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Abstract The nonlinear vibration investigation of

toroidal shell segment (TSS) with an analytical

approach is presented in this paper. The TSS is

considered as a sandwich structure with FGM core and

homogeneous face sheets, or homogeneous core and

FGM face sheets. The FGM sandwich TSS is

surrounded by Pasternak-type of elastic foundation

subjected to mechanical loads and exposed to a high-

temperature environment. A third-order shear defor-

mation shell theory (TSDT) developed by Reddy and

Liu (NASA Cr. Report 4656, 1987) accounts for small

strains but moderately large displacements is used to

establish governing equations. Two methods using

Airy stress function and displacement formulations are

used separately in conjunction with Galerkin method

and Runge–Kutta method to investigate the nonlinear

vibration of FGM sandwich TSS. Then, the effects of

material, geometric properties, mechanical condition,

thermal environment, and elastic foundation on the

nonlinear vibration characteristics of FGM sandwich

toroidal shell segments (TSSs) are analyzed and

discussed in detail. Specifically, the difference

between natural frequencies calculated by using Airy

stress function and displacement formulations are also

described in the present study.

Keywords Nonlinear vibration � Pasternak-type

elastic foundation � Thermal environment � FGM

sandwich toroidal shell segment � Reddy’s third-order

shear deformation shell theory � Airy stress function

and displacement formulations

1 Introduction

Functionally graded materials (FGMs) are known as

advanced materials usually composed of metal and

ceramic constituents, in which material properties

gradually vary from one interface to the other. Due to

their excellent characteristics, FGM structures are

widely used in various engineering applications such

as space vehicles, aircraft, nuclear power plants, and

other practical applications. Consequently, many

researchers have studied the static and dynamic

responses of FGM structures. Using the Galerkin

method, Najafov et al. [2] presented an analysis of

stability and torsional vibration of FGM cylindrical
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shells resting on elastic foundations. Babaei et al.

[3, 4] and Shen [5] studied large amplitude vibrations

of FGM beams, FGM cylindrical panels, and cylin-

drical shells, respectively.

Using higher-order shear deformations (HSDT) for

linear analysis as well as nonlinear analysis has been

received various attention due to the essential of

analyzing thick structures. Using the sinusoidal shear

deformation theory and the first-order shear deforma-

tion theory (FSDT), Kolahchi [6] studied bending,

buckling, and post-buckling of nano-sandwich plates.

Zhang [7] utilized a high-order shear deformation

beam theory and the Ritz method to investigate the

vibration and post-buckling behavior of FGM beams.

Using an HSDT, Vinyas [8] studied the vibrational

behavior of porous functionally graded magneto-

electro-elastic circular and annular plates. Arefi et al.

[9] and Arefi [10] used a TSDT to study the linear

static response of functionally graded graphene

nanoplatelets reinforced composite (FG-GPLRC)

micro-plates and sandwich doubly curved piezoelec-

tric micro shells, respectively. Wang et al. [11] made

use of an HSDT and Navier technique to study the

linear bending and vibrational characteristics of FG-

GPLRC doubly curved shells. Using a TSDT and the

Galerkin method, Hao et al. [12] and Liu et al. [13]

presented nonlinear analyses of vibration of ortho-

tropic FGM rectangular plates and FGM cylindrical

shells, respectively. Hosseini and Kolahchi [14]

suggested a mathematical model for the seismic

response of submerged cylindrical shells subjected to

hygrothermal load using a TSDT, the energy method,

Hamilton’s principle, and the differential quadrature

method. Dung and Vuong [15] and Vuong and Duc

[16] used the Airy stress function method to investi-

gate the static stability and nonlinear vibration of FGM

TSSs, making use of a TSDT. Also, based on a TSDT,

Duc and Thiem [17] studied the nonlinear vibration of

FGM cylindrical shells using the Galerkin method.

Thanks to exceptional properties such as excellent

thermal and sound insulation and high strength and

stiffness to weight ratio, sandwich structures have

found widespread applications in various fields of

engineering. The main weakness of the traditional

sandwich structures is that the stresses at the face

sheet-core interface are discontinuous. This drawback

may cause severe damages. Due to the gradually

varied mechanical properties of constituents, FGMs

might be used as a solution for this problem.

Therefore, many reports on static and dynamic

behaviors of FGM sandwich structures have been

performed. Shodja et al. [18] studied the static

behaviors of FGM sandwich structures under thermo-

mechanical loadings using stress function and the

Fourier series method. They found that stress interfa-

cial shear stress is reduced, and concentration effects

are eliminated as a functionally graded coating is used.

Shen and Li [19] investigated the static buckling and

post-bucking behaviors of FGM sandwich plates

subjected to thermal and thermomechanical loadings

using an HSDT. An investigation on the thermal

buckling of FGM sandwich plates is presented by

Zenkour and Sobhy [20] using the sinusoidal shear

deformation plate theory. Kiani and Eslami [21]

studied the thermal stability of FGM sandwich plates,

making use of the FSDT and the Galerkin method.

Based on the three-dimensional elasticity linear the-

ory, Li et al. [22] presented an investigation on the

vibrational characteristics of FGM sandwich plates.

An investigation of the natural frequencies of FGM

sandwich plates with FGM core is performed by Dozio

[23] using the Ritz method. Neves et al. [24] made use

of an HSDT to analyze the buckling and free vibration

of isotropic and FGM sandwich plates. Based on an

HSDT, Kiarasi et al. [25] studied the buckling of

sandwich plates with a polymeric core and two face

sheets reinforced by carbon nanotubes making use of

Hamilton’s principle and a Navier–Stokes method.

Based on various shear deformation plate theories,

Sobhy [26] studied the linear buckling and free

vibration of FGM sandwich plates. The problem of

three-dimensional vibration of laminated cylindrical

panels with FGM layers is solved by Malekzadeh and

Ghaedsharaf [27], making use of a layerwise-differ-

ential quadrature method. Shen et al. [28] presented a

large amplitude vibration analysis of laminated cylin-

drical panels with graphene reinforcements utilizing

an HSDT and a two-step perturbation technique.

Sburlati [29] made use of the elastic theory to study the

elastic bending behavior of circular FGM sandwich

panels. The research also reveals that interface stresses

are decreased when FGM core is used. Li et al. [30]

used Flügge’s shell theory to investigate the free

vibration of three-layer cylindrical shells with FGM

core. Using the FSDT, Hamilton’s principle and the

Galerkin method, Karroubi and Rahaghi [31] carried

out an analysis of free vibrational responses of

cylindrical sandwich shells with FGM core and
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piezoelectric skins. Also, based on the FSDT, Sofiyev

et al. [32] studied free vibration and stability of

cylindrical sandwich shells with FGM core sur-

rounded by an elastic foundation and loaded by axial

compressions making use of the Galerkin method. The

problem of vibration of FGM sandwich cylindrical

shells with FGM core and homogeneous face sheets is

solved by Alibeigloo and Noee [33] using the differ-

ential quadrature method. Deniz [34] studied the

nonlinear stability of truncated conical shells with

FGM coatings loaded by axial compression using the

Galerkin method. Based on the FSDT, Sofiyev and

Osmancelebioglu [35] analyzed the influences of

FGM coatings on the vibrational responses of sand-

wich truncated conical shells utilizing the Galerkin

method.

Sandwich double-curved shells and sandwich TSSs

also have obtained great attention from researchers.

Numerous researches have been done on the static and

dynamic behaviors of sandwich doubly curved shells

and TSSs. The problem of nonlinear vibration of FGM

sandwich doubly curved shells was solved by Dong

and Dung [36] using a TSDT and by Hao et al. [37]

using the improved shear deformation shell theory.

Several problems of the static analysis of doubly

curved sandwich shells are solved by Tornabene et al.

[38], making use of the equivalent single layer

theories. Fazzolari and Carrera [39] used the Principle

of Virtual Displacements, the refined Equivalent

Single Layer, the Zig Zag shell theory, and the Ritz

method to analyze vibration responses of doubly

curved sandwich shells with FGM core. Trinh and

Kim [40] carried out an analytical investigation on the

thermomechanical stability and vibration of FGM

sandwich doubly curved shells using the classical shell

theory and the Galerkin method. Vuong and Duc [41]

studied the static and dynamic buckling of FGM

sandwich TSSs using a TSDT. Ninh and Bich [42]

investigated the vibrational characteristics of FGM

sandwich TSSs resting on an elastic foundation based

on the classical shell theory utilizing the Airy stress

function method. To the author’s knowledge, there is

no investigation on the vibration of FGM sandwich

TSSs based on TSDT. Ninh and Bich [42] only used

the classical thin shell theory to investigate the

vibration of FGM sandwich TSSs. Vuong and Duc

[16] used a TSDT to investigate the nonlinear

vibration of FGM TSSs but not yet considered

sandwich shells. So, in order to fill in this research

gap, we use a TSDT to study the nonlinear vibration of

thick FGM sandwich TSSs surrounded by the Paster-

nak-type elastic foundation in the thermal environ-

ment. The results of the present study may be helpful

for designers to deal with thick sandwich shells.

2 Theoretical formulation

A sandwich TSS with length L, total thickness h,

equatorial radius R, and longitudinal curvature radius

a is considered in Fig. 1. The TSS is defined in a

coordinate system whose origin is located on the

middle surface and at the end of the shell, where x and

y are the longitudinal and circumferential direction,

respectively, and z axis normal to them and pointed

inwards.

The sandwich TSS is constructed from three layers

with a total thickness of h. Two face sheets of the same

thickness hf , separated by a thicker core layer of the

thickness hc. Two types of sandwich shells are

considered. Sandwich shell of type A has homoge-

neous core (full metal) and FGM layers whereas

sandwich shell of type B has FGM core and homo-

geneous layers (see Fig. 1). Denote z1 ¼ �h=2,

z2 ¼ �h=2 þ hf , z3 ¼ h=2 � hf , z4 ¼ h=2. The effec-

tive material properties of each type of sandwiches,

such as Young modulus E, thermal expansion coeffi-

cient a, and mass density q are defined as follows.

Case 1 Sandwich shell of type A composed of

homogeneous core (full metal) and two FGM face

layers.

EðzÞ; q zð Þ; a zð Þ½ � ¼ Ec; qc; ac½ � � Ecm; qcm; acm½ �

�

z� z1

z2 � z1

� �k

; z1 � z� z2

1;

z� z4

z3 � z4

� �k

;

z2 � z� z3

z3 � z� z4

8>>>>>><
>>>>>>:

ð1Þ

Case 2 Sandwich shell of type B composed of FGM

core, inner and outer layers are ceramic-rich and

metal-rich, respectively.
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Fig. 1 Configuration of FGM sandwich TSSs
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EðzÞ; q zð Þ; a zð Þ½ � ¼ Em; qm; am½ � þ Ecm; qcm; acm½ �

�

0; z1 � z� z2

z� z2

z3 � z2

� �k

;

1;

z2 � z� z3

z3 � z� z4

8>>>><
>>>>:

ð2Þ

where m and c denote metal and ceramic, respectively.

Em; qm; am;Ec; qc; ac are Young modulus, mass den-

sity, and thermal expansion coefficients of metal and

ceramic constituents, respectively. Ecm ¼ Ec � Em,

qcm ¼ qc � qm, acm ¼ ac � am. The non-negative

number k is the volume fraction index. The Poisson’s

ratio of material constituents is assumed to be equal

and to be constant, i.e. mc ¼ mm ¼ const

[20, 21, 36, 40, 41].

This study uses a TSDT developed by Reddy and

Liu [1] to investigate the nonlinear vibration of FGM

sandwich TSSs loaded by mechanical loads, exposed

to a high-temperature environment, and surrounded by

the Pasternak-type elastic foundation. According to

this theory, the displacement components

u 1ð Þ; v 1ð Þ;w 1ð Þ along the x; y; zð Þ coordinates of shell

is [1].

u 1ð Þ x; y; z; tð Þ ¼u 0ð Þ 1 � z

a

� �
þ z/x þ z3 4

3h2
�/x � w;x

� �

v 1ð Þ x; y; z; tð Þ ¼v 0ð Þ 1 � z

R

� �
þ z/y þ z3 4

3h2
�/y � w;y

� �
w 1ð Þ x; y; z; tð Þ ¼w 0ð Þ

ð3Þ

where t is time, u 0ð Þ; v 0ð Þ;w 0ð Þ� �
are displacements of a

point on the mid-surface, and /x;/y are the rotations

of normal to the middle surface with respect to y- and

x-axes, respectively.

Basing on TSDT, the strains components

(ex; ey; cxy; cxz; cyz) are expressed as [1]

ex ¼
ou 1ð Þ

ox
� w 1ð Þ

a
þ 1

2

ow 1ð Þ

ox

� �2

ey ¼
ov 1ð Þ

oy
� w 1ð Þ

R
þ 1

2

ow 1ð Þ

oy

� �2

cxy ¼
ou 1ð Þ

oy
þ ov 1ð Þ

ox
þ ow 1ð Þ

ox

ow 1ð Þ

oy

cxz ¼
ow 1ð Þ

ox
þ ou 1ð Þ

oz
þ u 1ð Þ

a

cyz ¼
ow 1ð Þ

oy
þ ov 1ð Þ

oz
þ v 1ð Þ

R

ð4Þ

Substituting Eq. (3) into Eq. (4) and ignoring higher-

order terms on the assumption that 1 � z
a � 1; 1 � z

R �
1 leads to strain–displacement relations as [1]:

Table 1 Comparison of

natural frequencies x rad/sð Þ
for FGM sandwich TSSs of

type B

Modes m; nð Þ Ninh and Bich [42] (Eq. 21) Present (Eq. 33) Present (Eq. 34)

(1, 1) 2776.99 2776.67 2776.39

(1, 2) 2623.82 2623.42 2623.14

(1, 3) 2418.90 2418.35 2418.06

(2, 1) 3626.26 3615.15 3613.74

(2, 2) 3620.75 3609.01 3607.57

(2, 3) 3616.75 3603.90 3602.42

Fig. 2 Comparison of the nonlinear vibration response of FGM

sandwich TSS m ¼ 1; n ¼ 1ð Þ
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ex ¼e0
x þ z k 0ð Þ

x þ z2k 2ð Þ
x

� �

ey ¼e0
y þ z k 0ð Þ

y þ z2k 2ð Þ
y

� �

cxy ¼c0
xy þ z k 0ð Þ

xy þ z2k 2ð Þ
xy

� �

cxz ¼c0
xz þ z2k 1ð Þ

xz ; cyz ¼ c0
yz þ z2k 1ð Þ

yz

ð5Þ

where

e0
x ¼

ou 0ð Þ

ox
� w 0ð Þ

a
þ 1

2

ow 0ð Þ

ox

� �2

e0
y ¼

ov 0ð Þ

oy
� w 0ð Þ

R
þ 1

2

ow 0ð Þ

oy

� �2

c0
xy ¼

ou 0ð Þ

oy
þ ov 0ð Þ

ox
þ ow 0ð Þ

ox

ow 0ð Þ

oy

c0
xz ¼

k 0ð Þ
x ¼ o/x

ox
; k 0ð Þ

y ¼
o/y

oy
; k 0ð Þ

xy ¼ o/x

oy
þ
o/y

ox

k 1ð Þ
xz ¼� 3c /x þ

ow 0ð Þ

ox

� �
; k 1ð Þ

yz ¼ �3c /y þ
ow 0ð Þ

oy

� �

k 2ð Þ
x ¼� c

o/x

ox
þ o2w 0ð Þ

ox2

� �
; k 2ð Þ

y ¼ �c
o/y

oy
þ o2w 0ð Þ

oy2

� �

k 2ð Þ
xy ¼� c

o/x

oy
þ
o/y

ox
þ 2

o2w 0ð Þ

oxoy

� �
; c ¼ 4

3h2

ð6Þ

The stress–strain relations for FGM sandwich TSSs

including the thermal effect using Hooke’s law, are

[36, 40–42]

rx ¼
E zð Þ

1 � m2
ex þ mey
� �

� E zð Þa zð ÞDT
1 � m

ry ¼
E zð Þ

1 � m2
ey þ mex
� �

� E zð Þa zð ÞDT
1 � m

rxy ¼
E zð Þ

2 1 þ mð Þ cxy; rxz ¼
E zð Þ

2 1 þ mð Þ cxz; ryz ¼
E zð Þ

2 1 þ mð Þ cyz

ð7Þ

where DT is temperature rise in comparison with

thermal stress-free initial state. In the present study,

the temperature change DT is assumed to be indepen-

dent of variables x; y; z and t.

The equations of motion of TSSs are given by [1]

oNx

ox
þ oNxy

oy
¼ I1 €uþ I2 €/x � I3

o €w

ox
ð8Þ

oNy

oy
þ oNxy

ox
¼ I

=
1 €vþ I

=
2
€/y � I

=
3

o €w

oy
ð9Þ

oQx

ox
þ oQy

oy
� 3c

oRx

ox
þ oRy

oy

� �

þ c
o2Px

ox2
þ 2

o2Pxy

oxoy
þ o2Py

oy2

� �
þ 1

R
Ny þ

1

a
Nx

þ Nx
o2w

ox2
þ 2Nxy

o2w

oxoy
þ Ny

o2w

oy2

� K1wþ K2

o2w

o2x
þ o2w

o2y

� �
þ q ¼

I1 €wþ2eI1 _wþ I3
o€u

ox
þ I

=
3

o€v

oy

þ I5
o €/x

ox
þ I

=
5

o €/y

oy
� c2I7

o2 €w

ox2
þ o2 €w

oy2

� �

ð10Þ

oMx

ox
þ oMxy

oy
� Qx þ 3cRx � c

oPx

ox
þ oPxy

oy

� �

¼I2 €uþ I4 €/x � I5
o €w

ox

ð11Þ

oMy

oy
þ oMxy

ox
� Qy þ 3cRy � c

oPy

oy
þ oPxy

ox

� �

¼I
=
2 €vþ I

=
4
€/y � I

=
5

o €w

oy

ð12Þ

in which Ni;Mi;Pi;Rj;Qj; i ¼ x; y; xy; and j ¼ x; yð Þ
are the resultants defined as

Ni

Mi

Pi

0
BB@

1
CCA ¼

Zh=2

�h=2

ri:

1

z

z3

0
BB@

1
CCAdz; i ¼ x; y; xyð Þ

Qj

Rj

 !
¼
Zh=2

�h=2

rjz:
1

z2

 !
dz; j ¼ x; yð Þ

ð13Þ

where e is damping coefficient. K1 and K2 are

parameters of elastic foundation. The coefficients

Ii; Ii and I
=
i are determined in ‘‘Appendix A’’. Substi-

tuting Eqs. (1) and (2) into Eq. (7) and then setting the

results into Eq. (13) yields
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Nx Ny Nxy

Mx My Mxy

Px Py Pxy

0
B@

1
CA ¼ 1

1 � m2

E1 E2 E4

E2 E3 E5

E4 E5 E7

0
B@

1
CA

e0
x þ me0

y e0
y þ me0

x 0:5 1 � mð Þc0
xy

k 1ð Þ
x þ mk 1ð Þ

y k 1ð Þ
y þ mk 1ð Þ

x 0:5 1 � mð Þk 1ð Þ
xy

k 2ð Þ
x þ mk 2ð Þ

y k 2ð Þ
y þ mk 2ð Þ

x 0:5 1 � mð Þk 2ð Þ
xy

0
BB@

1
CCA

� 1

1 � m

U1 U1 0

U2 U2 0

U4 U4 0

0
B@

1
CA

Qx Qy

Rx Ry

� �
¼ 1

2 1 þ mð Þ
E1 E3

E3 E5

� � c0
xz c0

yz

k2
xz k2

yz

 !

ð14Þ

where

E1

E2

E3

E4

E5

E7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼
Zh=2

�h=2

E zð Þ

1

z

z2

z3

z4

z6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

dz;

U1

U2

U4

0
BB@

1
CCA ¼

Zh=2

�h=2

E zð Þa zð Þ

1

z

z3

0
BB@

1
CCADTdz

ð15Þ

Setting Eq. (14) into Eqs. (8) to (12) with the aid of

Eq. (6) yields

H11 uð ÞþH12 vð Þ þ H13 wð Þ þ H14 /xð Þ þ H15 /y

� �
¼ I1 €uþ I2 €/x � I3

o €w

ox

ð16Þ

H21 uð ÞþH22 vð Þ þ H23 wð Þ þ H24 /xð Þ þ H25 /y

� �
¼ I

=
1 €vþ I

=
2
€/y � I

=
3

o €w

oy

ð17Þ

H31 uð ÞþH32 vð Þ þ H33 wð Þ þ H34 /xð Þ þ H35 /y

� �
þH36 u;wð Þ þ H37 v;wð Þ þ H38 /x;wð Þ

þ H39 /y;w
� �

þ q

¼ I1 €wþ 2eI1 _wþ I3
o€u

ox
þ I5

o €/x

ox
þ I

=
3

o€v

oy

þ I
=
5

o €/y

oy
� c2I7

o2 €w

ox2
þ o2 €w

oy2

� �

ð18Þ

H41 uð ÞþH42 vð Þ þ H43 wð Þ þ H44 /xð Þ þ H45 /y

� �
¼ I2 €uþ I4 €/x � I5

o €w

ox

ð19Þ

H51 uð ÞþH52 vð Þ þ H53 wð Þ þ H54 /xð Þ þ H55 /y

� �
¼ I

=
2 €vþ I

=
4
€/y � I

=
5

o €w

oy

ð20Þ

in which operators H1i;H2i;H4i;H5i i ¼ 1 � 5ð Þ;
H3i i ¼ 1 � 9ð Þ are defined in ‘‘Appendix B’’.

Equations (16) to (20) are five governing equations

in terms of five variables u 0ð Þ x; yð Þ, v 0ð Þ x; yð Þ,
w 0ð Þ x; yð Þ, /x x; yð Þ and /y x; yð Þ. They are used to

study the nonlinear vibration of FGM sandwich TSSs

resting on the Pasternak-type elastic foundation in the

thermal environment.

3 Galerkin procedure

This paper considers simply supported FGM sandwich

TSSs subjected to external harmonic excitation and

pre-axial compressive load. Thus, the associated

boundary conditions are

w 0ð Þ ¼0; v 0ð Þ ¼ 0; /y ¼ 0; Mx ¼ 0;

Px ¼0; Nxy ¼ 0; Nx ¼ �Ph at x ¼ 0 and x ¼ L

ð21Þ

To solve a system of five-partial differential Eqs. (16)

to (20) for five unknown functions u 0ð Þ x; yð Þ, v 0ð Þ x; yð Þ,
w 0ð Þ x; yð Þ, /x x; yð Þ and /y x; yð Þ with the boundary

condition (21) the approximate solution satisfying the

mentioned boundary condition is chosen as [11]
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u 0ð Þ ¼U tð Þ cos Mx sin Ny

v 0ð Þ ¼V tð Þ sin Mx cos Ny

w 0ð Þ ¼W tð Þ sin Mx sin Ny

/x ¼Ux tð Þ cos Mx sin Ny

/y ¼Uy tð Þ sin Mx cos Ny

ð22Þ

where M ¼ mp
L ; N ¼ n

R. U tð Þ;V tð Þ;W tð Þ;Ux tð Þ;Uy tð Þ
are unknown time-dependent functions, m and n are

the numbers of half-waves in x and y directions,

respectively.

Substituting Eq. (22) into Eqs. (16) to (20) then

utilizing the Galerkin method leads to

h11Uþh12V þ h13W þ h14Ux þ h15Uy þ h16W
2

¼ �I1 €U � I2 €Ux þ I3M €W

ð23Þ

h21Uþh22V þ h23W þ h24Ux þ h25Uy þ h26W
2

¼ �I
=
1
€V � I

=
2
€Uy þ I

=
3N

€W

ð24Þ

h31Uþh32V þ h33W þ h34Ux þ h35Uy þ h36W
2

þh37UW þ h38VW þ h39UxW þ h310UyW þ h311W
3

þU1TW � U2T þ 4dmdn
mnp2

q

¼ I1 þ c2I7 M2 þ N2
� �� 	

€W þ 2eI1 _W

� I3M €U � I5M €Ux � I
=
3N

€V � I
=
5N

€Uy

ð25Þ

h41Uþh42V þ h43W þ h44Ux þ h45Uy þ h46W
2

¼ �I2 €U � I4 €Ux þ I5M €W

ð26Þ

h51Uþh52V þ h53W þ h54Ux þ h55Uy þ h56W
2

¼ �I
=
2
€V � I

=
4
€Uy þ I

=
5N

€W

ð27Þ

where thermal parameters U1T;U2T and coefficients

h1i; h2i; h4i; h5i i ¼ 1 � 6ð Þ; h3i i ¼ 1 � 11ð Þ are

demonstrated in ‘‘Appendix C’’.

In general, transverse nonlinear vibrations are the

primary motion for the FGM sandwich shells. Fol-

lowing the work performed by Duc and Thiem [17],

we can consider four right sides of the four Eqs. (23),

(24), (26), and (27) equal zero i.e.

�I1 €U � I2 €Ux þ I3M €W ¼ 0 ð28Þ

�I
=
1
€V � I

=
2
€Uy þ I

=
3N

€W ¼ 0 ð29Þ

�I2 €U � I4 €Ux þ I5M €W ¼ 0 ð30Þ

�I
=
2
€V � I

=
4
€Uy þ I

=
5N

€W ¼ 0 ð31Þ

From Eqs. (28) to (31) and Eqs. (23), (24), (26), and

(27) €U; €V; €Ux; €Uy;U;V;Ux and Uy can be expressed in

terms of W ; €W . Then substituting the resulting

expressions into Eq. (25) yields

D1
€WþD2

_W þ D3 � U1T � PhM2
� �

W

þD4W
2 þ D5W

3 þ U2T þ D6q ¼ 0
ð32Þ

where coefficients Di are determined in ‘‘Appendix

D’’.

3.1 Natural frequency of FGM sandwich TSSs

The natural frequencies of FGM sandwich TSSs can

be calculated from Eq. (32) as

xmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3 � U1T � PhM2

D1

s
ð33Þ

Using the Airy stress function method with the

same way which presented in work [16], the natural

frequencies of FGM sandwich TSSs are obtained as

xmn ¼
ffiffiffiffiffi
B3

B1

r
ð34Þ

where coefficients B1;B3 can be found in ‘‘Appendix

E’’.

3.2 Nonlinear forced vibration of FGM sandwich

TSSs

Consider FGM sandwich TSSs resting on an elastic

foundation subjected to external harmonic excitation

q ¼ Q sinXt and pre-axial compressive load P in a

thermal environment. P;Q are assumed to be time

independent. In this case, Eq. (32) can be written as

follows
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d2W

dt2
þg1

dW

dt
þ x2

mn W þ g2W
2 þ g3W

3
� �

þg4 sinXt þ g5 ¼ 0

ð35Þ

where coefficients gi i ¼ 1 � 5ð Þ are defined in

‘‘Appendix F’’. Equation (35) is used to investigate

the forced vibrational characteristics of FGM sand-

wich shells.

3.3 Frequency-amplitude curve

In this section, the Galerkin method is used to establish

the frequency-amplitude curve [17, 36, 42]. First,

introduction W ¼ A sinXt into Eq. (35), then inte-

grating the resulting equation over a quarter of

vibration period leads to the frequency-amplitude

relation as

n2 þ 2g1

pxmn
n ¼ 1 þ 8g2

3p
Aþ 3g3

4
A2 � g4

Ax2
mn

þ 4g5

Apx2
mn

ð36Þ

where n ¼ X
xmn

refer to as frequency ratio.

In case of free vibration without damping and

without temperature effect, Eq. (36) has of the form

x2
NL ¼ x2

mn 1 þ 8g2

3p
Aþ 3g3

4
A2

� �
ð37Þ

in which xNL is nonlinear frequency of free vibration

of FGM sandwich TSSs.

4 Numerical analysis

4.1 Comparisons

In work [42], Ninh and Bich studied vibrational

behaviors of FGM sandwich TSSs with FGM core

based on the classical thin shell theory using an

analytical approach. This paper extends work [42] to

study the nonlinear vibration of FGM sandwich TSSs

based on a TSDT. So, in this section, a comparison of

the natural frequencies and nonlinear vibration

response of FGM sandwich TSSs with the results in

work [42] is presented. The FGM sandwich shells of

type B are considered with parameters are taken as:

h ¼ 0:06 m, hf =h ¼ 0:1, R=h ¼ 50, L=R ¼ 0:5,

a=R ¼ 10, k ¼ 1, Em ¼ 70 GPa, Ec ¼ 380 GPa, m ¼
0:3,qm ¼ 2702 kg/m3,qc ¼ 3800 kg/m3,K2 ¼

0 N/mK1 ¼ 0 N/m3,am ¼ 23 � 10�6 K�1,ac ¼ 5:4�
10�6 K�1, e ¼ 0:2, DT ¼ 0K, P ¼ 0 Pa,

q ¼ 1000 sin 600t Pa. The natural frequencies and

nonlinear vibration responses are computed from

Eqs. (33)–(35) and presented in Table 1 and Fig. 2

in comparison with the results reported by Ninh and

Bich [42].

It can be seen in Table 1, the natural frequencies of

FGM sandwich TSSs within a TSDT are in good

agreement with those of work [42] reported by Ninh

and Bich using the classical thin shell theory. The

information in Fig. 2 shows that the shape of the two

curves is quite similar. The difference of two ampli-

tudes is 1:1832e�07�1:0329e�7
1:0329e�7

� 14:5%. The cause of the

amplitude difference is due to Ninh and Bich [42] used

the classical shell theory neglecting the transverse

shear deformation effects, whereas this study uses a

TSDT, which has considered those effects.

In the second example, using Eq. (33) and Eq. (34),

the natural frequencies of an isotropic cylindrical shell

(i.e., toroidal shell segment with a ! 1) are com-

puted and tabulated in Table 2. The results are

compared with those obtained by Lam and Loy [43]

using the Ritz method based on Love’s first approx-

imation thin shell theory and the results reported by

Shen [5] using a two-step perturbation technique based

on an HSDT. Parameters are taken as h ¼ 0:06 m,

R ¼ 1 m, L ¼ 0:5 m, E ¼ 210 GPa, m ¼ 0:3,

q ¼ 7850 kg/m3. Table 2 shows that, once again,

good agreement is obtained.

4.2 Nonlinear vibration analysis of FGM

sandwich TSSs

In this section, effects of thermal environment, pre-

axial compression, external pressure, elastic founda-

tion, material and geometrical parameters, and type of

sandwich on the nonlinear vibration characteristics

such as linear and nonlinear vibration frequencies and

nonlinear vibration response of FGM sandwich TSSs

will be analyzed. The material properties are chosen as

[42] Em ¼ 70 GPa, Ec ¼ 380 GPa, mm ¼ mc ¼ 0:3,

qm ¼ 2702 kg/m3,qc ¼ 3800 kg/m3, am ¼ 23�
10�6 K�1,ac ¼ 5:4 � 10�6 K�1. In each section, the

input data will be described in corresponding tables or

figures.
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4.2.1 Natural frequencies

Table 3 illustrates the influences of pre-axial com-

pression and R=h ratio on natural frequencies of FGM

sandwich TSSs of type B for mode numbers m; nð Þ ¼
1; 3ð Þ in case of without temperature effect and

without elastic foundation. It can be seen; the natural

frequency decreases as the R=h ratio increases. It

means that the thinner the shell is, the lower the natural

frequency it is. The figures in Table 3 also show that

the presence of pre-axial compression makes the

natural frequency of FGM sandwich shells decreases.

Furthermore, the natural frequencies calculated from

Eq. (33) using displacement formulations are always a

little higher than the corresponding ones calculated

from Eq. (34) using the Airy stress function method.

The effects of mode numbers m; nð Þ and volume

fraction index kð Þ on the natural frequency of B-type

FGM sandwich TSSs is tabulated in Table 4 in case of

without temperature effect and without elastic foun-

dation. The geometrical parameters are h ¼ 0:06 m,

hf =h ¼ 0:1, R ¼ 100h, L ¼ 0:5R, a ¼ 20L. It can be

concluded that the natural frequency of B-type FGM

sandwich TSS decreases as the volume fraction index

kð Þ increases. It is reasonable because, from Eq. (2), as

the volume fraction index increases, the effective

elastic modulus of the FGM layer decreases, the

materials will be softer, and leads to the decrease of the

natural frequency. Besides, Table 4 also indicated that

as value m in mode m; nð Þ increases, the natural

frequency increases.

Table 5 indicates the influences of face-sheet

thickness to total thickness ratio hf =h
� �

, temperature

environment, elastic foundation, and type of sandwich

on the natural frequency of FGM sandwich TSSs with

parameters are h ¼ 0:06 m, R=h ¼ 100, L=R ¼ 0:5,

L=a ¼ 0:05, k ¼ 1, m ¼ 1; n ¼ 2, P ¼ 0 Pa. It can be

observed that as the hf =h ratio rises, the natural

frequency of the A-type sandwich shell increases,

while the natural frequency of the B-type sandwich

shell very little reduces. This can be explained as

sandwich shells of type A have softcore made by metal

and stiffer face sheets made by FGM, as the hf =h ratio

increases, the face-sheet thickness increases and the

Table 3 The effect of pre-axial loaded and R=h ratio on the natural frequencies x rad/sð Þ of FGM sandwich TSSs (type B)

h ¼ 0:06 m, hf =h ¼ 0:1, L=R ¼ 0:5, L=a ¼ 0:05, k ¼ 1

R=h P ¼ 0 Pa P ¼ 108Pa

Equation (33) using

displacement formulations

Equation (34) using Airy

stress function method

Equation (33) using

displacement formulations

Equation (34) using Airy

stress function method

20 7276.89 7271.55 7218.74 7209.45

50 2418.35 2418.06 2390.29 2388.07

80 1470.55 1470.48 1452.52 1451.21

100 1168.73 1168.69 1154.21 1153.17

150 774.03 774.02 764.29 763.61

300 385.47 385.47 380.58 380.24

500 231.09 231.09 228.15 227.94

Table 2 Comparison of dimensionless frequencies - ¼ x h=pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 þ mð Þq=E

p
for an isotropic cylindrical shell (h ¼ 0:06 m,

R ¼ 1 m, L ¼ 0:5 m, E ¼ 210 GPa, q ¼ 7850 kg/m3)

(m, n) Lam and Loy [43] Shen [5] Present (Eq. 33) Present (Eq. 34)

(1, 1) 0.03748 0.03712 0.03732 0.03729

(1, 2) 0.03671 0.03648 0.03670 0.03666

(1, 3) 0.03635 0.03620 0.03644 0.03640

(1, 4) 0.03720 0.03700 0.03728 0.03723
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thickness of core layer declines, leading to the increase

of stiffness of structure; while, B-type of sandwich

shells have core layer made by FGM and two face

sheets made by metal and ceramic, as the face-sheet

thickness to total thickness ratio increases, both soft

face sheet made by metal and stiff face sheet made by

ceramic get thicker. The stiffness of these two face

Table 4 The effect of mode and material properties on the

natural frequencies x rad/sð Þ of FGM sandwich toroidal shell

segments (type B) using Eq. (33)

m; nð Þ k ¼ 0 k ¼ 0:5 k ¼ 1 k ¼ 10 k ¼ 1

(1,1) 1572.12 1444.07 1363.96 1091.13 1005.74

(1,2) 1477.76 1357.22 1281.87 1026.16 946.17

(1,3) 1347.82 1237.52 1168.73 936.92 864.51

(2,1) 1738.82 1589.13 1498.69 1229.43 1147.07

(2,2) 1720.23 1571.61 1482.02 1217.74 1137.02

(2,3) 1691.85 1544.79 1456.48 1200.11 1122.01

(3,1) 2246.35 2030.34 1908.23 1648.40 1572.99

(3,2) 2247.29 2030.65 1908.36 1650.50 1575.76

(3,3) 2249.48 2031.73 1909.11 1654.42 1580.76

Table 5 The effect of

temperature, hf =h ratio, and

elastic foundation on the

natural frequencies

x rad/sð Þ of FGM sandwich

TSSs (type A and type B)

using Eq. (33)

hf =h ratio DT ¼ 0 K DT ¼ 100 K

Type A Type B Type A Type B

Without elastic foundation

hf =h ¼ 0:1 865.04 1281.87 776.44 1223.83

hf =h ¼ 0:15 929.78 1281.50 847.97 1223.44

hf =h ¼ 0:2 989.94 1281.16 913.53 1223.08

With elastic foundation K1 ¼ 2:5 � 107 N/m3;K2 ¼ 5 � 105 N/m

hf =h ¼ 0:1 937.84 1332.09 856.81 1276.33

hf =h ¼ 0:15 997.87 1331.73 922.13 1275.96

hf =h ¼ 0:2 1054.15 1331.40 982.75 1275.61

Table 6 The effect of L=a
and L=R ratios on the

natural frequencies

x rad/sð Þ of FGM sandwich

toroidal shell segments

(type B) using Eq. (33)

L=R and a=R ratios L=R ¼ 0:5 L=R ¼ 1 L=R ¼ 1:5 L=R ¼ 2

Convex toroidal shell segments

a=R ¼ 10 1168.73 794.43 549.80 409.37

a=R ¼ 15 1160.25 772.47 518.86 373.31

a=R ¼ 20 1156.01 761.50 503.40 355.29

Concave toroidal shell segments

a=R ¼ �10 1117.88 662.78 364.51 194.22

a=R ¼ �10 1126.35 684.70 395.31 229.75

a=R ¼ �20 1130.59 695.67 410.73 247.60

Cylindrical shell

a=R ¼ 1 1143.30 728.58 457.04 301.34

Fig. 3 The effect of a=R ratio on the frequency-amplitude

curves of A-type FGM sandwich shells in case of free vibration
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sheets compensates for each other, the stiffness of

structure may be changed very little. The information

in Table 5 also reveals that the natural frequency of

FGM sandwich TSSs rises with the presence of elastic

foundation and reduces with the presence of the

thermal environment. Besides, with the same geomet-

rical parameters, the natural frequencies of A-type

sandwich shells are lower than those of B-type

sandwiches.

Table 6 illustrates the effects of length to equatorial

radius ratio L=Rð Þ and longitudinal curvature radius to

equatorial radius ratio a=Rð Þ on the natural frequency

of FGM sandwich shells in case of without

temperature effect and without elastic foundation.

The geometrical parameters are chosen as h ¼ 0:06 m,

hf =h ¼ 0:1, R=h ¼ 100, P ¼ 0Pa, k ¼ 1,

m ¼ 1; n ¼ 3. The obtained results show that the shell

is longer (i.e., L=R ratio increases), its natural

frequency is lower. For convex shells (i.e. a[ 0), as

a=R ratio rises the natural frequency lessens. For

concave shells (i.e. a\0), as a=R ratio increases the

natural frequency rises. Furthermore, with the same

length and equatorial radius, the cylindrical shell has a

higher natural frequency than concave shell but lower

than convex one.

Fig. 4 The effect of a=R ratio on the frequency-amplitude

curves of B-type FGM sandwich shells in case of free vibration

Fig. 5 The effect of elastic foundation on the frequency

amplitude curves of A-type FGM sandwich shells in case of free

vibration

Fig. 6 The effect of elastic foundation on the frequency

amplitude curves of B-type FGM sandwich shells in case of free

vibration

Fig. 7 The effect of mode m; nð Þ on the nonlinear vibration

responses of A-type FGM sandwich TSSs
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4.2.2 Nonlinear frequencies

Using Eq. (37), the frequency-amplitude relations are

outlined in Figs. 3, 4, 5, and 6 analyze the effects of

elastic foundation and the a=R ratio on the nonlinear

frequency to linear frequency xNL=xmnð Þ of FGM

sandwich TSSs of type A and type B for mode

numbers m; nð Þ ¼ 1; 7ð Þ. The input data is expressed

in these figures. It can be observed that the lowest

value of the xNL=xmn ratio increases as a=R decreases

(i.e., more convex shells). However, when the vibra-

tion amplitude is large enough, the less convex shells

have higher xNL=xmn ratio than more convex ones.

Information in Figs. 5 and 6 shows that elastic

foundation enhances the xNL=xmn ratio in the region

of small-amplitude but reduces this ratio in the region

of large-amplitude.

Fig. 8 The effect of mode m; nð Þ on the nonlinear vibration

responses of B-type FGM sandwich TSSs

Fig. 9 The effect of external pressure on the nonlinear vibration

responses of A-type FGM sandwich TSSs

Fig. 10 The effect of external pressure on the nonlinear

vibration responses of B-type FGM sandwich TSSs

Fig. 11 The effect of volume fraction index on nonlinear

vibration responses of A-type FGM sandwich TSSs
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4.2.3 Nonlinear vibration responses

In this section, the input data is described in

corresponding figures. Substitution the input data into

Eq. (35), and using the Runge–Kutta method, the

nonlinear vibration response of FGM sandwich TSSs

is analyzed.

The effect of mode numbers m; nð Þ on the nonlinear

vibration responses of FGM sandwich TSSs of type A

and type B excited by sinusoidal external pressure are

demonstrated in Figs. 7 and 8, respectively. The input

data is described in these figures. For both FGM

sandwich shells of type A and type B, the vibration

amplitude related to mode numbers m; nð Þ ¼ 1; 1ð Þ is

much greater than that related to other modes’

numbers. Especially, the vibration amplitude corre-

sponding to mode numbers m; nð Þ ¼ 3; 1ð Þ is much

lower than that corresponding to the mode numbers

m; nð Þ ¼ 1; 1ð Þ, m; nð Þ ¼ 1; 3ð Þ and m; nð Þ ¼ 1; 5ð Þ.
Furthermore, with the same geometrical parameters

and mechanical condition, the FGM sandwich shells

of type A have a higher amplitude than B-type

sandwich ones. This shows that B-type FGM sandwich

Fig. 12 The effect of volume fraction index on nonlinear

vibration responses of B-type FGM sandwich TSSs

Fig. 13 The effect of temperature environment on the nonlinear

vibration responses of A-type shells

Fig. 14 The effect of temperature environment on the nonlinear

vibration responses of B-type shells

Fig. 15 The effect of L=a ratio on the nonlinear vibration

responses of convex FGM sandwich shells of type A
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shells have higher dynamic load-carrying capacity

than FGM sandwich of type A.

The influences of pressure loading on the nonlinear

vibration response of both two types of FGM sandwich

shells are graphically illustrated in Figs. 9 and 10. The

input data is described in these figures. As expected, as

the amplitude of exciting force rises, the vibration

amplitude also grows.

Figures 11 and 12 depict the effect of volume

fraction index kð Þ, presenting the contribution of

material constituents in the FGM layer on the

nonlinear responses of both two types of FGM

sandwich TSSs. The input data is expressed in these

figures. It can be observed that, as k increases, the

vibration amplitude of the A-type FGM sandwich shell

reduces, whereas the vibration amplitude of the FGM

sandwich of type B rises. This could be explained as

follows: looking at Eqs. (1) and (2), one can see that

when the volume fraction index kð Þ increases, the

effective elastic modulus of B-type sandwich shells

reduces (the shells will be softer, leading to the rising

of the vibration amplitude). In contrast, the effective

Fig. 16 The effect of L=a ratio on the nonlinear vibration

responses of convex FGM sandwich shells of type B

Fig. 17 The effect of L=a ratio on the nonlinear vibration

responses of concave FGM sandwich shells of type A

Fig. 18 The effect of L=a ratio on the nonlinear vibration

response of concave FGM sandwich shells of type B

Fig. 19 The effect of L=R ratio on the nonlinear vibration

responses of A-type FGM sandwich TSSs
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elastic modulus of A-type sandwich shells rises as kð Þ
increases (the shells will be stiffer, reducing the

vibration amplitude).

The influence of temperature environment on

nonlinear vibration responses of FGM sandwich TSSs

is graphically described in Figs. 13 and 14. The input

data is depicted in these figures. The obtained result

shows that temperature makes the shells to be

deflected to the negative side of the z coordinate axes

(i.e., deflected outward).

Figures 15, 16, 17 and 18 illustrate the effect of

length to longitudinal curvature radius ratio L=að Þ on

the nonlinear vibration response of FGM sandwich

convex shells and FGM sandwich concave shells. It

can observe that the vibration amplitude grows as the

absolute value of L=a ratio increases for both two

types of FGM sandwich and both convex and concave

shells. Especially, the nonlinear vibration response of

concave shells is very sensitive to the change of L=a

ratio.

Fig. 20 The effect of L=R ratio on the nonlinear vibration

responses of B-type FGM sandwich TSSs

Fig. 21 The effect of R=h ratio on the nonlinear vibration

responses of A-type FGM sandwich TSSs

Fig. 22 The effect of R=h ratio on the nonlinear vibration

response of B-type FGM sandwich TSSs

Fig. 23 The effect of hf =h ratio on the nonlinear vibration

responses of A-type FGM sandwich TSSs
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The length to equatorial radius ratio L=Rð Þ is a

geometrical parameter characterizing the shallowness

of TSS. The effect of this parameter on the nonlinear

vibration response of FGM sandwich shells is

described in Figs. 19 and 20. As can be observed,

the vibration amplitude rises as the L=R ratio

increases.

Figures 21 and 22 depict the effect of equatorial

radius to total thickness ratio R=hð Þ on the nonlinear

vibration response of both two types of FGM sandwich

shells. It is not surprising that the vibration amplitude

of both two types of FGM sandwich shell increases as

R=h rises.

The effect of face sheet thickness to total thickness

ratio hf =h
� �

on the vibration response of FGM

sandwich TSS is described in Figs. 23 and 24. It can

be observed, when the hf =h ratio grows, the vibration

amplitude of the A-type FGM sandwich shell reduces,

whereas the amplitude of the B-type sandwich shell is

almost unchanged. This is explained as: for B-type

FGM sandwich shell, as face-sheet thickness to total

thickness ratio increases, both soft face sheet made by

metal and stiff face sheet made by ceramic are thicker.

The stiffness of these two face sheets compensates for

each other; the stiffness of structure may be changed

very little.

Figures 25 and 26 depict the influence of pre-axial

compressive load and damping coefficient on the

nonlinear vibration response of A-type FGM sandwich

shells. The obtained result shows that, as the value of

pre-axial compressive load increases, the vibration

amplitude reduces. As expected, with the presence of

damping coefficient, the vibration amplitude

decreases.

5 Conclusions

Based on a third-order shear deformation shell theory

developed by Reddy and Liu [1] accounts for small

strains but moderately large rotations, an analytical

Fig. 24 The effect of hf =h ratio on the nonlinear vibration

response of B-type FGM sandwich TSSs

Fig. 25 The effect of pre-axial compressive load on the

nonlinear vibration response of A-type shells

Fig. 26 The effect of damping coefficient on nonlinear the

vibration response of A-type shells
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investigation on the nonlinear vibration of FGM

sandwich TSSs is presented. Using the solution in

terms of Airy stress function and displacement

formulations in conjunction with the Galerkin method

and the Runge–Kutta method, the nonlinear vibration

behaviors of FGM sandwich TSSs such as natural

frequency, nonlinear free frequency, and nonlinear

forced vibration response are analyzed. A comparison

with existing results shows that the present approach is

accurate and reliable. The effect of geometrical,

material properties, elastic foundation, thermal envi-

ronment on the nonlinear vibration behavior of FGM

sandwich TSSs is studied and discussed in detail.

Specifically, this study shows that the natural fre-

quency of FGM sandwich TSSs calculated by using

the Airy stress function method is quite similar to that

calculated by using displacement formulations.
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Appendix A

Ii ¼
Zh=2

�h=2

q zð Þzi�1dz; i ¼ 1; 2; 3; 4; 5; 7ð Þ;

I1 ¼ I1 þ
2I2
R

; I
=
1 ¼ I1 þ

2I2
a

; I2

¼ I2 þ
I3
R
� cI4 �

cI5
R

; I
=
2 ¼ I2 þ

I3
a
� cI4 �

cI5
a

;

I3 ¼ cI4 þ
cI5
R

; I
=
3 ¼ cI4 þ

cI5
a

; I4 ¼ I
=
4

¼ I3 � 2cI5 þ c2I7; I5 ¼ I
=
5 ¼ cI5 � c2I7:

Appendix B

H11 u 0ð Þ
� �

¼ E1

1�m2
o2u 0ð Þ

ox2 þ E1

2 1þmð Þ
o2u 0ð Þ

oy2 ; H12 v 0ð Þ� �
¼

E1

2 1�mð Þ
o2v 0ð Þ

oxoy ; H13 w 0ð Þ� �
¼ � E1

1�m2
1
a þ m

R

� �
ow 0ð Þ

ox ; þ E1

1�m2

ow 0ð Þ

ox

�
o2w 0ð Þ

ox2 þ m ow 0ð Þ

oy
o2w 0ð Þ

oxoy Þþ
E1

2 1þmð Þ
ow 0ð Þ

ox
o2w 0ð Þ

oy2 þ
�

ow 0ð Þ

oy

o2w 0ð Þ

oxoy Þ �
cE4

1�m2
o3w 0ð Þ

ox3 þ o3w 0ð Þ

oxoy2

� �
, þ E1

1�m2
ow 0ð Þ

ox
o2w 0ð Þ

ox2 þ
�

m

ow 0ð Þ

oy
o2w 0ð Þ

oxoy Þ þ E1

2 1þmð Þ
ow 0ð Þ

ox
o2w 0ð Þ

oy2 þ ow 0ð Þ

oy
o2w 0ð Þ

oxoy

� �
� cE4

1�m2

o3w 0ð Þ

ox3

�
þ o3w 0ð Þ

oxoy2 ÞH14 /xð Þ ¼ E2�cE4

1�m2

o2/x

ox2 þ 1�m
2

o2/x

oy2

� �
, H15

/y

� �
¼ E2�cE4

2 1�mð Þ
o2/y

oxoy, H21 u 0ð Þ� �
¼ E1

2 1�mð Þ
o2u 0ð Þ

oxoy , H22

v 0ð Þ� �
¼ E1

1�m2
o2v 0ð Þ

oy2 þ E1

2 1þmð Þ
o2v 0ð Þ

ox2 , H23 w 0ð Þ� �
¼ � E1

1�m2

1
R þ m

a

� �
ow 0ð Þ

oy þ E1

1�m2
ow 0ð Þ

oy
o2w 0ð Þ

oy2 þ m ow 0ð Þ

ox
o2w 0ð Þ

oxoy

� �
þ E1

2 1þmð Þ

ow 0ð Þ

oy
o2w 0ð Þ

ox2 þ ow 0ð Þ

ox
o2w 0ð Þ

oxoy

� �
� cE4

1�m2
o3w 0ð Þ

oy3 þ o3w 0ð Þ

ox2oy

� �
, H24

/xð Þ ¼ E2�cE4

2 1�mð Þ
o2/x

oxoy,H25 /y

� �
¼ E2�cE4

1�m2

o2/y

oy2 þ 1�m
2

o2/y

ox2

� �
,

H31 u 0ð Þ� �
¼ cE4

1�m2
o3u 0ð Þ

ox3 þ o3u 0ð Þ

oxoy2

� �
þ E1

1�m2
1
a þ m

R

� �
ou 0ð Þ

ox ,

H32 v 0ð Þ� �
¼ cE4

1�m2
o3v 0ð Þ

ox2oy þ o3v 0ð Þ

oy3

� �
þ E1

1�m2
1
R þ m

a

� �
ov 0ð Þ

oy ,

H33 w 0ð Þ� �
¼ �E1

1�m2
1
a2 þ 2m

Ra þ 1
R2

� �
� K1

� 	
w 0ð Þ �Ph o2w 0ð Þ

ox2

þ E1�6cE3þ9c2E5

2 1þmð Þ � /1

1�m þ K2

h i
o2w 0ð Þ

ox2 þ o2w 0ð Þ

oy2

� �
� 2cE4

1�m2
1
a

��
þ m

RÞ o
2w 0ð Þ

ox2 þ 1
R þ m

a

� �
o2w 0ð Þ

oy2 � � c2E7

1�m2
o4w 0ð Þ

ox4 þ
�

2 o4w 0ð Þ

ox2oy2 þ

o4w 0ð Þ

oy4 Þ þ cE4

1þm
o2w 0ð Þ

ox2
o2w 0ð Þ

oy2 þ o2w 0ð Þ

oxoy

� �2

þ ow 0ð Þ

ox
o3w 0ð Þ

oxoy2 þ
�

ow 0ð Þ

oy

o3w 0ð Þ

ox2oy � þ cE4

1�m2

ow 0ð Þ

ox

o3w 0ð Þ

ox3
þ

�
m ow 0ð Þ

oy
o3w 0ð Þ

ox2oy þ 2 2m� 1ð Þ

o2w 0ð Þ

oxoy

� �2

�2m o2w 0ð Þ

ox2
o2w 0ð Þ

oy2 þ ow 0ð Þ

oy
o3w 0ð Þ

oy3 þ m ow 0ð Þ

ox
o3w 0ð Þ

oxoy2 � þ

E1

1�m2

1

a

��
þ m

RÞ 1
2

ow 0ð Þ

ox

� �2

�w o2w 0ð Þ

ox2

� �
þ 1

R þ m
a

� �
1
2

�
ow 0ð Þ

oy

� �2

�w o2w 0ð Þ

oy2 Þ þ 1 � mð Þ ow 0ð Þ

ox
ow 0ð Þ

oy � þ E1

2 1�m2ð Þ

ow 0ð Þ

ox

� �2
�

o2w 0ð Þ

ox2 þ m ow 0ð Þ

oy

� �2
o2w 0ð Þ

ox2 þ ow 0ð Þ

oy

� �2
o2w 0ð Þ

oy2 þ

m ow 0ð Þ

ox

� �2
o2w 0ð Þ

oy2 �, H34 /xð Þ ¼ E1�6cE3þ9c2E5

2 1þmð Þ
o/x

ox þ cE5�c2E7

1�m2

o3/x

ox3

�
þ o3/x

oxo2y
Þ þ E2�cE4

1�m2
1
a þ m

R

� �
o/x

ox , H35 /y

� �
¼

E1�6cE3þ9c2E5

2 1þmð Þ
o/y

oy þ cE5�c2E7

1�m2

o3/y

oy3 þ o3/y

ox2oy

� �
þ E2�cE4

1�m2
1
Rþ
�

m
aÞ

o/y

oy , H36 u 0ð Þ;w 0ð Þ� �
¼ E1

1�m2
ou 0ð Þ

ox
o2w 0ð Þ

ox2 þ
�

m ou 0ð Þ

ox
o2w 0ð Þ

oy2 þ
ou 0ð Þ

oy
o2w 0ð Þ

oxoy Þ, H37 v 0ð Þ;w 0ð Þ� �
¼ E1

1�m2
ov 0ð Þ

oy
o2w 0ð Þ

oy2 þ m ov 0ð Þ

oy

�
o2w 0ð Þ

ox2 þ ov 0ð Þ

ox
o2w 0ð Þ

oxoy Þ, H38 /x;w
0ð Þ� �

¼ E2�cE4

1�m2

o/x

ox
o2w 0ð Þ

ox2 þ
h
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m o/x

ox
o2w 0ð Þ

oy2 þ 1 � mð Þ o/x

oy
o2w 0ð Þ

oxoy�, H39 /y;w
0ð Þ� �

¼
E2�cE4

1�m2

o/y

oy
o2w 0ð Þ

oy2 þ m
o/y

oy
o2w 0ð Þ

ox2 þ 1 � mð Þ o/y

ox
o2w 0ð Þ

oxoy

h i
, H41

u 0ð Þ� �
¼ E2�cE4

1�m2
o2u 0ð Þ

ox2 þ 1�m
2

o2u 0ð Þ

oy2

� �
, L42 v 0ð Þ� �

¼ E2�cE4

2 1�mð Þ
o2v 0ð Þ

oxoy , H43 w 0ð Þ� �
¼ � E2�cE4

1�m2
1
a þ m

R

� �
þ

�
E1�6cE3þ9c2E5

2 1þmð Þ �
ow 0ð Þ

ox þ E2�cE4

2 1þmð Þ
ow 0ð Þ

ox
o2w 0ð Þ

oy2 þ ow 0ð Þ

oy
o2w 0ð Þ

oxoy

� �
þ E2�cE4

1�m2
ow 0ð Þ

ox

�
o2w 0ð Þ

ox2 þ m ow 0ð Þ

oy
o2w 0ð Þ

oxoy Þ þ �cE5þc2E7

1�m2
o3w 0ð Þ

ox3 þ o3w 0ð Þ

oxoy2

� �
,

H44 /xð Þ ¼ � E1�6cE3þ9c2E5

2 1þmð Þ /x þ E3�2cE5þc2E7

1�m2

o2/x

ox2 þ 1�m
2

o2/x

oy2

� �
, H45 /y

� �
¼ E3�2cE5þc2E7

2 1�mð Þ
o2/y

oxoy, H51

u 0ð Þ� �
¼ E2�cE4

2 1�mð Þ
o2u 0ð Þ

oxoy , H52 v 0ð Þ� �
¼ E2�cE4

1�m2
o2v 0ð Þ

oy2 þ
�

1�m
2

o2v 0ð Þ

ox2 Þ, H53 w 0ð Þ� �
¼ � E2�cE4

1�m2
1
R þ m

a

� �
þ

�
E1�6cE3þ9c2E5

2 1þmð Þ � ow 0ð Þ

oy þ E2�cE4

2 1þmð Þ
ow 0ð Þ

oy
o2w 0ð Þ

ox2 þ ow 0ð Þ

ox
o2w 0ð Þ

oxoy

� �

þ E2�cE4

1�m2
ow 0ð Þ

oy
o2w 0ð Þ

oy2 þ m ow 0ð Þ

ox
o2w 0ð Þ

oxoy

� �
þ�cE5þc2E7

1�m2

o3w 0ð Þ

oy3 þ o3w 0ð Þ

ox2oy

� �
, H54 /xð Þ ¼ E3�2cE5þc2E7

2 1�mð Þ
o2/x

oxoy, H55 /y

� �
¼ �E1�6cE3þ 9c2E52 1 þ mð Þ/y þ E3�2cE5þc2E7

1�m2

o2/y

oy2 þ 1�m
2

o2/y

ox2

� �
:

Appendix C

h11 ¼ E1

1�m2 M2 þ 1�m
2
N2

� �
, h12 ¼ E1MN

2 1�mð Þ, h13 ¼ E1

1�m2

1
a þ m

R

� �
M � cE4

1�m2 M M2 þ N2ð Þ, h14 ¼ E2�cE4

1�m2 M2þð
1�m

2
N2Þ, h15 ¼ E2�cE4

2 1�mð Þ MN, h16 ¼ E1

1�m2 2M3þð
1�3m

2
MN2Þ 4dmdn

9mnp2, h21 ¼ E1MN
2 1�mð Þ, h22 ¼ E1

1�m2 N2þð
1�m

2
M2Þ, h23 ¼ E1

1�m2
1
R þ m

a

� �
N � cE4

1�m2 N M2 þ N2ð Þ, h24

¼ E2�cE4

2 1�mð Þ MN, h25 ¼ E2�cE4

1�m2 N2 þ 1�m
2
M2

� �
, h26 ¼

E1

1�m2 2N3 þ 1�3m
2

M2N
� �

4dmdn
9mnp2, h31 ¼ cE4

1�m2 M M2þð
N2Þ � E1

1�m2
1
a þ m

R

� �
M, h32 ¼ cE4

1�m2 N M2ð þN2Þ� E1

1�m2

1
R þ m

a

� �
N, h33 ¼ � E1�6cE3þ9c2E5

2 1þmð Þ M2 þ N2ð Þ þ 2cE4

1�m2

1
a þ m

R

� �
M2 þ 1

R þ m
a

� �
N2

� 	
� c2E7

1�m2 M2 þ N2ð Þ2� E1

1�m2
1
a2

�
þ

2m
Ra þ 1

R2Þ � K1 þ K2 M2 þ N2ð Þ½ �, dm ¼ �1ð Þm�1; dn ¼
�1ð Þn�1, h34 ¼ � E1�6cE3þ9c2E5

2 1þmð Þ M þ cE5�c2E7

1�m2 M M2þð N2Þ �
E2�cE4

1�m2
1
a þ m

R

� �
M, h35 ¼ � E1�6cE3þ9c2E5

2 1þmð Þ N þ cE5�c2E7

1�m2 N

M2 þ N2ð Þ � E2�cE4

1�m2
1
R þ m

a

� �
N, h36 ¼ E1

1�m2
1
a þ m

R

� �
M2þ

�
1
R þ m

a

� �
N2� 20dmdn

9mnp2 � cE4

1�m2 M4 þ N4 þ 1þ9m
2

M2N2
� �

8dmdn
9mnp2,

h37 ¼ E1

1�m2 M3 þ 1�3m
4

MN2
� �

16dmdn
9mnp2 , h38 ¼ E1

1�m2 N3þð
1�3m

4
M2NÞ 16dmdn

9mnp2 , h39 ¼ E2�cE4

1�m2 M3 þ 1�3m
4

MN2
� �

16dmdn
9mnp2 ,

h310 ¼ E2�cE4

1�m2 N3 þ 1�3m
4

M2N
� �

16dmdn
9mnp2 , h311 ¼ �3E1

32 1�m2ð Þ M
4½

þN4 � 2 1�4mð Þ
3

M2N2�, h41 ¼ E2�cE4

1�m2 M2 þ 1�m
2
N2

� �
, h42

¼ E2�cE4

2 1�mð Þ MN, h43 ¼ E2�cE4

1�m2
1
a þ m

R

� �
M � cE5�c2E7

1�m2 M

M2 þ N2ð Þ þ E1�6cE3þ9c2E5

2 1þmð Þ M, h44 ¼ E3�2cE5þc2E7

1�m2

M2þð 1�m
2
N2Þ þ E1�6cE3þ9c2E5

2 1þmð Þ , h45 ¼ E3�2cE5þc2E7

2 1�mð Þ MN,

h46 ¼ E2�cE4

1�m2 2M3 � 1þm
2
MN2

� �
4dmdn
9mnp2, h51 ¼ E2�cE4

2 1�mð Þ

MN, h52 ¼ E2�cE4

1�m2 N2 þ 1�m
2
M2

� �
, h53 ¼ E2�cE4

1�m2
1
R þ m

a

� �
N�

cE5�c2E7

1�m2 N M2 þ N2ð Þ þ E1�6cE3þ9c2E5

2 1þmð Þ N, h54 ¼
E3�2cE5þc2E7

2 1�mð Þ MN, h55 ¼ E3�2cE5þc2E7

1�m2 N2 þ 1�m
2
M2

� �
þ

E1�6cE3þ9c2E5

2 1þmð Þ , h56 ¼ E2�cE4

1�m2 2N3 � 1þm
2
M2N

� �
4dmdn
9mnp2 :

Thermal parameters: U1T ¼ U1

1�m M2 þ N2ð Þ, U2T ¼
U1

1�m
1
a þ m

R

� �
4dmdn
mnp2 in which U1 ¼ Ecac þ EcamcþEmcac

h

2hf
kþ1

þ hco

� �
þ Emcamc

h
2hf

2kþ1
þ hco

� �
(Type A), U1 ¼

Emam þ EmacmþEcmam
h

2hco
kþ1

þ hf

� �
þ Ecmacm

h
2hco
2kþ1

þ hf

� �
(Type B).

Appendix D

D1 ¼ I1 þ c2I7 M2 þ N2ð Þ � I3L51M � I
=
3L61N � I5L71M � I

=
5L81N,

D2 ¼ 2eI1, D3 ¼ � h31L11 þ h32L21 þ h33 þ h34L31þð
h35L41Þ, D4 ¼ � h31L12 þ h32L22 þ h34L32þð h35L42 þ
h36þ h37L11 þ h38L21 þ h39L31 þ h310L41Þ, D5 ¼ �
h37L12 þ h38L22 þ h39L32 þ h310L42 þ h311ð Þ, D6 ¼

� 4dmdn
mnp2 in which L11 ¼

� det

h13 h12 h14 h15

h23 h22 h24 h25

h43 h42 h44 h45

h53 h52 h54 h55

0
BB@

1
CCA

D ,

L12 ¼

� det

h16 h12 h14 h15

h26 h22 h24 h25

h46 h42 h44 h45

h56 h52 h54 h55

0
BB@

1
CCA

D ,

L21 ¼

� det

h11 h13 h14 h15

h21 h23 h24 h25

h41 h43 h44 h45

h51 h53 h54 h55

0
BB@

1
CCA

D ,

L22 ¼

� det

h11 h16 h14 h15

h21 h26 h24 h25

h41 h46 h44 h45

h51 h56 h54 h55

0
BB@

1
CCA

D ,
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L31 ¼

� det

h11 h12 h13 h15

h21 h22 h23 h25

h41 h42 h43 h45

h51 h52 h53 h55

0
BB@

1
CCA

D ,

L32 ¼

� det

h11 h12 h16 h15

h21 h22 h26 h25

h41 h42 h46 h45

h51 h52 h56 h55

0
BB@

1
CCA

D ,

L41 ¼

� det

h11 h12 h14 h13

h21 h22 h24 h23

h41 h42 h44 h43

h51 h52 h54 h53

0
BB@

1
CCA

D ,

L42 ¼

� det

h11 h12 h14 h16

h21 h22 h24 h26

h41 h42 h44 h46

h51 h52 h54 h56

0
BB@

1
CCA

D , L51 ¼ I3I4�I2I5ð ÞM
I1I4� I2ð Þ2 ,

L61 ¼ I
=
3
I
=
4
�I

=
2
I
=

5

� �
N

I
=
1
I
=
4
� I

=
2

� �2 , L71 ¼ I1I5�I2I3ð ÞM
I1I4� I2ð Þ2 , L81 ¼ I

=
1
I
=

5
�I

=
2
I
=
3

� �
N

I
=
1
I
=
4
� I

=
2

� �2 ,

D ¼ det

h11 h12 h14 h15

h21 h22 h24 h25

h41 h42 h44 h45

h51 h52 h54 h55

0
BB@

1
CCA:

Appendix E

B1 ¼ I1 � A3 � A2 M2 þ N2ð Þ½ � C12M þ C22Nð Þ�
A6 M2 þ N2ð Þ, B3 ¼ K1 þ K2 M2 þ N2ð Þ þ A2 M2þð½
N2Þ� A3� C11Mð þC21NÞ � A3 M2 þ N2ð Þ �N2U1 �
M2þð mN2ÞPh ? þA5 M2 þ N2ð Þ2þF11

M2

R þ N2

a

� �
in

which A2 ¼ E1E3�E2
2
þc E2E4�E1E5ð Þ
E1 1�m2ð Þ , A3 ¼ c E2E4�E1E5ð Þ

E1 1�m2ð Þ ,

A5 ¼ E1E5�E2E4þc E2
4
�E1E7ð Þ

E1 1�m2ð Þ , A6 ¼ c E2
4
�E1E7ð Þ

E1 1�m2ð Þ , A7 ¼
E1�3cE3

2 1þmð Þ , A8 ¼ E3�3cE5

2 1þmð Þ , C11 ¼ v13v22�v12v23

v11v22�v12v21
, C12 ¼

v14v22�v12v24

v11v22�v12v21
, C21 ¼ v11v23�v21v13

v11v22�v12v21
, C22 ¼ v11v24�v21v14

v11v22�v12v21
, v11 ¼

3cA8 � A7ð Þ � A2 � cA5ð Þ M2 � 1�m
2
N2

� �
, v12 ¼

� 1þm
2

A2 � cA5ð ÞMN, v13 ¼ A3 � cA6ð Þ M3 þMN2ð Þ
þ A7 � 3cA8ð ÞM; v14 ¼ �I5M, I5 ¼ I5 � I2I3=I1,

v21 ¼ � 1þm
2

A2 � cA5ð ÞMN, v22 ¼ 3cA8 � A7ð Þ�
A2 � cA5ð Þ N2 � 1�m

2
M2

� �
, v23 ¼ A3 � cA6ð Þ N3ð

þNM2Þþ A7 � 3cA8ð Þ N; v24 ¼ �I
=
5N, I

=
5 ¼ I

=
5�

I
=
2I

=
3=I

=
1 , F11 ¼ E1

M2þN2ð Þ2
M2

R þ N2

a

� �
:

Appendix F

g1 ¼ D2

D1
, g2 ¼ D4

D3�U1T�PhM2, g3 ¼ D5

D3�U1T�PhM2, g4 ¼
D6

D1
Q, g5 ¼ U2T

D1
:
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