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1 Introduction

This study is related to modeling and control of arti-
ficial locomotion systems that can move through 
a resistive environment without special propel-
ling devices (wheels, legs, water screws, etc.) due 
to change in their configuration. During the motion, 
these systems do not change the sets of their points 
of contact with the environment. Such systems are 
designed as multibody linkages the bodies of which 
are connected by cylindrical (revolute) or prismatic 
(translational) joints. The joints are equipped with 
drives that control the relative motion of adjacent 
bodies. The forces and torques generated by the drives 
are internal with respect to the entire locomotion sys-
tem. The control forces and torques cause the motion 
of the system’s components relative to one another 
and relative to the environment. The environment acts 
on the bodies of the system with the resistance forces 
that are external with respect to the locomotor and 
depend on the motion of the respective bodies. There-
fore, control of the internal forces and torques gener-
ated by the drives enables one to control the external 
forces and torques applied to the system by the envi-
ronment, thus controlling the motion of the system as 
a whole. This principle of motion has been borrowed 
from living nature, it imitates the motion of some ter-
restrial and aquatic limbless animals, such as snakes, 
worms, eels, etc. The investigations in the dynamics 
and control of limbless artificial locomotion systems 
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are rapidly developing in the context of biomechanics 
and mobile robotics.

Two basic kinds of limbless motion can be distin-
guished: snake-like motion and worm-like motion. 
The snake-like locomotors are designed usually as 
multi-link systems the links of which are connected 
by cylindrical (revolute) joints, and the configuration 
of the locomotor changes by means of lateral bend-
ing. The worm-like systems are designed, as a rule, 
as multi-body systems the bodies of which are con-
nected by prismatic (translational) joints, and the 
configuration changes due to relative longitudinal 
displacement of the bodies. The motion of worm-like 
systems resembles a peristaltic motion. For math-
ematical modeling of snake-like and worm-like loco-
motion, both lumped-mass and distributed mass sys-
tems can be used.

In our paper, a crawling system that consists of 
two bodies connected by a prismatic joint is studied. 
It can be regarded as the simplest model of a worm-
like locomotion system. The bodies interact with one 
another by a force acting along the line that connects 
the bodies. This force is generated by a drive and 
plays the role of a control force.

The general issues of worm-like locomotion are 
addressed in [1–4]. Biological and biomechanical 
aspects are discussed in [1, 2], while the books [3, 4] 
deal with mathematical modeling of worm-like loco-
motion systems. Various aspects of dynamics, con-
trol, and optimization of worm-like locomotors on the 
basis of lumped-mass models are considered in [5–8]. 
In [9–15], the locomotion of the worm-like systems 
(both natural and artificial) is studied on the basis of 
distributed-mass models. In some of the cited papers, 
lumped-mass models are used along with distributed-
mass models, these kinds of models are compared, 
and the relationship between them is discussed. The 
advantage of worm-like locomotors in comparison 
with snake-like ones is that the gaits of worm-like 
locomotors do not involve lateral bending, owing to 
which the worm-like locomotors are more prospec-
tive for the motion in narrow tubes and slots. Arti-
ficial worm-like locomotion systems are presented, 
e.g., in [16–20].

The rectilinear motion of a two-body locomotion 
system on a rough horizonal plane was investigated 
in a number of studies, see, e.g., [21–27]. The cited 
papers mostly deal with periodic motions, in which 
the distance between the bodies and their velocities 

relative to the environment change periodically with 
the same period. Various control strategies are pro-
posed and analyzed. Special attention is given to the 
optimization of the motions with respect to the aver-
age velocity of the locomotor (to be maximized) or 
the energy consumption per unit path (to be mini-
mized). The constraints on the parameters, subject 
to which a two-body system can move in such a way 
that neither of the bodies change the direction of their 
motions, are identified.

A two-body crawling system is uncontrollable on a 
horizontal plane in that sense that it cannot be driven 
from any initial state of rest on the plane to any ter-
minal state of rest. The uncontrollability is explained 
by the fact that all forces that act in the system are 
directed along the line that connects the bodies in 
the initial state. The situation changes for an inclined 
plane. In this case, if both bodies do not lie on the 
common line of maximal slope, the projections of the 
gravity forces applied to the bodies onto the underly-
ing plane are not directed along the line that connects 
the bodies. The aim of our paper is to investigate 
the controllability of a two-body crawler on a rough 
(Coulomb’s friction) inclined plane. It will be shown 
that if the tangent of the plane inclination angle is 
less that the coefficient of friction between the bod-
ies and the plane multiplied by the ratio of the differ-
ence of the masses of the bodies to the total mass of 
the system and if no constraints are imposed on the 
control force, the system can be moved from any ini-
tial state of rest, except for the case where both bodies 
lie on the common line of maximum slope, into an 
arbitrarily small neighborhood of any prescribed ter-
minal state of rest. A control strategy that alternates 
infinitely slow (quasistatic) motions and infinitely fast 
motions will be presented. Thereby it will be shown 
that on an inclined plane the crawler is controllable 
from any state of rest, apart from the singular case 
where both bodies lie on the common line of maxi-
mum slope.

The motion of a two-body system on an inclined 
plane along a line of maximal slope is dealt with in 
[28, 29]. If at an initial time instant both bodies of a 
two-body crawler lie on the common line of maxi-
mum slope, the system, as was the case for the motion 
on a horizontal plane, cannot quit this line, since all 
forces that act in the system act along this line.

The ability of two-body artificial limbless loco-
motors to crawl along a rough plane has been 
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confirmed experimentally. In [24], an electri-
cally driven experimental prototype of a two-body 
crawling locomotor is described. It was established 
theoretically and experimentally that this prototype 
could move along a straight line on a horizontal 
rough plane. It can be used also for the motion on 
an inclined rough plane along a line of maximal 
slope, which has been justified theoretically in [28, 
29].

Two-body crawlers may have practical appli-
cations. For example, they can be used as mobile 
robotic systems for the motion inside straight nar-
row pipes. In [30, 31], a two-module push-pull 
in-pipe robot is described. The robot consists of 
two modules (rigid bodies) that interact with one 
another by means of an electromagnetic drive. The 
drive contains a coil that is rigidly fixed to one of 
the modules (active module) and a ferromagnetic 
core that is rigidly attached to the other (passive) 
module by means of a rod and can move inside the 
coil. The modules are connected by a spring. Each 
module has a bristly coating that provides an ani-
sotropy for the friction between the modules and 
the walls of the pipe. The bristles are oriented in 
such a way that the friction resisting the forward 
motion is much lower than the friction resisting 
the backward motion. The locomotion of the robot 
occurs due to the alternation of active and passive 
phases. In the active phases, a voltage is applied 
across the coil, the core is pulled into the coil, and 
the passive module moves forward, while the active 
module is virtually kept at rest by the forces of fric-
tion. In the passive phases, the voltage is switched 
off and the active module is pushed forward by the 
spring, while the passive module is virtually kept 
at rest.

So far, two-body limbless artificial locomotors 
were used mostly for rectilinear motions along a 
guide, in particular, inside pipes. We study the 
locomotion of a two-body crawler on an inclined 
plane in order to answer the question, whether 
such a simple system is suitable for more compli-
cated motions, rather than only for the motions 
along a guide, along a straight line on a horizontal 
plane, or along a straight line of maximal slope on 
an inclined plane. It will be shown that a two-body 
crawling system is in principle controllable on an 
inclined plane. This fact extends the area of poten-
tial applications of such systems.

2  Mechanical model and the aim of the study

We consider a model of a two-body limbless crawling 
system on an inclined plane Π shown in Fig. 1. The 
bodies of the system are treated as mass points. The 
bodies interact with one another and with the plane. 
The forces of interaction between the bodies obey 
Newton’s third law and play the role of control forces. 
Dry friction forces due to interaction of the bodies 
with the underlying plane are acting on each of the 
bodies. The coefficient of friction against the plane is 
the same for both bodies. The control forces are inter-
nal forces, while the friction forces are external forces 
for the crawler.

Let M and m be the masses of the bodies; in what 
follows, we will refer to the body of mass M and the 
body of mass m as body M and body m, respectively. 
Let � denote the interaction force applied by body M 
to body m; � (0 < 𝛾 < 𝜋∕2) the inclination angle of 
the plane; g the magnitude of the acceleration due 
to gravity; k the coefficient of Coulomb’s friction 
between the underlying plane and the bodies of the 
system. According to Newton’s third law, the force 
� acts along the line that connects the bodies of the 
system.

We will be interested in the controllability of this 
system. By controllability we understand the ability 
of the crawler to move from an arbitrary initial state 
of rest to an arbitrary terminal state of rest. On a hori-
zontal plane, a two-body crawler is uncontrollable; 
in this case, the crawler can move only along the line 
that connects the bodies in the initial state, since the 
interaction forces of the bodies and the forces of fric-
tion are acting along this line. The situation changes 
for an inclined plane, because in this case the pro-
jections of the gravity forces that act on the bodies 
onto the plane do not lie on the line that connects the 
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Fig. 1  Two-body crawling system on an inclined plane. Oxyz 
is the inertial reference frame, � is the control force, � is the 
vector of the acceleration due to gravity, � is the vector normal 
to the plane
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current positions of the bodies, apart from the case 
where the bodies lie on the common line of maximum 
slope. If in the initial state the bodies lie on the com-
mon line of maximum slope on an inclined plane, the 
crawler cannot leave this line, as is the case for a hori-
zontal plane.

We will be interested in the controllability in 
principle. For this reason, we do not impose any 
quantitative constraints on the control forces and on 
the distance between the bodies. In particular, we 
admit impulsive forces that change instantaneously 
the velocities of the bodies and even the forces that 
change instantaneously the distance between the bod-
ies of the crawler. Moreover, we will assume that the 
bodies may “penetrate” one another.

We will construct a control by means of which 
the crawler could move between two prescribed 
states of rest on the plane. We will show that if at 
the initial instant the bodies of the crawler do not 
lie on the common line of maximum slope, then 
the system can be driven into an arbitrarily small 
neighborhood of the prescribed terminal state. The 
motion of the crawler will alternate slow (quasi-
static) phases and fast phases. In the slow phases, 
one of the bodies moves, while the other body is 
kept fixed on the plane due to friction force. The 
velocity and acceleration of the moving body in 
the slow phase are so small that this motion can 
be regarded as a continuous sequence of equilib-
ria governed by the static relations. The fact that 
the body is moving is reflected in the assumption 
that the magnitude of the force of friction acting 
on this body is equal to the magnitude of the slid-
ing friction force. The direction opposite to that 
of the force of friction will be identified with the 
instantaneous direction of motion of the body in 
the slow phase. During the slow motions the posi-
tion of the center of mass of the crawler and the ori-
entation of the crawler on the plane are changing. 
In the fast modes, the distance between the bodies 
changes instantaneously, the position of the center 
of mass and the orientation of the crawler remaining 
unchanged. The fast motions are an idealization of 
very quick motions induced by large control forces 
of small duration. These forces must be much larger 
than the gravity forces and friction forces acting on 
the bodies of the system but the duration of their 
action must be so small that the change in the linear 
and angular momenta of the system during the fast 

motion be negligible. The motion that alternates 
slow and fast phases was considered in [32, 33] for 
multi-link snake-like limbless locomotors that con-
sist of rigid links connected by revolute joints and 
perform bending motions on a horizontal rough 
plane.

The Coulomb’s dry friction force � for a point 
mass on the plane Π is given by

where �Π is the projection of the resultant impressed 
force � applied to the mass point onto the plane 
Π , � is the velocity of the mass point relative to the 
plane, N is the magnitude of the normal reaction force 
applied to the mass point by the plane. The force �Π 
in Eq. (1) is defined by

where � is the unit vector of the normal to the plane 
and the dot stands for the scalar product of the respec-
tive vectors. Since the mass point is constrained to 
move along the plane without separation, the normal 
force N in Eq. (1) is given by

For the bodies of the system under consideration, the 
impressed forces are the gravity forces and the control 
forces; we have

where � is the vector of the acceleration due to grav-
ity; the superscript M or m indicates the body to 
which the respective expression is related.

Introduce a normal � in such a way that the ends 
of the vectors � and � belong to different half-
spaces with respect to the plane Π , provided that the 
origins of these vectors belong to the plane Π , so 
that � ⋅ � < 0 . The vectors � , � , and � satisfy the fol-
lowing relations:

These relations reflect the fact that the plane Π is 
inclined by an angle of � and the control force � is 
parallel to this plane.

(1)� =

⎧
⎪⎨⎪⎩

−kN
�

��� , � ≠ 0,

−�Π, � = 0, ��Π� ≤ kN,

−kN
�Π

��Π� , � = 0, ��Π� > kN,

(2)�Π = � − (� ⋅ �)�,

(3)N = −(� ⋅ �).

(4)�M = M� − � , �m = m� + � ,

(5)� ⋅ � = −g cos � , � ⋅ � = 0.
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Use Eqs. (2)–(5) to obtain

We will construct a motion that alternates slow and 
fast phases. In the slow phases body m quasistati-
cally moves, while body M remains at rest. To start 
a slow phase body m must be able to start moving 
from a state of rest so that body M remains fixed. It is 
important to identify the conditions subject to which 
such motions are allowed and the properties of the 
motions. For body m to be able to start moving from 
a state of rest while body M is not moving, the Cou-
lomb’s friction law (1) and the relations of (6) imply 
the inequalities

Introduce in the plane Π a right-handed Cartesian 
coordinate system Oxyz, in which O is an arbitrary 
fixed point on the plane Π , the z-axis is directed 
along the normal vector � ; the y-axis lies on the line 
of intersection of the plane Π with the plane formed 
by the vectors � and � and is directed “upward” along 
this line; the x - axis completes the axes y and z to a 
right-handed orthogonal triple. In this coordinate sys-
tem, the vectors � , � , and � are represented as follows:

Then the inequalities (7) and (8) can be rewritten as

These inequalities have a graphic geometrical inter-
pretation. Introduce in the plane fxfy two circles CM 
and Cm defined by

(6)
�M

Π
= M� − � +Mg cos � �,

�m
Π
= m� + � + mg cos � �,

NM = Mg cos � , Nm = mg cos � .

(7)|M� − � +Mg cos � �| ≤ kMg cos � .

(8)|m� + � + mg cos 𝛾 �| > kmg cos 𝛾 .

(9)� =

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
, � =

⎡⎢⎢⎣

0

−g sin �

−g cos �

⎤⎥⎥⎦
, � =

⎡⎢⎢⎣

fx
fy
0

⎤⎥⎥⎦
.

(10)f 2
x
+ (fy +Mg sin �)2 ≤ (kMg cos �)2,

(11)f 2
x
+ (fy − mg sin 𝛾)2 > (kmg cos 𝛾)2.

(12)

CM =
{
fx, fy ∶ f 2

x
+ (fy +Mg sin �)2

≤ (kMg cos �)2
}
,

Cm =
{
fx, fy ∶ f 2

x
+ (fy − mg sin �)2

≤ (kmg cos �)2
}
.

Relations (10) and (11) imply that the end-point of 
the vector � drawn from the origin belongs to the 
circle CM and does not belong to the circle Cm , i.e., 
� ∈ CM ⧵ Cm . The circles CM and Cm are shown in 
Fig.  2. The area shaded in light grey depicts the 
region CM ⧵ Cm.

Since body m starts moving from a state of rest in 
the direction of the force �m

Π
 defined in Eq. (6), the 

diagram with circles CM and Cm allows determining 
the directions in which body m can start moving from 
a state of rest, provided that body M does not move. 
In accordance with (6) and (9) we have

This implies that the force �m
Π
 can be represented 

geometrically as a vector drawn from the center of the 
circle Cm (the point (0, mg sin �) on the plane Π ) to 
the end point of the vector � drawn from the origin of 
the coordinate system Oxyz. Therefore, an admissible 

(13)�m
Π
=

⎡⎢⎢⎣

fx
fy
0

⎤⎥⎥⎦
+

⎡⎢⎢⎣

0

−mg sin �

0

⎤⎥⎥⎦
.

Fig. 2  Circles C
M

 and C
m
 . Relationship between the forces �m

Π
 

and �
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direction of motion of body m is defined by any ray 
on the plane Π that is drawn from the center of the 
circle Cm and intersects the set CM ⧵ Cm . Any point of 
intersection defines the control force � that provides 
the motion of body m in the respective direction. One 
should remember that the control force � lies on the 
line that connects bodies M and m. Therefore, differ-
ent control forces that allow moving body m in the 
same direction correspond to different orientations of 
the two-body system on the plane Π.

Consider three cases of mutual positions of the 
circles CM and Cm in the plane fxfy . 

Case 1: the circles do not intersect. In this case, 
the circle CM lies in the half-plane fy < 0 and the 
circle Cm lies in the half-plane fy > 0 , which cor-
responds to the inequality

Therefore, the bodies cannot remain at rest on the 
plane for � = 0 . Moreover, both bodies cannot 
stay at rest for any force � . Any value of the con-
trol force than keeps body M at rest does not allow 
body m to remain at rest.
Case 2: the circles intersect but the circle Cm  is 
not contained in the circle CM . This case is char-
acterized by the inequalities

In this case, both bodies will remain fixed while 
� = 0 , however, not all directions of motion are 
allowed for body m. In particular, body m cannot 
start moving upward if bodies M and m lie on the 
common line of maximal slope.
Case 3: the circle CM contains the circle Cm . For 
this case,

This inequality allows body m to be moved in 
any direction, provided that the line Mm has an 
appropriate orientation on the plane Π . In par-
ticular, from the state in which both bodies lie on 
the common line of maximum slope and do not 
move, body m can be moved by an appropriate 
force � upward along this line, provided that body 

(14)tan 𝛾 > k.

(15)
M − m

M + m
k ≤ tan � ≤ k.

(16)tan 𝛾 <
M − m

M + m
k.

M remains at rest. In what follows, we assume ine-
quality (16) to hold.

 For 0 < 𝛾 < 𝜋∕2 , the inequality of (16) implies that 
M > m , i.e., the mass of the body that can move 
quasistatically must be less than the mass of the 
other body.

Figure 2 illustrates the the mutual position of the 
circles CM and Cm for Case 2 and the relationship 
between the vectors of the forces �m

Π
 and � . The 

vector of an admissible (allowing body m to start 
moving when body M is at rest) force �m

Π
 is drawn 

from the center of the circle Cm to a point A that 
belongs to the circle CM and does not belong to the 
circle Cm . The corresponding vector of the control 
force � is drawn from the origin of the coordinate 
plane fx fy to the same point A. The directions of the 
admissible forces �m

Π
 define the directions of feasi-

ble velocities of body m at the starting instant of the 
motion. The case where the vectors �m

Π
 and � end 

at a point B that lies on the boundary of the circle 
Cm and belongs to the circle CM is the critical case 
and corresponds to the pending motion of body m. 
For this case, body m is in equilibrium but the fric-
tion force applied to this body is equal to the sliding 
friction force, and any, however small, increase in 
the magnitude of the control force � will make this 
body moving. The critical equilibria of body m will 
play a key role in the following section where quasi-
static motions of body m are studied.

3  Quasistatic motions of body m

In this section, the slow phase of the motion of the 
crawler is studied. Recall that in the slow phase, 
body M is kept fixed on the plane Π , while body m 
moves with so small velocity and acceleration that 
the resultant of all forces applied to body m is zero. 
The trajectory of such a motion can be regarded as a 
“continuous sequence” of equilibrium positions. The 
fact that body m is actually moving is reflected in the 
assumption that the friction force applied to this body 
is equal in magnitude to the sliding friction force 
kmg cos � . The direction opposite to that of the fric-
tion force is assumed as the positive direction of the 
tangent to the trajectory of the motion at the current 
position of the body.

Introduce in the plane Π a fixed right-handed coor-
dinate system Mxy, with origin at the point M and 
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y-axis directed upward along the line of maximum 
slope (Fig. 3).

Denote: � is the position vector of body m relative 
to body M; f the projection of the force � , applied by 
body M to body m, onto the direction of the vector � 
( � = f �∕|�| ); �Π the projection of the gravity accelera-
tion vector � onto the plane Π . The introduced vec-
tors are represented in the coordinate system Mxy as 
follows:

The equation of balance of the forces applied to body 
m (equilibrium equation for body m) is given by

where � is a unit vector directed against the friction 
force that acts on body m (the unit vector of the tan-
gent to the trajectory of the quasistatic motion of this 
body). Raise both sides of Eq. (18) to a scalar square 
taking into account the relations |�| = 1 and (17) to 
obtain the quadratic equation for the quantity f:

Solving this equation yields

The assumption of (16) implies that k > tan 𝛾 . Using 
this inequality we obtain

(17)

� =

�
x

y

�
, � =

f√
x2 + y2

�
x

y

�
, �Π =

�
0

−g sin �

�
.

(18)(kmg cos �)� = m�� + � ,

(19)
f 2 − 2mg sin �

y√
x2+y2

f

+m2g2(sin2 � − k2 cos2 �) = 0.

(20)

f

mg
= sin �

y√
x2 + y2

±

�
k2 cos2 � − sin2 �

x2

x2 + y2
.

�
k2 cos2 𝛾 − sin2 𝛾

x2

x2 + y2
> � sin 𝛾� �y�√

x2 + y2
.

Therefore, the quadratic Eq. (20) has two real roots, 
one of which is positive and the other is negative.

Parameterize the trajectory of the qusistatic 
motion by its natural parameter s (the length of the 
curve that connects the initial point of the trajec-
tory with the current point), i.e., represent the posi-
tion vector of body m by the vector-valued function 
� = �(s) . Differential geometry yields the relation

From (18) and (21) we obtain

If the force � is defined as a function of the variables 
� and s, then the relation of (22) is a differential equa-
tion for the trajectory of the quasistatic motion. To 
find the function �(s) one should solve this differen-
tial equation subject to the initial condition �(0) = �0 , 
where �0 is the initial position vector of body m.

In the coordinate form, Eq. (22) is represented by 
a system of two differential equations

where f is defined by one of the expressions of (20).
For solving the equations of (23), it is conveni-

ent to proceed from the Cartesian coordinates (x, y) 
to the polar coordinates (r, �) . The polar and Carte-
sian coordinates are related by

where r and � are treated as functions of the variable 
s. Substitute the expressions of (24) into the equations 
of (23) to obtain

where

The relation of (26) follows from those of (20) and 
(24).

(21)
d�

ds
= �.

(22)
d�

ds
=

1

kg cos �

(
�Π +

1

m
�
)
.

(23)
dx

ds
=

fx

kmg cos �
√
x2+y2

,

dy

ds
= −

tan �

k
+

fy

kmg cos �
√
x2+y2

,

(24)x = r cos�, y = r sin�,

(25)
dr

ds
cos� −

d�

ds
r sin� =

f

kmg cos �
cos�

dr

ds
sin� +

d�

ds
r cos� = −

tan �

k
+

f

kmg cos �
sin�,

(26)

f = mg

(
sin � sin� ±

√
k2 cos2 � − sin2 � cos2 �

)
.

Fig. 3  Coordinate system Mxy, polar radius r and polar angle 
� of body m relative to body M 
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Solve the equations of (25) for the derivatives 
dr/ds and d�∕ds and use the expression of (26) to 
represent these equations in the normal form

The second equation of (27) implies that in the 
domain where cos𝜑 > 0 ( cos𝜑 < 0 ), the polar angle 
� monotonically decreases (increases) as the param-
eter s increases. The inequality cos𝜑 > 0 ( cos𝜑 < 0 ) 
means that body m is in the half-plane x > 0 ( x < 0 ). 
This implies that for the quasistatic motion, the 
position vector � of body m rotates clockwise in 
the half-plane x > 0 and counterclockwise in the 
half-plane x < 0 . The equations of (27) are invari-
ant to the change of variables � = � − �̃ . There-
fore, without loss of generality, we will assume that 
−𝜋∕2 < 𝜑 < 𝜋∕2 . In this domain, the quasistatic 
motion occurs with a decrease of the the angle �.

Proceed in the equations of (27) to the new inde-
pendent variable � to obtain a differential equation for 
the polar radius r as a function of the polar angle � of 
body m:

The double sign ∓ in Eq. (28) is consistent with the 
double sign ± in the expression of (26). The general 
solution of Eq. (28) is given by

where C is a positive constant. The integral in the 
relation of (29) can be expressed in terms of elemen-
tary functions:

By substituting (30) into (29) and taking an exponen-
tial of both sides of the resultant relation we obtain 
finally

(27)
dr

ds
= ±

√
1 − q2 cos2 𝜑,

d𝜑

ds
= −

q

r
cos𝜑,

q =
tan 𝛾

k
, 0 < q < 1.

(28)
dr

d�
= ∓

r

q cos�

√
1 − q2 cos2 �.

(29)
ln r = ∓

1

q
∫ Δ(�)

cos�
d� + lnC,

Δ(�) =
√
1 − q2 cos2 �,

(30)
∫ Δ(�)

cos�
d�

=
1

2
ln

Δ(�)+sin�

Δ(�)−sin�
− q ln (q(Δ(�) + q sin�)).

(31)
r = r±(�)

= C
(

Δ(�)∓ sin�

Δ(�)±sin�

) 1

2q

(q(Δ(�) + q sin�))±1.

The expressions of (31) allow identifying important 
qualitative features in the behavior of the quasistatic 
trajectories. By passing in these expressions to the 
limit as � → −�∕2 + 0 and � → �∕2 − 0 we obtain

Investigate the behavior of the coordinates x = r cos� 
and y = r sin� of body m in the qusiatatic motion. 
The derivative of the coordinate x with respect to � 
is given by

Substitute the expression of (28) into that of (33) to 
obtain

The expression in the parentheses is positive 
and, hence, dx+∕d𝜑 < 0 and dx−∕d𝜑 > 0 for 
� ∈ (−�∕2, �∕2) . This implies that the coordinate 
x monotonically decreases, if the interaction force 
� is directed from body M to m, and monotonically 
increases, if this force is directed from body m to 
body M. From the second equation of (27) it fol-
lows that for any direction of the interaction force, 
the angle � decreases in the process of the quasistatic 
motion. Therefore, the variables r and x increase for 
the motion under the force directed from body M to 
body m and decrease for the motion under the force 
directed from body m to body M.

The variable x+ increases without limit as 
� → −�∕2 + 0 , while the variable x− increases with-
out limit as � → �∕2 − 0 . We will prove this proposi-
tion for the variable x+ ; for the variable x− , the proof 
is similar. In the neighborhood of the value � = −�∕2 , 
the relation sin� = −

√
1 − cos2 � holds. Denote 

z = cos� and, using the relation of (31), represent the 
expression for x+ as follows:

(32)
lim

�→−
�

2
+0
r+(�) = ∞, lim

�→
�

2
−0
r+(�) = 0,

lim
�→−

�

2
+0
r−(�) = 0, lim

�→
�

2
−0
r−(�) = ∞.

(33)
dx

d�
=

dr

d�
cos� − r sin�.

(34)
dx±

d�
= ∓

r

q

�√
1 − q2 cos2 � − q sin�

�
.

(35)
x+ = C

�√
1−q2z2+

√
1−z2√

1−q2z2−
√
1−z2

� 1

2q

× zq
�√

1 − q2z2 − q
√
1 − z2

�
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Replace the expressions that occur in the relation of 
(35) by their Taylor expansions as z → 0 ( cos� → 0 
as � → �∕2 ) to represent this relation as follows:

Since q < 1 , the quantity x+ goes to infinity as z → 0.
Investigate now the behavior of the coordinate 

y = r sin� . Passing in this expression to the limit as 
� → ±�∕2 , with reference to (32), we obtain

Differentiating the expression y = r sin� with respect 
to � , taking into account the expression of (28), yields

The analysis of this expression shows that

Therefore, the function y+(�) has a maximum for 
� = arctan q , while y−(�) has a minimum for 
� = − arctan q . The extreme values of these func-
tions are defined by

The change of variable � → −� leads to the change 
in the sign on the right-hand side of Eq. (28). There-
fore, the sets of quasistatic trajectories corresponding 
to signs + and − are symmetric to one another with 
respect to the x-axis of the coordinate system Mxy.

(36)
x+ = C

(
2z2q(1+O(z2))

(1−q2)z2+O(z4)

) 1

2q

× q
(
1 − q2 + O(z2)

)

= C
(
1 − q2

) 2q−1

2q z
q−1

q

(
q + O(z2)

)
.

(37)lim
�→−

�

2
+0
y+(�) = −∞, lim

�→
�

2
−0
y−(�) = +∞.

(38)

dy±

d�
= ∓

r

q cos�

�
sin�

√
1 − q2 cos2 �∓q cos2 �

�
.

(39)

dy+

d𝜑
> 0, −

𝜋

2
< 𝜑 < arctan q;

dy+

d𝜑
= 0, 𝜑 = arctan q;

dy+

d𝜑
< 0, arctan q < 𝜑 <

𝜋

2
.

(40)

dy−

d𝜑
< 0, −

𝜋

2
< 𝜑 < − arctan q;

dy−

d𝜑
= 0, 𝜑 = − arctan q;

dy−

d𝜑
> 0, − arctan q < 𝜑 <

𝜋

2
.

(41)
ymax
+

= Cq
(

1−q

1+q

) 1

2q

,

ymin
−

= −C
(

1−q

1+q

) 1

2q 1

1−q2
.

The trajectories constructed above are the basic 
quasistatic trajectories. In what follows, we will 
call the trajectories labelled by sign + the repul-
sive trajectories and the trajectories labeled by sign 
− the attractive trajectories. For the repulsive tra-
jectories, the force acted by body M onto body m is 
directed toward body m (repels body m from body 
M), while for the attractive trajectories, this force is 
directed toward body M (attracts body m to body M). 
According to (27), the distance r between bodies M 
and m increases along the repulsive trajectories and 
decreases along the attractive trajectories.

According to the analysis presented above, the 
basic quasistatic trajectories possess the following 
properties. 

1. All repulsive trajectories emerge from body M 
and are tangent at this point to the upward ray of 
the line of maximum slope. Similarly, all attrac-
tive trajectories enter body M and are tangent at 
this point to the downward ray of the line of max-
imum slope.

2. The motion of body m relative to body M along 
both repulsive and attractive quasistatic trajecto-
ries occurs clockwise in the right-hand half-plane 
relative to the line of maximum slope passing 
through body M and counterclockwise in the left-
hand half-plane.

3. Through each point on the xy-plane, apart from 
the points of the line of maximum slope pass-
ing through body M, there pass one and only one 
basic repulsive trajectory and one and only one 
basic attractive trajectory.

4. The sets of repulsive and attractive trajectories 
are symmetric to one another with respect to the 
x-axis of the coordinate system Mxy.

5. Repulsive and attractive trajectories do not inter-
sect the line of maximum slope passing trough 
body M.

The basic quasistatic trajectories form a network in 
the plane Π shown in Fig. 4.

In this figure, only the trajectories of the right-
hand half-plane are depicted. The trajectories of the 
left-hand half-plane are symmetric about the y-axis to 
the trajectories of the right-hand half-plane.

When moving quasistatically, it is unnecessary to 
remain on a single basic trajectory. The general quasi-
static motion allows switchings between the repulsive 
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and attractive trajectories. Using these switchings one 
can implement a complex quasistatic trajectory that 
can approximate a curvilinear trajectory from a wide 
class of curves. In particular, from any point P of 
the plane, body m can move around body M along a 
curve arbitrarily close to the semi-circumference that 
is centered at body M and lies in the open half-plane 
to which the point P belongs. In view of the impor-
tance of such a motion for what follows, we formulate 
its properties as a separate proposition.

Proposition 1 From any point P of the plane, body 
m can move around body M along a curve arbitrar-
ily close to the semi-circumference that is centered at 
body M and lies in the open half-plane with respect to 
the line of maximum slope passing through body M to 
which the point P belongs. This motion occurs clock-
wise in the right-hand half-plane and counterclockwise 
in the left-hand half-plane. It requires multiple switch-
ings (in the limit, infinitely many switchings) between 
the repulsive and attractive trajectories.

For brevity, we will call the motions described in 
Proposition 1 circumferential motions or motions 
along a circumference. Such motions will be used in 
what follows as a part of the motion that drives the 
system under consideration between the initial and 
terminal positions.

Since neither of the basic quasilinear trajectories 
intersects the line of maximum slope passing through 
body M, neither complex curvilinear trajectory can 
intersect this line.

We defined the basic quasistatic trajectories 
as the curves governed by the equations of (28). 
These equations were derived under the assump-
tion that � ∈ (−�∕2, �∕2) ; the cases of � = ±�∕2 
were excluded. Consider now these cases separately 
using the equations of (27). These equations have the 
solutions

where r0 is the polar radius of a point from which 
the length s of the trajectory of body m is measured. 
These solutions correspond to the quasistatic motions 
of body m along the line of maximum slope passing 
through body M. Sign plus (minus) in the expression 
for r(s) corresponds to the motion away from (toward) 
body M. For � = �∕2 ( � = −�∕2 ), body m moves 
along the positive (negative) semi-axis My. Thus, 
body m can move quasistatically upward and down-
ward along both semi-axes of the axis My, if the ine-
quality of (16) is valid.

We will not consider the trajectories defined by the 
relations of (42), since we have excluded the cases 
where bodies M and m lie on the common line of 
maximal slope at the initial time instant. From any 
other positions, it is impossible to bring body m onto 
the line of maximum slope passing through body M 
by combining the quasistatic motions and the fast 
motions that are considered in the next section.

Thus, we have described all possible quasistatic 
motions of the system. These motions will be used as 
components of the combined motion that alternates 
the quasistatic and fast motions and drives the crawler 
into the desired terminal state.

4  Fast motions

This section deals with the fast motions of the sys-
tem. The fast motions are produced by an impul-
sive control force � = 𝜓�̇�(t − t0)� , where �(t − t0) is 
Dirac’s delta function concentrated at a time instant 
t0 , � is the unit vector that defines the line of action 
of the impulsive force, and � is a scalar parameter 
that characterizes the intensity of the impulsive force. 
This force changes the positions of bodies m and 
M in an infinitesimal time. As a result, the bodies 
shift along the line that connected the bodies at the 
time instant immediately preceding the fast motion. 

(42)r(s) = r0 ± s, 𝜑(s) = ±
𝜋

2
, r0 > 0, s > 0,

Fig. 4  Basic quasistatic trajectories
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The fast motion does not change the position of the 
center of mass of the system on the underlying plane 
Π . Let �m(t) and �M(t) be the position vectors of the 
respective bodies on the plane Π defined as functions 
of time, and let t0 be the instant of the fast motion. 
Denote

where t0 − 0 and t0 + 0 are the time instants that 
immediately precedes and immediately follows the 
fast motion. The changes in the positions of the bod-
ies resulting from the fast motion are given by

where � characterises the action of the control 
force for the fast motion and can be chosen arbitrar-
ily. These relations, in particular imply that the fast 
motion does not change the position of the system’s 
center of mass:

The fast motion allows bringing one of the bodies 
m or M to any position on the line � by choosing an 
appropriate parameter � of the impulsive control 
force � . The position of the other body is then defined 
uniquely.

The fast motion of the system is illustrated in Fig. 5. 
Black and grey circles depict the positions of the bodies 
immediately before and straight after the fast motion, 
respectively.

The fast motion can be regarded as a limiting case 
of a motion produced by a piecewise constant control 
force that has a small duration. The motion of bodies 
m and M on an inclined plane Π is governed by the 
equations

where �m and �M are the forces of friction applied by 
the plane to the respective bodies.

Proceed in these equations from the variables �m and 
�M to the variables �C and � introduced as follows:

(43)

�−
m
= �m(t0 − 0), �−

M
= �M(t0 − 0),

�+
m
= �m(t0 + 0), �+

M
= �M(t0 + 0),

� =
�−
m
−�−

M

|�−
m
−�−

M
| ,

(44)�+
m
= �−

m
+

�

m
�, �+

M
= �−

M
−

�

M
�.

(45)�+
C
=

m�+
m
+M�+

M

M + m
=

m�−
m
+M�−

M

M + m
= �−

C
.

(46)m�̈m = � + m� + mg cos 𝛾 � + �m,

(47)M�̈M = − � +M� +Mg cos 𝛾 � + �M ,

The vector �C is the position vector of the system’s 
center of mass and the vector � is drawn from body M 
to body m. In the new variables, the equations of (46) 
and (47) become

where � = |�| and f = (� ⋅ � )∕� . The quantities �1 
and �2 are bounded. The equations of (49) and (50) 
can be represented in the integral form

where t0 is an arbitrary fixed time instant.
Define the quantity f as follows:

where 0 < 𝜏 < 𝜀 . Using Eqs. (51) and (52) we obtain

(48)�C =
m�m +M�M

M + m
, � = �m − �M .

(49)�̈C = �1, �1 = � + g cos 𝛾 � +
�m + �M

M + m
,

(50)�̈ =
M + m

Mm

(
�

𝜌

)
f +�2, �2 =

M�m − m�M

Mm
.

(51)�C =�C(t0) + �̇C(t0)(t − t0) +

t

∫
t0

(t − 𝜉)�1d𝜉,

(52)
� = �(t0) + �̇(t0)(t − t0)

+
M+m

Mm

t∫
t0

(t − 𝜉)
(

�

𝜌

)
fd𝜉 +

t∫
t0

(t − 𝜉)�2d𝜉,

(53)f =

⎧⎪⎨⎪⎩

0, t ∉ [t0 − �, t0 + �],

a, t ∈ [t0 − �, t0 − � + �),

0, t ∈ [t0 − � + �, t0 + � − �),

−a, t ∈ [t0 + � − �, t0 + �],

(54)
�C(t0 + 𝜀) − �C(t0 − 𝜀)

= 2𝜀�̇C(t0 − 𝜀) +
t0+𝜀∫
t0−𝜀

(t0 + 𝜀 − 𝜉)�1d𝜉,

Fig. 5  Fast motion: The positions of bodies m and M change 
instantaneously along the line that connects these bodies, the 
position of the center of mass does not change
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Since �1 and �2 are bounded, in the limit as � → +0 
we have

It can be shown that

For f defined by Eq. (53), we have

Choose the parameters � and a in (53) so that

for example, as follows:

Then Eqs. (57) and (58) imply

By proceeding in the last relation from the variables � 
and �C to the variables �m and �M , using Eq. (48) and 
taking into account Eq. (56), we arrive at the relations 
of (44).

(55)

�(t0 + 𝜀) − �(t0 − 𝜀) = 2𝜀�̇(t0 − 𝜀)

+
M+m

Mm

t0+𝜀∫
t0−𝜀

(t0 + 𝜀 − 𝜉)
(

�

𝜌

)
fd𝜉

+
t0+𝜀∫
t0−𝜀

(t0 + 𝜀 − 𝜉)�2d𝜉,

(56)�C(t0 + 0) − �C(t0 − 0) = 0,

(57)

�(t0 + 0) − �(t0 − 0)

=
M+m

Mm

(
lim
�→+0

t0+�∫
t0−�

(t0 + � − �)
(

�

�

)
fd�

)
.

(58)

lim
�→+0

t0+�∫
t0−�

(t0 + � − �)
(

�

�

)
fd�

=

(
lim
�→+0

t0+�∫
t0−�

(t0 + � − �)f (�)d�

)
�, � =

�(t0−0)

�(t0−0)
.

(59)

t0+�

∫
t0−�

(t0 + � − �)f (�)d� = 2a��
(
1 −

�

2�

)
.

lim
�→+0

2a��
(
1 −

�

2�

)
= � ,

� = �2, a =
�

2�3
.

(60)�(t0 + 0) − �(t0 − 0) =
M + m

Mm
��.

5  Algorithm for driving the system 
to the terminal state

The algorithm that is presented in this section alter-
nates the fast and slow (quasistatic) motions and 
drives the system into an arbitrarily small neighbor-
hood of the desired terminal state. This algorithm 
involves an operation that drives body m from an ini-
tial position in the plane Π into a prescribed terminal 
position in this plane in such a way that the resulted 
position of body M is arbitrarily close to its initial 
position. For brevity, this operation will be referred to 
as Motion ℜ . Motion ℜ is possible only if in the state 
preceding this operation, bodies M and m do not lie 
on the common line of maximum slope.

5.1  Motion ℜ

The feasibility of Motion ℜ is justified by the follow-
ing proposition.

Proposition 2 From any state of rest in which bodies 
M and m do not lie on the common line of maximum 
slope, the system can be driven to a state of rest in 
which body m occupies any prescribed position on the 
plane Π and the position of body M is arbitrarily close 
to its initial position.

Proof Let A and B be the initial and terminal posi-
tions of body m on the plane Π . The position of body 
m relative to body M is characterized by the Cartesian 
coordinates (x, y) or the polar coordinates (r, �) in the 
reference frame Mxy, the origin of which is located at 
body M. Denote by Πl and Πr the left-hand and right-
hand half-planes relative to the coordinate axis My:

In terms of the polar coordinates the sets Πl and Πr 
are defined by

Assume without loss of generality that A ∈ Πl ; the 
case of A ∈ Πr can be considered in a similar way.

Let B ∈ Πr . Then the strategy for driving body m 
to the point B involves several steps. 

(61)Πl = {x, y ∶ x < 0}, Πr = {x, y ∶ x > 0}.

(62)
Πl =

{
r, 𝜑 ∶ r > 0, 𝜑 ∈

(
𝜋

2
,

3𝜋

2

)}
,

Πr =
{
r, 𝜑 ∶ r > 0, 𝜑 ∈

(
−

𝜋

2
,

𝜋

2

)}
.
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Step 1 Body m is driven quasistatically toward 
body M along the attractive trajectory that passes 
through the point A. Body m moves to a point C 
the distance � from which to body M is small 
enough. The properties of the quasistatic trajecto-
ries imply that the angle between the line CM and 
the axis My tends to zero as � → +0.
Step 2 By fast motion the system is transferred into 
the configuration symmetric to the configuration 
resulted from Step 1 about the center of mass of 
the system. Body M shifts (in jump) from its initial 
position but remains close to it for � small enough. 
Body m jumps from the position C to a position 
D in the half-plane Πr . More precisely, the point 
D belongs to the right-hand half-plane with respect 
to the line of maximum slope passing through the 
new position of body M, however, this half-plane 
virtually coincides with Πr for small �.
Step 3 Body m moves quasistatically clockwise 
along a circumference of radius � about body M 
from the point D into a point E. The point E is 
defined as the point of intersection of the circum-
ference with the repulsive quasistatic trajectory 
passing through the point B.
Step 4 Body m moves quasistatically from the 
point E into the point B along a repulsive trajec-
tory.

Thus, we have proved the proposition for the case 
where the initial and terminal positions of body m lie 
in different half-planes. If A ∈ Πl and B ∈ Πl , one 
should perform steps 1 and 2 and then regard the 
point D as the new initial position for body m.

In the case where the point B lies on the axis My, 
one should perform Steps 1 and 2. As a result of Step 
2 body M jumps to a new position and the point B 
will appear in the right-hand half-plane relative to the 
line of maximum slope passing through the new posi-
tion of body M. Then one can perform Steps 3 and 4.

Motion ℜ is illustrated in Fig.  6. In this figure, 
as well as in Figs.  7 and 8, larger and smaller cir-
cles depict the successive positions of bodies M and 
m, respectively. The shading density of the circles 
decreases as the later positions are depicted.

We will describe now the entire algorithm. 
Denote by Pi

M
 and Pt

M
 the initial and terminal posi-

tions of body M, respectively, by Pi
m

 and Pt
m

 the 
respective positions of body m. Let Γ be the line 
that connects the points Pi

M
 and Pt

M
 . We assume 

that this line is not a line of maximum slope on the 
plane Π . If the line Γ is a line of maximum slope, 
one can proceed as follows. At the initial time 
instant, shift by means of fast motion body M from 
its initial position and then consider the resulting 
positions of bodies M and m as new initial positions 
for these bodies. The new initial position of body 
M will not lie on the line of maximum slope pass-
ing through the point Pt

M
 , since at the initial posi-

tions bodies M and m do not lie of the common line 
of maximum slope. The line Γ divides the plane Π 
into two half-planes, Π+ and Π− . The half-plane Π+ 
is the upper half-plane, in which the positive semi-
axis My lies. (Recall that the axis My is directed 
upward along the line of maximum slope.) The half-
plane Π− is the lower half-plane. Consider sepa-
rately two cases, Case 1 and Case 2. Case 1 implies 
that Pi

m
∈ Π+ ∪ Γ , i.e., the initial position of body m 

lies above or on the line Γ . For Case 2, the inclusion 
Pi
m
∈ Π− holds.

Fig. 6  Motion ℜ : Driving body m from the point A to the 
point B, with body M staying close to its initial position

Fig. 7  Steps 1 and 2 of the algorithm in Case 1. Step 1: Body 
m moves quasistatically between positions Pi

m
 and P1

m
 , body M 

does not move. Step 2: Body M jumps between positions Pi

M
 

and Pt

M
 , body m jumps between positions P1

m
 and P2

m
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5.2  Algorithm: Case 1

If the point Pi
m
 lies above or on the line Γ , i.e., 

Pi
m
∈ Π+ ∪ Γ , then the following steps should be per-

formed to transfer the system from the initial state to 
the terminal state. 

Step 1. By quasistatic motion along a circumfer-
ence that is centered at the point Pi

M
 and has a 

radius of |Pi
M
Pi
m
| move body m onto the line Γ . As 

a result of this step, body M remains in its initial 
position Pi

M
 and body m appears in a new position 

P1
m
 . If Pi

m
∈ Γ , this step should be skipped.

Step 2. By fast motion move body M into the ter-
minal position Pt

M
 . Body m will shift along the line 

Γ into a position P2
m
.

Steps 1 and 2 of the algorithm for Case 1 are illus-
trated in Fig. 7.
Step 3. Perform Motion ℜ to drive body m from 
the position P2

m
 into the terminal position Pt

m
 . This 

motion shifts body M from the prescribed position 
Pt
M

 but this shift can be made arbitrarily small by 
choosing � small enough.

5.3  Algorithm: Case 2

If Pi
m
∈ Π− , the algorithm implies the following 

strategy. 

Step 1. Move body m quasistatically along an 
attractive trajectory from the position Pi

m
 to a point 

P1
m
 close to the point Pi

M
.

Step 2. By fast motion transfer the two-body sys-
tem into the configuration symmetric to the con-
figuration resulted from Step 1 about the center of 
mass of the system. After this step, body M jumps 
into a position P1

M
 that is close to the position Pi

M
 

and body m jumps into a position P2
m
 . If we draw 

the line Γ1 through the points Pt
M

 and P1
M

 , the point 
P2
m
 will lie in the upper half-plane with respect to 

the line Γ1.
Step 3. Perform steps 1 to 3 of the algorithm of 
Case 1 using the point P1

M
 as Pi

M
 , the point P2

m
 as 

Pi
m
 , and the line Γ1 as Γ.

Steps 1 and 2 of the algorithm for Case 2 are illus-
trated in Fig. 8.

6  Conclusions

A two-body limbless crawler on a rough (Coulomb’s 
friction) plane inclined to the horizon under a nonzero 
angle can in principle be moved from an arbitrary ini-
tial state of rest to an arbitrarily small neighborhood 
of any prescribed terminal state of rest, provided that 
both bodies do not lie on the common line of maxi-
mal slope at the initial instant and the tangent of the 
plane inclination angle is less than the coefficient 
of friction multiplied by the ratio of the difference 
between the masses of the bodies to the total mass 
of the crawler. A control strategy is presented for the 
case where no constraints are imposed on the force of 
interaction between the bodies that plays the role of a 
control force and on the distance between the bodies. 
This strategy combines infinitely slow (quasistatic) 
motions and infinitely fast (jumping) motions. It can 
be said that the two-body crawler on an inclined plane 
is controllable from almost all initial states of rest to 
any terminal state of rest. The controllability fails if at 
the initial time instant both bodies of the crawler lie 
on the common line of maximal slope, as well as if 
the plane is horizontal. In both these cases the crawler 
remains on the line that connected the bodies at the 
initial time instant. Thus, on a plane inclined under a 
nonzero angle, the feasible motions are not confined 
to rectilinear motions, which considerably expands 
the potential application area of two-body crawlers in 
robotics and may give new explanations to locomo-
tion of some limbless animals.

Fig. 8  Steps 1 and 2 of the algorithm in Case 2. Step 1: Body 
m moves quasistatically between positions Pi

m
 and P1

m
 , body M 

does not move. Step 2: Body M jumps between positions Pi

M
 

and P1

M
 , body M jumps between positions P1

m
 and P2

m
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