TVMS when MEs

are considered.

Compared with the FEM, analytical methods have

higher computational efficiencies, and their results are
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in good agreement with the FEM. As a result,

analytical methods have received considerable atten-

tion in recent years, and many analytical models have

been proposed in the literature. Cornell [11] and

Weber [12] calculated the stiffnesses of spur gear teeth

using materials mechanics approaches, and these

methods were extended by Sainsot et al. [13] and

Chen et al. [14]. Yang and Lin [15] presented the

potential energy method for calculating the TVMS.

This method was further developed by Tian [16] and

Wu et al. [17] considering the influence of shear

deflection. This method was extended and is widely

used in the study of the TVMS. For example, Chaari

et al. [18] andWan et al. [19] studied the effect of tooth

cracking on the TVMS of spur gear pairs. Chen and

Shao [20] studied the effects of gear tooth errors, tooth

profile modifications, applied loads, and tooth root

cracks on the TVMS of spur gear pairs. Chen et al. [1]

revealed the influence mechanisms of the coupling

effect of the gear body structure on the TVMS of spur

gear pairs. The TVMS was also approximated by

rectangular waves in some studies [21–23].

The aforementioned analytical methods focus more

on the TVMS calculation of spur gear pairs. The

TVMS analytical methods of helical gear pairs mainly

focus on the comprehensive application of the slice

method and the potential energy method, in which the

helical gear is divided into multiple spur gear slices

along the tooth width. For example, Wang and Zhang

[24] established a TVMS model of a helical gear pair

considering the influence of tooth profile errors. Wan

et al. [25] presented the accumulated integral potential

energy method for calculating the TVMS of normal

and faulty helical gears. Jiang and Liu [26] and

Huangfu et al. [10] proposed other efficient TVMS

analytical methods for helical gear pairs to analyze the

influence of tooth cracks. Han et al. [27] developed a

TVMS model of a helical gear pair considering the

effect of friction. Feng et al. [28] proposed an

improved analytical method taking the influence of

the effective elastic modulus, the nonlinear Hertzian

contact, and various coefficients, such as the modifi-

cation, friction, and fillet-foundation coefficients, into

consideration. Yu andMechefske [9] also presented an

improved analytical method considering the coupling

influence between adjacent slices. Marques et al. [29]

established a TVMS analytical model based on the

tooth stiffness in a unit length of a single contact line

and the maximum tooth stiffness in the ISO 6336

standard. Although many analytical methods have

been proposed in the past and these methods have

higher efficiencies than the FEM, there is no predic-

tion method for the TVMS based on the gear accuracy

grade, as only the tolerance ranges of MEs are usually

defined in the gear design stage.

In addition, a reasonable loaded tooth contact

analysis algorithm is the key to accurately calculating

the TVMS in an analytical method. The generalized

tooth contact analysis algorithm suffers from a com-

plicated calculation process and numerical instability

[30]. Moreover, when the influence of the tooth errors

is considered, the actual meshing position is difficult

to determine through the traditional tooth contact

analysis algorithm [31]. It is usually assumed that the

actual position is still on the theoretical meshing line,

and the tooth error is regarded as a displacement

parameter along the theoretical line of action

[1, 31, 32]. However, owing to the effects of tooth

errors, not only has the actual meshing position

changed, but also some special meshing phenomena

will occur during the transmission process, such as the

loss of contact of tooth pairs, out-of-line meshing, and

eccentric loads. Although all major commercial non-

FE gear analysis tools are able to calculate the TVMS

of gear pairs, most of them are based on the ISO

standard, and the influence of the above abnormal

meshing phenomena on the TVMS is also not

considered.

This study presents a novel analytical method for

calculating the TVMS of helical gear pairs considering

the effects of MEs, AEs, and TMs. The first section

reviews the calculation methods of the TVMS. A

novel calculation method of the TVMS is proposed in

Sect. 2. The presented method is verified by compar-

ing the results with the literature in Sect. 3. Section 4

shows a series of TVMS results obtained by the novel

calculation method, and the influence mechanisms of

MEs, AEs, and TMs on the TVMS are discussed.

Finally, Sect. 5 presents the conclusions of this study,

and the significance of the proposed method is

summarized.

2 Principles of novel calculation method

MEs, AEs, and TMs are inevitable in the practical

application of gears, which will change the tooth

contact, such as causing early or delayed contact. A
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reasonable generation method of the actual error of the

tooth surface and the development of a tooth contact

analysis (TCA) algorithm on this basis are the keys to

accurately calculating the TVMS of helical gear pairs.

Therefore, Sect. 2.1 first establishes a practical gear

error model considering MEs, AEs, and TMs. A novel

TCA algorithm based on the proposed gear model is

developed in Sect. 2.2. Finally, the calculation process

of the TVMS is described in Sect. 2.3.

2.1 Gear model

In most of the existing calculation methods, the effects

of MEs are not considered, and the gears are regarded

as perfect tooth surfaces without errors. In some

studies, specific assumptions were made about the

MEs of gears. For example, Kurokawa et al. [33]

assumed that theMEs of each tooth were the same, and

the accumulative pitch error was also assumed to be

distributed as a sine wave in other studies [5, 34, 35].

However, usually only the gear accuracy grades, that

is, the tolerance ranges of the MEs, are determined in

the gear design process. Moreover, the MEs of each

tooth are different in practice, and the TVMS is also

affected by the different tooth meshing sequences. The

gear models in the existing methods cannot represent

gears with MEs directly and effectively. In this

section, a practical gear error model based on the gear

accuracy grade is proposed, in which MEs (single

pitch deviation, total cumulative pitch deviation, total

profile deviation, total helix deviation, tooth thickness

deviation, and base tangent length), AEs (center

distance and misalignment deviations), and TMs

(profile modification and lead crowning) are

considered.

In this study, the tooth surfaces are discretized into

n1 9 n2 elements of the same size, as shown in

Fig. 1a. The control point of each element is located at

its center and is denoted by the indices i and j. It is

known that different types of MEs are distributed

according to a probability within their tolerance

ranges, which can be found in the ISO standard [36]

of the gear accuracy grade. To generate the actual

tooth surfaces considering MEs, first, the theoretical

coordinates of the element control points on the

surfaces of the first tooth, X1ij
L ; Y1ij

L ; Z1ij
L

� �
, and

X1ij
R ; Y1ij

R ; Z1ij
R

� �
, are obtained by the standard involute

equation, where the subscripts L and R indicate that

the element control point is located on the left and

right tooth surface, respectively. The tooth surfaces on

both sides of each tooth will be generated based on the

different MEs in sequence. The MEs of the control

points on the nth tooth surface are given as follows:

f npt ¼ �fpt
� �

þ Rptð1Þ 2fpt
� �

; ð1Þ

En
s ¼ Esni þ REs 1ð Þ Esns � Esnið Þ; ð2Þ

Fnij
a ¼ Rað1Þ � 1=2ð ÞFa; ð3Þ

Fni
b ¼ Rb 1ð Þ � 1=2

� �
Fb; ð4Þ

where Rpt(1), REs(1), Ra(1), and Rb(1) are variables

with a value range of [0, 1] and obey different

probability distributions; fpt, Fa, and Fb are the

tolerance ranges of the single pitch deviation, total

profile deviation, and helix deviation, respectively;

Esni and Esns are the lower and upper deviations of the

tooth thickness, respectively; and the superscripts n, i,

and j identify the control point of element i 9 j on the

nth tooth.

The tooth surfaces with MEs of the nth tooth are

given as follows:

Xnij
MEL

Ynij
MEL

Znij
MEL

2
4

3
5 ¼

cos DhnijMEL

� �
sin DhnijMEL

� �
0

� sin DhnijMEL

� �
cos DhnijMEL

� �
0

0 0 1

2
4

3
5

X1ij
L

Y1ij
L

Z1ij
L

2
64

3
75;

ð5Þ

Xnij
MER

Ynij
MER

Znij
MER

2
4

3
5 ¼

cos DhnijMER

� �
sin DhnijMER

� �
0

� sin DhnijMER

� �
cos DhnijMER

� �
0

0 0 1

2
4

3
5

X1ij
R

Y1ij
R

Z1ij
R

2
64

3
75:

ð6Þ

The angle parameters, DhnijMEL and DhnijMER, can be

calculated as follows:

DhnijMEL ¼ 2p n� 1ð Þ½ �=zþ
Xn
z¼1

f npt þ Fnij
aL

 !,
r

þ Fni
bL

.
rb cos bð Þ;

ð7Þ
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DhnijMER ¼ 2p n� 1ð Þ½ �=zþ
Xn
z¼1

f npt þ En
s þ Fnij

aR

 !,
r

þ Fni
bR

.
rb cos bð Þ;

ð8Þ

where b is the helix angle of the reference circle, and z

is the number of teeth, and r and rb are the reference

radius and the radius of the base circle, respectively. It

is worth noting that after each tooth surface is

generated based on Eqs. (5) and (6), the total cumu-

lative pitch deviation (Fp) and the base tangent length

(Wk) will be used to check that the values of f npt, E
n
s ,

Fnij
a , and Fni

b are reasonable. If Fp andWk are not within

their tolerance ranges, f npt, E
n
s , F

nij
a , and Fni

b will be

reassigned.

After tooth surfaces with MEs are generated, TMs

are introduced into the gear model, where the profile

modification and the lead crowning are considered

(see Fig. 1b, c). Both TMs are obtained by moving the

control points of each element. It is assumed that the

maximum modification amounts of the profile mod-

ification and the lead crowning are Ca and Cb,

respectively. B is the tooth width, L1 is the length of

the profile modification, and L2 is half the lead

crowning length. When the modification distance is

S1, the amount of profile modification is given as

follows:

D1 ¼ Ca S1=L1ð Þec ; ð9Þ

where ec is the coefficient of the modification curve. If

the modification curve is a straight line, ec = 1. If the

modification curve is a parabola, ec = 2.

Similarly, when the modification distance is S2, the

amount of the lead crowning is given as follows:

D2 ¼ Cb S2=L2ð Þ2: ð10Þ

For each element on the tooth surface, the total TM

amount can be calculated as follows:

Dsum ¼ D1 þ D2: ð11Þ

The tooth surfaces with MEs and TMs of the nth

tooth are given as follows:

Xnij
TML

Ynij
TML

Znij
TML

2
4

3
5 ¼

cos DhnijTML

� �
� sin DhnijTML

� �
0

sin DhnijTML

� �
cos DhnijTML

� �
0

0 0 1

2
4

3
5

Xnij
MEL

Ynij
MEL

Znij
MEL

2
4

3
5;

ð12Þ

Xnij
TMR

Ynij
TMR

Znij
TMR

2
4

3
5 ¼

cos DhnijTMR

� �
� sin DhnijTMR

� �
0

sin DhnijTMR

� �
cos DhnijTMR

� �
0

0 0 1

2
4

3
5

Xnij
MER

Ynij
MER

Znij
MER

2
4

3
5;

ð13Þ

where DhnijTML ¼ � Dnij
sumL

�
rnijL

� �
, and DhnijTMR ¼ Dnij

sumR

�
rnijR . Dnij

sumL and Dnij
sumR are the total TM amounts of the

elements Rnij
L and Rnij

R , respectively. Similarly, rnijL and

rnijR are the radii of the circles where the control points

of the elements Rnij
L and Rnij

R are located, respectively.

The part of the tooth surface with MEs and TMs is

shown in Fig. 2a. Unlike the gear model in traditional

analytical methods, the tooth surfaces with errors are

(a) (b)

(c)

Fig. 1 a Discrete tooth surfaces of helical gear, b profile modification, and c lead crowning
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not smooth and consist of multiple elements of the

same size. Figure 2b shows the definition of the AEs

used in this study. AgBg and ApBp are the theoretical

axis positions of the gear and pinion without AEs,

respectively. The AEs of the gear and pinion are

equivalently transferred to the axis position of the gear

to simplify the model in this study. Ag2Bg2 is the new

axis position of the gear when the AEs are considered.

The AEs are indicated by four parameters, where Dx
and Dy are called the center distance deviations, u and

c are the misalignment deviations on the XBpZ-plane

and YBpZ-plane, respectively, and a is the standard

center distance. The different AEs can be obtained by

different combinations of the above four parameters.

Therefore, the surfaces with MEs, TMs, and AEs of

the nth tooth are given as follows:

Xnij
AEL

Ynij
AEL

Znij
AEL

1

2
664

3
775 ¼

1 0 M13 M14

0 1 M23 M24

0 0 M33 M34

0 0 0 1

2
664

3
775

Xnij
TML

Ynij
TML

Znij
TML

1

2
664

3
775; ð14Þ

Xnij
AER

Ynij
AER

Znij
AER

1

2
664

3
775 ¼

1 0 M13 M14

0 1 M23 M24

0 0 M33 M34

0 0 0 1

2
664

3
775

Xnij
TMR

Ynij
TMR

Znij
TMR

1

2
664

3
775; ð15Þ

where M13 = (1 - sinc)tanu - sinu, M23-

= - sinc/cosu, M33 = sinc - cosu - 1, M14-

= Dx ? B[sinu - (1 - sinc)tanu], M24-

= a ? Dy ? Bcsinc/cosu,
M34 = B(cosu ? 1 - sinc).

2.2 Novel tooth contact analysis (TCA) algorithm

based on proposed gear model

Because of the effects of MEs, AEs, and TMs, some

special contact situations will occur during the mesh-

ing process, such as the contact points being outside

the theoretical meshing line and discontinuous on the

tooth surface. In order to accurately determine the

position of the actual contact point on the tooth

surfaces and calculate the amount of deflection at

different meshing positions of the gear pair, a novel

TCA algorithm based on the presented gear model is

developed in this section, in which the tooth contact is

converted into the contact of discrete elements on the

tooth surface. In Sect. 2.1, the coordinates of the

control point of each element and their corresponding

radius of curvature have been calculated, based on

which the center of curvature corresponding to each

control point can also be obtained. Since the tooth

surface of a helical gear can be regarded as generated

by the translation and rotation of the transverse profile

around the gear axis, each element on the tooth surface

is represented as a helical surface consisting of a series

of arcs in this algorithm, as shown in Fig. 3a. The radii

(a) (b)

Fig. 2 a Part of the tooth surface with MEs and TMs and b definition of AEs
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of these arcs are the same as the radius of curvature at

the control point, and their centers are located on a

helix line. Hence, determining the coordinates of these

arc centers is the key to representing the helical arc

surface of each element by mathematical equations.

In Fig. 3a, the Z0-axis is the axis of the helical arc

surface, which is parallel to the gear axis. The arc CDZ

is the intersection line of the element Rij and the plane

perpendicular to the Z0-axis. The distance between the

center of the arc CDZ and the center of curvature

corresponding to the control point along the Z0-axis is

denoted as DZ. The arc center coordinates can be

obtained by the translation and rotation of the

coordinates of the center of curvature Xij
c ; Y

ij
c ; Z

ij
c

� �
corresponding to the control point around the Z0-axis.

Therefore, the center coordinates of the arc CDZ are

given as follows:

Xij
DZ

Yij
DZ

Zij
DZ

2
64

3
75 ¼

cos Dhcð Þ � sin Dhcð Þ 0

sin Dhcð Þ cos Dhcð Þ 0

0 0 1

2
4

3
5

Xij
c

Yij
c

Zij
c � DZ

2
4

3
5;

ð16Þ

where Dhc is the rotation angle around the Z0-axis.

According to the development drawings of the tooth

surface (see Fig. 3b), the rotation angle can be

calculated as follows:

Dhc ¼
DZ tan b

r
: ð17Þ

For an arbitrary output position, the gear is fixed,

and the pinion is rotated counterclockwise to approach

the gear. During the rotation process of the pinion,

there are four cases for two arbitrary elements (Rij
g and

Rij
p) with common x, y, and z ranges on the tooth

surfaces of the two gears, as shown in Fig. 4.When the

AEs are not considered, the axes of Rij
g and Rij

p are

parallel to the Z-axis (see Fig. 4a, b). In an arbitrary

plane perpendicular to the Z-axis (RDZ), Rij
g and R

ij
p can

be represented as the arcs CDZ
g and CDZ

p , respectively.

The minimum distance between the two arcs (DDZ
gp ) is

used to determine whether the two elements are in

contact, which can be calculated as follows:

DDZ
gp ¼

rDZg � DDZ
g

� �
þ rDZp � DDZ

p

� �

2
; ð18Þ

where rDZg and rDZp are the radii of the arcs CDZ
g and

CDZ
p , respectively, and DDZ

g is the minimum distance

between the CDZ
g arc center and each point on the arc

CDZ
p . Similarly, DDZ

p is the minimum distance between

the arc CDZ
p center and each point on the arc CDZ

g . If

DDZ
gp is less than zero, the elements Rij

g and Rij
p are

separate, as shown in Fig. 4a. Otherwise, they are in

contact, as shown in Fig. 4b. Similarly, when the AEs

are considered, the judgement of whether the two

elements are in contact is performed in the same way.

It is worth noting that the axis of Rij
g is not parallel to

the Z-axis because the AEs are equivalently trans-

ferred to the gear axis. Therefore, DDZ
gp is not the

minimum distance between the two arcs (CDZ
g and

CDZ
p ), it is the minimum distance between the arc CDZ

p

and the projection of the arc CDZ
g on the plane RDZ (see

(a) (b)

Fig. 3 Tooth surface: a helical arc surface used to represent discrete element and b development drawings of the tooth surface
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Fig. 4c, d). In addition, under load conditions, the

pinion will continue to rotate after the two gears make

contact until the output torque of the gear balances the

external load. The mean of all the minimum distances

(DDZ
gp ) corresponding to different planes perpendicular

to the Z-axis (RDZ) is defined as the total deflection of

the two elements.

2.3 Time-varying mesh stiffness calculation

The slice method has been widely used in the study of

the TVMS of helical gear pairs [9, 10, 24–28], in

which the helical gear is usually divided into multiple

slices along the axial direction. In this study, the

discrete tooth surfaces of the helical gear are regarded

as consisting of n1 slices, each of which consists of n2
elements (see Fig. 1a). The TVMS of the helical gear

pair is calculated through an iterative process in this

study (see Fig. 5). First, the gear model with tooth

surfaces containing errors is generated based on the

input gear data, MEs, AEs, and TMs. It can also be

generated using the measurement coordinates of the

control point of each discrete element. The first

positions of the gear (h1) and the pinion (h2) are

initialized to zero. In addition, the calculation accu-

racy (e) and the rotation step sizes of the gear (Dh1)
and the pinion (Dh2) are also defined. Second, the gear
is rotated clockwise by Dh1 to an output position and

then fixed, and the pinion is rotated counterclockwise

by a smaller step (Dh2) to approach the gear. After

each rotation of the pinion, the contact status between

(a) (b)

(c) (d)

Fig. 4 Four cases of two arbitrary elements with common x, y, and z ranges on two gears: a element separation without AEs, b element

contact without AEs, c element separation with AEs, and d element contact with AEs
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the gear and pinion is checked based on the proposed

TCA algorithm.

When the effects of MEs, AEs, and TMs are not

considered, that is, when the tooth surfaces are perfect,

the contact center of each slice is located on the

theoretical contact line (see the blue line in Fig. 6a).

However, when the effects of MEs, AEs, and TMs are

considered, there are different initial gaps (eig and eip)

between the axial slices (Sig and Sip) on the two gears

(see Fig. 6b). As the pinion rotates counterclockwise,

these gaps will decrease until the resultant force of all

the contact slices is balanced with the external load.

Due to the effects of the MEs, AEs, and TMs, it is

inevitable that parts of the slices will lose contact (see

Fig. 6c) or the contact center on a slice will lie outside

the theoretical contact line. The yellow line segment in

Fig. 6a shows an actual possible contact line. In a

previous report [24], each slice along the tooth width

was independent, which meant the deflection on one

slice could not be conveyed to the neighboring slices.

This method will introduce large errors to the

Fig. 5 Flowchart of the calculation of the TVMS
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calculation results of the TVMS when parts of the

slices lose contact. Hence, the definition of the

nominal slice is proposed in this study, as shown in

Fig. 6a. It is assumed that there are n3 contact tooth

pairs, and each tooth pair includes n4 nominal slices

(the value of n4 may not be equal for different contact

tooth pairs). For each contact tooth pair, the construc-

tion law of the nominal slice is given as follows:

1. A nominal slice consists of a contact slice and non-

contact slices on both sides, and the number of

non-contact slices on both sides participating in

the construction of the nominal slice is half of the

total number of non-contact slices on both sides

(see Fig. 6a, nominal slice StN).

2. If the adjacent slices on both sides of a contact

slice are also contact slices, only the contact slice

constitutes a nominal slice (see Fig. 6a, nominal

slices S1N and S2N).

3. If the number of non-contact slices between two

adjacent contact slices is an odd number, the

central slice is subdivided into two identical slices

so that the number of non-contact slices is an even

number (see Fig. 6a, nominal slice St�1
N ).

4. When the outside of the first or last contact slice

also contains non-contact slices, if a non-contact

slice is located on the extension line of the actual

contact line, the non-contact slice should also be

considered. This is because although the non-

contact slice is at the edge of the tooth, its posture

will change with the deflection of the adjacent

contact slice (see Fig. 6a, nominal slice Sn4N ).

5. The contacted element with the largest amount of

deflection on each nominal slice is regarded as the

Hertzian contact center of the nominal slice.

Based on the above definition of the nominal slice,

an improved mesh stiffness model is proposed, as

shown in Fig. 7. In the traditional slicing method, the

total mesh stiffness is obtained through the superpo-

sition of the single tooth mesh stiffness, and the

coupling effects between the deflections of the adja-

cent slice and the adjacent tooth are not considered,

which will cause a large error in the calculation result

of the total mesh stiffness. In this study, four

correction coefficients, Wi
F, CF, g, and k, are intro-

duced to consider the above-mentioned two coupling

effects as in [9] and [10], respectively. Among them,

Wi
F is the weighting factor of the slice Si along the

tooth width that considers the coupling effect between

the deflections of the adjacent slice that is dependent

on the helix angle and tooth width. CF is a correction

factor that offsets the decrease in the mesh stiffness

caused by the weighting factor Wi
F. g and k are the

correction coefficients of the foundation stiffness and

the foundation stiffness under double-tooth meshing

duration, respectively. The above four correction

coefficients are obtained through FEM, the calculation

methods ofWi
F and CF are given elsewhere [9], and the

(a) (b)

(c)

Fig. 6 Tooth contact of helical gear pair: a definition of nominal slice, b initial gaps between axial slices, and c contact of nominal slice
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calculation methods of g and k are also given

elsewhere [10]. Hence, the correction foundation

stiffness in Fig. 7 (k�fp and k�fg) can be expressed as

follows:

k�fp;g ¼
Xn1
i¼1

ki�fp;g; ð19Þ

where n1 is the total number of slices along the tooth

width, ki�fp;g is the correction foundation stiffness of the

slice Si, and subscripts p and g denote the pinion and

the gear in the rest of paper, respectively.When slice Si

is located on the single-tooth meshing duration and the

double-tooth meshing duration, ki�fp;g can be expressed

as Eq. (20) and Eq. (21), respectively:

ki�fp;g ¼ gp;gCFW
i
Fk

ij
f1p;g; ð20Þ

Fig. 7 Improved mesh stiffness model
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ki�fp;g ¼ kp;ggp;gCFW
i
F �max kijf1p;g; k

ij
f2p;g

� �
; ð21Þ

where subscripts 1 and 2 in kijf1p;g and kijf2p;g denote the

first and second tooth pairs in the mesh, respectively;

and the superscript j denotes the index of the contact

element on the slice Si. In this study, each slice

constituting the helical gear is regarded as a non-

uniform cantilever beam (see Fig. 8). The stiffness

considering the gear fillet-foundation deflection of the

element j on slice Si (kijf1p;g and kijf2p;g) is given as

follows [2, 18, 37, 38]:

1

kijf
¼

cos2 bj
BiE

L�
uf
Sf

� �2

þM� uf
Sf

� �
þ P� 1þ Q� tan2 bj

� �
( )

;

ð22Þ

where Bi is the width of the slice Si; Sf and uf are

defined in Fig. 8. The method to calculate L*, M*, P*,

and Q* is given elsewhere [13].

In Fig. 7, kttooth p;g ic denotes the tooth stiffness of

the nominal slice StN ic on the tooth pair ic. The tooth

stiffness includes the tooth bending stiffness, shear

stiffness, and the axial compressive stiffness, and

kttooth p;g ic can be expressed as follows:

kttooth p;g ic ¼
Xip;gþnnp;g

i¼ip;g�nlp;g

CFW
i
F

1

kij
b

þ 1

kijs
þ 1

kija

; ð23Þ

where the superscript t is the index of the nominal slice

StN ic; ip and ig are the indices of the slices where the

Hertzian contact center of the nominal slice StN is

located; nlp and nlg are half the number of uncontacted

slices between the current and the last contacted slices,

respectively; nnp and nng are half the number of

uncontacted slices between the current and the next

contacted slices, respectively; subscripts p and g

represent the pinion and gear, respectively; and kijb , k
ij
s ,

and kija are the bending stiffness, shear stiffness, and

the axial compressive stiffness of the element j on slice

Si, respectively. It should be noted that if the slice Si

loses contact, the index j is obtained by interpolation.

Based on the non-uniform cantilever beam model (see

Fig. 8), kijb , k
ij
s , and k

ij
a are given as follows [2, 15, 16]:

1

kijb
¼
Z L

0

x cos bj � h sin bj
� �2

EIx
dx; ð24Þ

1

kijs
¼
Z L

0

1:2 cos2 bj
GAx

dx; ð25Þ

1

kija
¼
Z L

0

sin2 bj
EAx

dx; ð26Þ

where G and E are the shear and the Young’s moduli,

respectively, Ix is the area moment of inertia, Ax is the

area of the section, x, dx, bj, h, L, and hx are shown in

Fig. 8, and the Poisson’s ratio is represented by t.
These parameters can be calculated as follows:

Fig. 8 Non-uniform cantilever beam
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Ix ¼
2h3xB

i

3n1
; ð27Þ

Ax ¼
2hxB

i

n1
; ð28Þ

G ¼ E

2 1þ tð Þ : ð29Þ

According to previous publications [12, 39], the

contact deflection is usually regarded as the local

deflection. Hence, when calculating the contact stiff-

ness of the nominal slice StN ic, only the slice

participating in contact is considered. The contact

stiffness of the nominal slice StN ic on the tooth pair ic
can be calculated as follows [40]:

1

kth ic

¼ 4 1� t2ð Þ
pEBi

: ð30Þ

According to the flowchart of the calculation of the

TVMS (see Fig. 5), the gear is rotated clockwise to an

output position and fixed, and the pinion is rotated

counterclockwise by a smaller step to approach the

gear until the load is balanced. Based on Fig. 7, the

deflection and load compatibility conditions are given

as follows:

dfg þ d1N 1 þ dfp ¼ d11
..
.

dfg þ dtN ic
þ dfp ¼ dtic

..

.

dfg þ dn4N n3
þ dfp ¼ dn4n3

k�fgdfg ¼
Pn3
ic¼1

Pn4
t¼1

dtN ic

1

1
.
kttooth g ic þ 1

.
kth ic

þ 1
.
kttooth p ic

0
@

1
A

2
4

3
5

k�fgdfg ¼ k�fpdfp

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

;

ð31Þ

where dfp and dfg are the foundation deflections of the

pinion and gear, respectively; dtN ic
is the compre-

hensive deflection of the nominal slice, StN ic, on the

tooth pair ic, including the bending, shear, axial

compressive deflections, and the Hertzian contact

deflection; and dtic is the total deflection of the contact

center of the nominal slice, StN ic, which has been

obtained by the geometric method in Sect. 2.2. In the

initial stage of the iterative process, the total mesh

force is not sufficient to balance the external load. The

pinion continues to rotate, and the deflection of the

contacted nominal slices increases until the difference

between the torque generated by the total mesh force

and the rated output torque satisfies the requirements

of the calculation accuracy, as shown in Fig. 5. The

convergence condition is

k�fgdfgrbg � Tg\e; ð32Þ

where Tg and rbg are the torque and the radius of the

base circle of the gear, respectively.

Based on the mesh stiffness model in Fig. 7, the

TVMS of the gear pair is expressed as follows:

kmesh ¼
1

1
k�
fg

þ 1
k�
fp

þ 1

Pn3
ic

Pn4
t¼1

1

1

.
kt
tooth g ic

þ1

.
kt
h ic

þ1

.
kt
tooth p ic

2
4

3
5

:

ð33Þ

3 Validation of proposed method

Because the spur gear is a unique helical gear (b = 0),

the difference in the proposed method is that the

discrete element (see Fig. 3a) is equivalent to a

cylindrical surface rather than a helical arc surface.

In this section, a spur gear pair and a helical gear pair,

as shown in Table 1, were applied to the proposed

method. The TVMSs calculated by the proposed

method were compared with previously reported

results [10, 19, 41] and the FEM results in [10, 41]

to verify the effectiveness of the proposed method, as

shown in Fig. 9.

In Fig. 9a, the TVMS calculated using the method

proposed agreed well with the FEM result, and was

better than the result calculated by Xie’s method. The

errors between the calculation results of the proposed

method and the FEM results at positions A and B were

0.51% and 1.85%, respectively. This finding implies

that the method is practical for spur gear pairs. The

comparison of the TVMSs of the helical gear pair is

shown in Fig. 9b. Themesh stiffness of the multi-tooth

meshing region was obtained through the superposi-

tion of the single-tooth meshing stiffness in Wan’s

method, and the coupling effect between the deflec-

tions of the adjacent tooth was not considered, which

causes the calculation results of the TVMS to be larger

than the actual value. The variation trends of the

TVMS curves in this study were consistent with the

calculation result of Huangfu’s method, and the
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TVMS calculated by the proposed method was closer

to the FEM result than the result obtained by

Huangfu’s method in three-tooth meshing region

(see position B in Fig. 9b). The errors between the

calculation results of the proposed method and the

FEM result at positions A and B in Fig. 9b were 2.29%

and 2.57%, respectively. The above results show that

the proposed method has good accuracy and is

effective for both spur and helical gear pairs.

4 Results and discussions

In previous publications, the effects of many factors on

the TVMS of helical gear pairs have been studied,

such as the gear parameters [25], tooth cracks

[10, 25, 26], friction, and mesh misalignment [27].

In this section, the TVMSs of a helical gear pair at

different accuracy grades were predicted, and the

influence mechanisms of MEs, AEs, and TMs on the

TVMS were investigated. The helical gear pair shown

in Table 1 was used in this section.

4.1 Effect of manufacturing errors

To predict the TVMS of the helical gear pair under

different accuracy grades, the gear precision param-

eters of the MEs were first obtained based on the ISO

standard [36], as shown in Table 2. The single pitch

deviation, total cumulative pitch deviation, total

Table 1 Parameters of the gear pairs

Spur gear pair Helical gear pair

Pinion Gear Pinion Gear

Number of teeth 60 60 40 40

Normal module (mm) 2 2 4 4

Helix angle (�) – – 10 10

Pressure angle (�) 20 20 20 20

Face width (mm) 20 20 30 30

Hub radius (mm) 25 25 30 30

Poisson’s ratio 0.3 0.3 0.3 0.3

Young’s modulus (N/mm2) 2.068 9 105 2.068 9 105 2.12 9 105 2.12 9 105

Applied torque (Nm) 50 100

Number of elements along tooth profile 100 100 100 100

Number of elements along tooth width 200 200 200 200

(a) (b)

Fig. 9 TVMS and the number of contact pairs of a the spur and b helical gear pairs
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profile deviation, total helix deviation, tooth thickness

deviation, and base tangent length were considered.

According to previously published works [5, 34, 35],

the sine function usually simulates the cumulative

pitch deviation, but it ignores the effect of the

randomness of the pitch deviation on the contact state

of the gear teeth. Therefore, the cumulative pitch

deviation in this study was simulated by superposing a

sine function and a random variable that obeys the

normal distribution, and the remaining MEs were

obtained through random functions on the basis of

meeting the tolerance range requirements in Table 2.

In addition, the TVMS is not only related to the MEs

but also related to the size of the load. Normally, the

TVMS is more sensitive to errors at light loads than at

heavy loads. As the effect of load on the TVMS of

helical gear pairs has been investigated previously [5],

only TVMSs under a perfect tooth surface, grade 4,

grade 5, and grade 6 when the output torque is 500 Nm,

and TVMS under grade 4 when the output torque is

100 Nm were calculated in this study, as shown in

Fig. 10.

In Fig. 10, the peak-to-peak values of the TVMS

under a perfect tooth surface, grade 4, grade 5, and

grade 6 when the output torque was 500 Nm were

1.2262 9 108, 1.1930 9 108, 1.1573 9 108, and

1.1567 9 108 N/m, respectively. This shows that the

MEs led to a peak-to-peak change of the TVMS. The

mean values of the TVMS under a perfect tooth

surface, grade 4, grade 5, and grade 6 when the output

torque was 500 Nm were 5.3837 9 108,

5.2579 9 108, 5.1164 9 108, and 4.9603 9 108 N/

m, respectively, which decreased with the decrease in

the gear accuracy grade. In addition, Fig. 10 also

shows that the lower the gear accuracy grade was

under the same load, the more severe the vibrations of

the TVMS curve became, and the greater the

difference in waveform was. This occurred because

the deviation range of the MEs increased as the gear

accuracy grade decreased, while a larger deviation

range was more likely to cause out-of-line meshing,

the loss of contact of partial tooth pairs, and other

abnormal contact statuses. Comparing the TVMS at

different loads under grade 4, it can be found that the

mean value of the TVMS when the output torque was

100 Nm (4.0986 9 108 N/m) was much smaller than

the mean value at 500 Nm, and the vibration of the

TVMS curve was more severe when the output torque

was 100 Nm. This occurred because the TVMS was

not only related to the MEs but also related to the size

of the load. However, 100 Nmwas too small compared

to the load capacity of this helical gear pair, and the

sensitivity of the TVMS to the MEs increased at light

loads because the load deflection of the tooth at light

loads could not readily compensate for the gap

between the tooth surfaces caused by the MEs. Thus,

the accuracy grades affected not only the peak-to-peak

and mean values of the TVMS but also its waveform.

To reveal the influence mechanisms of MEs on the

TVMS, different types of grade 4 MEs were applied

using the presented method, and the calculation results

of the TVMS are shown in Fig. 11. It is worth noting

that the output torque was set to 100 Nm in the rest of

this section to highlight the influence mechanism of

MEs on the TVMS. When the helical gear pair was

working under the rated load, the sensitivity of the

TVMS to the MEs was reduced.

Figure 11 shows that the pitch and helix deviations

were the main factors affecting the TVMS. When only

the pitch deviations were considered, the TVMS curve

underwent a step change at some positions, such as

h1 = 0.9 rad. Figure 12a shows the number of contact

pairs when the pitch deviations were considered.

When the TVMS curve underwent a step change, the

Table 2 Precision

parameters of the helical

gear pair

Precision parameters

(Symbol/unit)

Grade 4 Grade 5 Grade 6

Single pitch deviation (± fpt/lm) 5.0 7.0 10.0

Total cumulative pitch deviation (Fp/lm) 18.0 25.0 36.0

Total profile deviation (Fa/lm) 7.5 11.0 15.0

Total helix deviation (Fb/lm) 6.5 9.0 13.0

Tooth thickness deviation (Es/mm) 6.283�0:040
�0:079 6.283�0:063

�0:126 6.283�0:10
�0:20

Base tangent length (Wk/mm) 55.479�0:037
�0:074

(k = 5)

55.479�0:059
�0:118

(k = 5)

55.479�0:094
�0:188

(k = 5)
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number of instantaneous contact pairs changed. This

occurred because the pitch deviations of each tooth

were different in this study, and the pitch deviations

created a gap between the tooth pair involved in the

meshing. When the gap was large enough and could

not be compensated for by the deflection under the

load of the neighboring teeth, the tooth pair lost

contact. Therefore, the loss of contact of the tooth pairs

due to the effect of the pitch deviations was the main

reason for the step change of the TVMS curve. When

only the helix deviations were considered, the peak-to-

peak and mean values of the TVMS were greatly

reduced. Figure 12b shows the comparison between

the trajectory of the theoretical contact line and the

actual contact line when helix deviations were

considered with h1 = 1.5 rad. Although all contact

elements were located on the theoretical contact line,

most of the slices lost contact, which was the reason

for the significant decrease in the peak-to-peak and

mean values of the TVMS.

Figure 11 also shows that the profile and tooth

thickness deviations had little effect on the TVMS.

The profile deviations also led to a small decrease in

the peak-to-peak and mean values of the TVMS curve

and small fluctuations of the curve. Figure 12c shows

that the contact elements when the profile deviations

were considered were distributed on both sides of the

theoretical contact line, which indicated that out-of-

line meshing occurred. This is the cause of small

fluctuations in TVMS curve. In addition, some slices

lost contact because the tooth profile deviations of the

elements were too large, which led to a decrease in the

peak-to-peak and mean values of the TVMS curve. In

Fig. 12d, the actual contact line when the tooth

thickness deviations were considered completely

coincided with the theoretical contact line. However,

Fig. 10 Prediction results of the TVMS under different accuracy grades

Fig. 11 Effects of different types of MEs on the TVMS
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as shown in the partial enlarged view in Fig. 11, the

tooth thickness deviations caused a slight decrease in

the peak-to-peak value of the TVMS curve, while the

waveform was completely consistent with the curve

when the tooth surfaces were perfect. This occurred

because the tooth thickness deviations only changed

the compliance of a single tooth, but the effect of the

tooth thickness deviation on the compliance was

slight. Consequently, the TVMS was mainly related to

the pitch and helix deviations, and they should be

properly controlled during the gear machining process

to reduce the influence of MEs on the TVMS.

4.2 Effect of assembly errors

During the process of gear installation, AEs are

inevitable, which leads to various abnormal meshing

conditions, such as eccentric loads and out-of-line

meshing. These meshing conditions will also have a

non-negligible influence on the TVMS. According to

the definition of AEs in Sect. 2.1, the AEs are

represented by four parameters (Dx, Dy, u, and c) in
this study. It is known that AEs can be divided into

center distance deviations and misalignment devia-

tions. Because Dx and Dy produce similar effects on

the change of the center distance between two gears,

only the effects ofDy,u, and c on TVMSwere studied.

Similarly, the output torque was set to 100 Nm in this

section to highlight the influence mechanism of AEs

on the TVMS. When the helical gear pair was working

under the rated load, the sensitivity of the TVMS to the

AEs was reduced.

Figure 13a shows the calculation results of the

TVMS for different values of Dy. The TVMS at each

position of the gear decreased as the center distance

increased, and the greater the center distance devia-

tions were, the greater the difference between it and

the TVMS with perfect tooth surfaces was. In contrast,

(a) (b)

(c) (d)

Fig. 12 Effects of different types of MEs on the tooth surface contact: a number of contact pairs considering pitch deviations, b contact
line considering helix deviations, c contact line considering profile deviations, and d contact line considering tooth thickness deviations
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the center distance deviations had little effect on the

waveform of the TVMS. Figure 13b shows the actual

contact line when Dy = 0.4 mm. The contact element

on each slice moved to the tooth tip due to the increase

in the center distance, while the compliance at the

tooth tip was greater than that at the tooth root. Thus,

the center distance deviations caused the contact line

to move on the tooth surface, thereby changing the

TVMS.

The effects ofu and c (misalignment deviations) on

the TVMS were investigated. Figure 14a shows the

calculation results of the TVMS for different values of

u. The misalignment deviation u not only affected the

peak-to-peak and mean values of the TVMS but also

changed its waveform. The greater the absolute value

of u was, the smaller the TVMS was. To reveal the

reason for the decrease in the TVMS, Fig. 14b, c show

the actual contact line when u = - 0.02� and 0.02�,
respectively. When u was negative, the right side of

the tooth surface lost contact. In contrast, the left side

of the tooth surface lost contact when u was positive.

Both conditions caused the actual contact line to be

shorter than the theoretical contact line, thereby

reducing the TVMS. In addition, the contact stress of

the tooth surface when u = 0.02� was obtained

according to Hertzian contact theory, as shown in

Fig. 14d. The contact stress was mainly distributed on

the right tooth surface, which was consistent with the

results of Fig. 14c. These results unanimously indi-

cated that an eccentric load occurred on the tooth

surface due to the effect of u.

The TVMSs for different values of c are shown in

Fig. 15a. When the absolute value of c was small

(0.01�), the peak-to-peak and mean values and wave-

form of the TVMS curve did not change significantly.

As the absolute value of c increased, the peak-to-peak
and mean values of the TVMS curve decreased

significantly. Compared with the results of the TVMS

under the same misalignment deviation u, the

misalignment deviation c had a smaller effect on the

TVMS. Figure 15b shows the actual contact line when

c = 0.02�. It can be found that the misalignment

deviation c also caused part of the tooth surface to lose
contact. Compared to Fig. 14c, the misalignment

deviation u caused more elements to lose contact

than c under the same value of u and c. Therefore,
ensuring the assembly accuracy of u during the

process of gear installation can significantly reduce the

influence of AEs on the TVMS compared with Dy and
c.

4.3 Effect of tooth modifications

In engineering practice, profile modification is widely

used to decrease the shock, vibrations, and noise of

gear transmission systems, and lead crowning is used

to improve the uneven distribution of the load on the

contact line. However, the different amounts and

lengths of TMs under the same load will cause the

contact state between the two gears to change. For

example, excessive modification will lead to a loss of

contact of the tooth pairs located in the mesh-in and

mesh-out regions, which will cause a significant

(a) (b)

Fig. 13 Results of different center distance deviations: a TVMS, and b contact line considering the center distance deviations

(Dy = 0.4 mm)
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decrease in the TVMS and cause adverse effects on the

gear transmission system. Thus, the influence of TMs

on the TVMS cannot be ignored. In this section, the

output torque is set to 500 Nm.

On the profile modification side, Fig. 16a, b show

the TVMS and the number of contact pairs with

different modification amounts under the same mod-

ification length (L1 = 1.6 mm), respectively. This

(a) (b)

(c) (d)

Fig. 14 Results of different misalignment deviations (u): a TVMS, b contact line when u = - 0.02�, c contact line when u = 0.02�,
and d contact stress when u = 0.02�

(a) (b)

Fig. 15 Results of different misalignment deviations (c): a TVMS and b contact line when c = 0.02�
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shows that the range of the three-tooth contact region

and the TVMS did not change whenCa = 3 lm.When

Ca = 8 lm, the range of the three-tooth contact region

was slightly reduced, and the slope of the TVMS curve

near the peak decreased. This indicated that most

slices along the tooth width remained in contact under

the influence of the load deflection, and only a few

slices were out of contact. Although the material

removal on the tooth surface due to the profile

modification will increase the compliance of the tooth,

its influence can be ignored when Ca = 8 lm. How-

ever, as the amount of profile modification continued

to increase, the three-tooth contact region became

smaller or even suddenly changed to the single-tooth

contact region (see Fig. 16b, Ca = 15 lm). This

indicates that the excessive modification led to the

loss of contact of the tooth pairs located in the mesh-in

and mesh-out regions. The greater the amount of

modification was, the smaller the range of the multi-

tooth contact region became. In addition, the TVMS

also decreased with the further increase of the profile

modification amount. For example, although there

were two teeth in contact before and after the

modification when h1 = 0.1 rad, the TVMS was

reduced by about 3.67% (Ca = 15 lm). Figure 16c,

d show the actual contact lines under different

amounts of modification (Ca = 8 and 15 lm) when

h1 = 0.15 rad. This shows that when the modification

amount was too large, the load deflection of the tooth

was not sufficient to compensate for the gap between

the meshing slices due to the modification. Therefore,

the elements near the tooth tip lost contact. The greater

the amount of modification was, the more elements

lost contact.

Figure 17a, b show the TVMS and the number of

contact pairs with different modification lengths under

the same modification amount (Ca = 15 lm). When

L1 = 0.8 mm, the TVMS was almost the same as the

TVMS under the perfect tooth surfaces.

(a) (b)

(c) (d)

Fig. 16 Results of different profile modification amounts (L1 = 1.6 mm): a TVMS, b number of contact pairs, c contact line when

Ca = 8 lm, and d contact line when Ca = 15 lm
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Similarly, as the profile modification length

increased, the three-tooth contact region became

smaller or even suddenly changed to the single-tooth

contact region (see Fig. 17b, L1= 1.6 mm and

L1 = 2.4 mm). In addition, a step change occurred at

the trough of the TVMS curve when L1 = 1.6 and

2.4 mm. This was caused by the loss of contact of the

tooth pairs located in the mesh-in and mesh-out

regions (see Fig. 17b). The sudden change in the

number of contact pairs resulted in a step change in the

TVMS. Figure 17a also shows that as the length of the

profile modification increased, the TVMS decreased,

while the TVMS was almost the same in the single-

tooth contact region, such as at h1 = 0.225 rad. This

occurred because a parabola was used as the profile

modification curve, and when the modification length

increased, the range of the loss of contact elements

near the tooth tip became larger (see Fig. 17c, d). As

the instantaneous contact line of the contacting tooth

pair was outside the area of the profile modification on

the tooth surface when h1 = 0.225 rad, the TMVS was

not affected, but the range of the single-tooth contact

region became larger with the increase in the modi-

fication length. In conclusion, in the design process of

the gear, the amount and length of the profile

modification should be reasonably selected based on

the operating conditions to avoid the adverse influence

of profile modifications on the TVMS.

Figure 18a, b show the TVMS and the number of

contact pairs for different modification amounts of the

lead crowning, respectively. This indicated that the

TVMS and the range of the multi-tooth contact region

remained unchanged when the modification amount of

the lead crowning was within a certain range (e.g.,

Cb = 3 lm). However, when the modification amount

exceeded this range, the TVMS decreased with the

increase in the modification amount (e.g., Cb = 8 lm
and Cb = 15 lm). There were two main reasons for

the decrease in the TVMS. On the one hand, the lead

crowning increased the initial gap between the mesh

(a) (b)

(c) (d)

Fig. 17 Results of different profile modification lengths (Ca = 15 lm): a TVMS, b number of contact pairs, c contact line when

L1 = 1.6 mm, and d contact line when L1 = 2.4 mm
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slices on the tooth surface, resulting in the loss of

contact of the tooth pairs when the gap could not be

compensated for by the tooth load deflection (see

Fig. 18b). The range of the multi-tooth contact region

also became smaller as the modification amount

increased. On the other hand, although the number

of contact pairs did not change when h1 = 0.15 rad,

the elements near the two sides of the tooth surface lost

contact (see Fig. 18c), which caused the instantaneous

contact line to become shorter. This was the main

reason for the decrease in the TVMS due to the lead

crowning. In addition, Fig. 18d shows the distribution

of the contact stress on the tooth surface. It also shows

that the contact region moved to the center of the tooth

surface, which indicated that the lead crowning was

helpful for improving the load distribution on the tooth

surface.

5 Conclusions

A novel calculation method of the TVMS of helical

gear pairs was proposed in this study, which was

shown to be effective for both helical and spur gear

pairs. The influence of some abnormal meshing

phenomena, such as the loss of contact of tooth pairs,

out-of-line meshing, and eccentric loads, on the

TVMS was considered in the proposed method, and

it has the capability of predicting the TVMS based on

the different gear accuracy grades or the measurement

coordinates of the tooth surface. Based on this method,

the relationship between the MEs, AEs, TMs, and

TVMS was revealed, and the sensitivity of the TVMS

to different types of deviations was analyzed. The

main conclusions are as follows:

1. The MEs affected not only the peak-to-peak and

mean values of the TVMS but also its waveform.

Furthermore, the pitch and helix deviations were

(a) (b)

(c) (d)

Fig. 18 Results of different amounts of lead crowning: a TVMS, b number of contact pairs, c contact line when Cb = 8 lm, and

d contact stress when Cb = 8 lm
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the main factors affecting the TVMS. The pitch

deviations caused contact loss of partial tooth

pairs, which caused the TVMS curve to produce a

step change. The helix deviations caused the

contact loss of partial slices along the contact line,

thereby reducing the TVMS. In addition, out-of-

line meshing occurred due to the influence of the

profile deviations, and the tooth thickness devia-

tions reduced the stiffness of the gear tooth. These

two deviations had little effect on the TVMS.

2. For the AEs, the misalignment deviation u caused

the gear to be under an eccentric load, which

greatly reduced the peak-to-peak and mean values

of the TVMS. Compared to the misalignment

deviation u, the misalignment deviation c had

little influence on the TVMS. The center distance

deviation changed the position of the contact line

on the tooth surface, thereby affecting the mean

value of the TVMS.

3. The profile modification caused contact loss of the

elements near the tooth tip and reduced the range

of the multi-tooth contact region, thereby reducing

the mean value of the TVMS and even causing a

step change in the TVMS curve. In the design

process of the gear, the amount and length of the

profile modification should be reasonably selected

based on the operating conditions to avoid the

adverse effects of the profile modifications on the

TVMS. The lead crowning caused the contact

region to move to the center of the tooth surface,

and the length of its actual contact line decreased,

which resulted in a reduction in the mean value of

the TVMS.

The proposed method is expected to be used for the

following three applications: (1) predicting the TVMS

based on the tooth surfaces with errors generated by

the gear accuracy grade or the measurement coordi-

nates of the tooth surface, (2) reasonably controlling

and optimizing the MEs, AEs, and parameters of the

TMs to reduce the influence of error factors on the

TMVS excitation, and (3) providing accurate TVMS

excitations for the dynamic analysis of the gear

transmission system instead of relying on the tradi-

tional method using approximate curves. Conse-

quently, the proposed method is of great significance

to the vibration and noise control of gear transmission

systems.
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