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Abstract This work studies the nonlinear oscilla-

tions of an elastic rotating shaft with acceleration to

pass through the critical speeds. A mathematical

model incorporating the Von-Karman higher-order

deformations in bending is developed and analyzed to

investigate the nonlinear dynamics of rotors. A

flexible shaft on flexible bearings with springs and

dampers is considered as rotor system for the present

work. The shaft is modeled as a beam with a circular

cross-section and the Euler Bernoulli beam theory is

applied. The kinetic and strain energies of the rotor

system are derived and Lagrange method is then

applied to obtain the coupled nonlinear differential

equations of motion for 6� of freedom. In order to

solve these equations numerically, the finite element

method is used. Furthermore, rotor responses are

examined and curves of passing through critical

speeds with angular acceleration due to applied torque

are plotted. It is concluded that the magnitude and

position of mass unbalance in both longitudinal and

radial directions, significantly affect the dynamic

behavior of the rotor system. It is also observed that

applied torque greatly influence dynamic responses

leading to passing through the first 3 critical speeds.

These influences are also presented graphically and

discussed.

Keywords Rotating shaft � Critical speeds � Finite
element method � Unbalanced mass � Sommerfeld

effect

1 Introduction

The dynamic behavior of rotors is of specific impor-

tance due to their dynamical complexity and very high

speeds. Furthermore, considering the manufacturing

defects and dynamics of the supports or deriving

systems, relying on experimental analysis alone in

design methods will be time-consuming and expen-

sive. Therefore, many industrial companies and

researchers have considered the application of analyt-

ical and numerical mathematical models with appro-

priate accuracy and comprehensiveness for a correct

prediction of the rotor dynamic behavior.

Lu et al. [1] focused on the nonlinear behaviors of a

dual-rotor system supported by a rolling element

bearing. Yang et al. [2] established dynamic equations

of defective ball bearing–rotor system based on the

two local defect models. Khair Al-Solihat et al. [3]

investigated the nonlinear dynamic and force trans-

missibility characteristics of a flexible shaft–disk rotor

system supported by suspension systemwith nonlinear

stiffness and damping. Bai et al. [4] presented a 6DOF
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rotordynamic model which includes the non-linearity

of ball bearings and the bending vibration of rotor and

offered an experimental rig for the research of the

subharmonic resonance of the ball bearing–rotor

system. Das et al. [5] used the Method of Multiple

Scales (MMS) to carry out an analysis of a simplified

system to get an idea about the dominant frequencies

of excitation. Ji [6] employed a Jeffcott rotor with an

additional magnetic bearing locating at the disc to

investigate the effect of time delays on the non-linear

dynamical behavior of the system. Ji et al. [7] also

examined the effect of non-linear magnetic forces on

the non-linear response of the shaft for the case of

superharmonic resonance in this paper. Fu et al. [8]

investigates the effects of interval uncertain parame-

ters on the dynamic behaviors of a rotor system with a

transverse breathing crack in the shaft.

In some special operating conditions, the proper

assumption choice leading to correct results is not

clear. Many investigations have been done on vibra-

tion analysis of rotors with constant angular velocity,

while it is necessary to model the changes in rotor

angular velocity in order to verify the results in the

transient region. The best existing models consider the

variations in angular velocity as a function of time, so

this function is mainly assumed as linear or exponen-

tial [9, 10]. However, this method of modeling is only

appropriate for rotors with operating speeds less than

the first critical speed. In high-speed rotors, where the

optimum operating speed is higher than the first

critical speed, this modeling approach will lead to

errors. In some cases, while passing through the rotor

natural frequencies, the produced energy by the source

will result in increased amplitudes of lateral vibration

of the system and energy waste, rather than increasing

the rotor speed [11, 12]. This fact describes the reason

for considering an extra degree of freedom (torsion

degree of freedom) for a correct prediction of the rotor

vibrations and behavior through the critical speed.

A review of the literature shows that the previous

studies have mainly focused on decoupled vibrations

of the rotating systems (lateral or torsional vibrations).

While fewer investigations have been performed on

vibrations of coupled rotating systems (coupled lateral

and torsional vibrations), where crack occurrence [13]

on the rotor, gears [14], wear between the rotor and

stator [15, 16], mass unbalances, or a combination of

the factors [17] have been introduced as the root cause

of such couplings. In this regard, Al-Bedoor

performed nonlinear modeling and analysis of coupled

lateral-torsional vibrations due to the mass unbalance

of a 4� of freedom rotor, assuming a mass unbalance

for the rotor [18]. Bernasconi studied torsional vibra-

tions due to the coupling between lateral and torsional

vibrations. He considered the rotational vibrations

caused by the lateral ones. The coupling in his work

was due to the two factors of mass unbalance and

nonlinear gyroscopic effect. He indicated that the

resulting coupling from the nonlinear gyroscopic

effect is capable of producing torsional vibrations

with a frequency twice the rotation frequency of the

rotor [19]. Considering the gyroscopic effect on a

6-degree of freedom model, Shen not only achieved

the same results as Bernasconi’s [19] but also

extended his study to the ideal energy source case [20].

Many studies have been performed for estimation

of the effective system parameters, such as stiffness

and damping of the bearings, unbalance level and

acceleration rate of passing through the system critical

speeds [21–23]. According to such investigations,

rotor nonlinear effects in combination with unbalance

can lead to very different dynamic responses in the

rotor, where various methods have been reported for

passing through the bending mode. Of such examples,

can be named the work by Zapomel. They studied the

zero increase in rotor speed in bending mode and

considered passing through the mode with altering the

stiffness of the support [24]. In this approach, by

reducing the stiffness before the critical speed and

increasing it again after passing through this limit,

stress and strains of the rotor are decreased, making it

possible to use a lower power rate in the deriving

system.

In another research, an increase in angular speed

was performed by Gasch et al. for passing through

bending mode and the amount of this increase was

obtained from a relation depending on the mass

unbalance. They also found out that since the speed of

passing through the critical speeds increases with

increased angular acceleration, the deformation due to

passing through the mode decreases, and thus the rotor

deforms less. Even a 4-time decrease or more have

been reported for the maximum response amplitude

through the bending mode. In addition, the beating

phenomenon, implying a difference between the

operating speed and critical speed, has been observed

during passing through the critical speed. Moreover,

increased angular acceleration in the rotor with
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minimum damping has been reported to be more

effective [25–28].

Millsaps et al. proposed the variable angular

acceleration approach as another method for reducing

the amplitudes of rotor vibrations through the bending

mode [29]. Sudden changes in angular acceleration

were also forbidden in order to avoid the stimulation of

torsional vibrations in the rotor. Unlike internal

damping, application of external damping leads to

reduced amplitudes of rotor vibrations through the

bending mode [30], so that even the operating speed in

rotors with greater external damping compared to

internal damping, has been reported to be 80 percent

greater than the critical speed.

Existing researches show various combinations of

modeling with different assumptions. If the assump-

tion combinations are proper and cohesive, the

modeling results can be trusted. However, these

models are limited to very specific operating condi-

tions or simple rotor configurations, and due to

assumptions not compatible with the real model and

rotor structure, incorrect analysis can become huge.

One of the most important and influential parameters

in predicting the behavior of the rotor when passing

the critical frequencies of the system is to consider

nonlinear structural terms, which in all the works

mentioned, has been neglected.

To place the present work in context of these recent

publications, the authors have sought to construct a

wide-ranging parameter study of the basic configura-

tion of a high-order nonlinear rotating shaft. For this

means, the system governing equations with nonlinear

structural terms are derived by Lagrange method and

solved numerically. In addition, effects of parameters

such as the value and location of unbalanced mass and

acceleration of passing through the mode are studied.

Furthermore, on the most previous studies, equa-

tions of motion in lateral directions are uncoupled

from axial direction, which cause to solving these

equations for 4 degree of freedom (2 displacement and

2 rotation in lateral directions). But here, all equations

in 6 degree of freedom are coupled and solved

together.

The significant contributions of this work are as

follows:

1. Derivation and solution of the coupled higher-

order nonlinear equations of motion for a flexible

rotor system with acceleration.

2. Computational results for the several important

parameters to determine their effect on vibration

and LCO to provide the capability to assess the

sensitivity of the results to such parameters in

possible future experiments and flexible balancing

procedures.

3. Demonstration that in the analysis of rotor-bearing

systems, up-to 4th order of nonlinearity should be

considered in kinetic and strain energy equations

to obtain correct results, especially when the rotor

passes through critical speeds.

2 Theoretical/computational model

2.1 Formulation

In this Section, dynamic modeling of a nonlinear rotor

due to inertia with linear supports has been studied.

For this means, first, kinetic and potential energies of

the system are derived and thereafter, equations of

motion of a nonlinear elastic rotor are obtained by

Lagrange equations and solved with FEM. Note that

the contents of this section (Theoretical/computational

Model) have already been published in an article

previously written by the authors [31]. But for a better

understanding and easier access for the readers of this

article, it is repeated here again.

2.1.1 Kinetic energy derivation

Since the inertia matrix is defined more easily in the

main inertia axes, the angular velocity for obtaining

the rotational kinetic energy is also calculated in this

coordinate system. In fact, the inertia matrix includes

moments of inertia and inertia products, which

changes as the coordinate position with respect to

the body differs. It can be shown that there is a unique

position of the axes for which, the inertia products are

zero and moments of inertia remain constant, where

the inertia matrix, in this case, is diagonal. The axes of

the coordinates system in which the inertia products

are zero are called the main axes. In order to calculate

the kinetic energy, the center of gravity of the model

should be specified. As shown in Fig. 1, rotor system

consists of flexible shaft on flexible bearings with

springs and dampers. In order to find the main inertia
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axes, the coordinates system should be translated and

rotated according to Table 1 and as indicated in Fig. 2.

In order to calculate the rotational kinetic energy,

the angular velocity vector in inertia coordinates is

defined as below:

x ¼ Rw Rh _ru þ _rh
� �

þ _rw ð1Þ

In the above relation, ru; rh; rw are defined as:

ru ¼ u 0 0½ �T ;
rh ¼ 0 h 0½ �T ;
rw ¼ 0 0 w½ �T

ð2Þ

and:

Rw ¼
cosðwÞ sinðwÞ 0

� sinðwÞ cosðwÞ 0

0 0 1

2

4

3

5;Rh

¼
cosðhÞ 0 � sinðhÞ

0 1 0

sinðhÞ 0 cosðhÞ

2

4

3

5;Ru

¼
1 0 0

0 cosðuÞ sinðuÞ
0 � sinðuÞ cosðuÞ

2

4

3

5 ð3Þ

With substituting Eqs. (3) and (2) in (1), the angular

velocity vector in inertia coordinates is defined as

below:

x ¼
x1

x2

x3

8
<

:

9
=

;
ð4Þ

in which:

x1 ¼ 1� h2

2

� �
_u cosðwÞ þ _h sinðwÞ ð5Þ

x2 ¼ _h cosðwÞ � _u 1� h2

2

� �
sinðwÞ ð6Þ

x3 ¼ h _uþ _w ð7Þ

In order to calculate the translational kinetic

energy, the velocity of the center of gravity should

be obtained. The position of center of gravity and

unbalanced mass is defined in form of:

rc ¼ u v w½ �T ð8Þ

ru ¼ rcþRT
uR

T
hR

T
wee ð9Þ

where

ee ¼ e cosðaÞ e sinðaÞ 0½ �T ð10Þ

in which e and a are the mass unbalance radius and

angle. The kinetic energy of the system is resulted

from the following relation.

T ¼ Tt þ Tr ð11Þ

where Tt; Tr refer to the rotational and translational

kinetic energies, respectively, computed from

Eqs. (12) and (13).

Tr ¼
Z

1

2
xTJxdz ð12Þ

Tt ¼
Z

1

2
mð _rcÞ2dzþ

1

2
muð _ruÞ2 ð13Þ

Fig. 1 Rotor system figure

Table 1 Derivation method for main axes coordinates system

Original coordinates system Destination coordinates system Translation vector Rotation matrix

OXYZ cxyz rp –

cxyz cx1yz1 – Rw

cx1yz1 cx1y1z2 – Rh

cx1y1z2 px2y2z3 – Ru
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With m being the mass per length, mu the unbal-

anced mass and J the rotational moment of inertia

matrix per length about the main axes defined as:

J ¼
Jt 0 0

0 Jt 0

0 0 Jp

2

4

3

5 ð14Þ

So, the rotational and translational kinetic energies

may be written as follows:

Tr ¼
1

2

Z
Jp
�

ð _wþ h _/Þ2 þ JtðcosðwÞ _/þ sinðwÞ _hÞ2

þ JtðcosðwÞ _h� sinðwÞ _/Þ2

þJt sinðwÞðcosðwÞ _h� sinðwÞ _/Þh2 _/
i

� Jt cosðwÞðcosðwÞ _/þ sinðwÞ _hÞh2 _/
i
dz

ð15Þ

Tt ¼
Z

m _u2

2
þ m _v2

2
þ m _w2

2

� �
dz

þ 1

2
mu _u2u þ _v2u þ _w2

u

� �
ð16Þ

In the above equations, the dot over the variables

denotes the derivative with respect to time. Also, Jp
and Jt are moments of inertia per rotor length. As

shown in Eqs. (15) and (16), the nonlinear terms of

kinetic energy are considered up to 4th order, which

makes the results of this research more accurate. More

details and reasons about considering these higher

order terms are provided in Sect. 3.6.

2.1.2 Potential energy derivation

In order to extract potential energy of the rotor,

displacement field are as below, assuming axial and

torsional rigidity of rotor:

u ¼
u
v
w

8
<

:

9
=

;
¼

uðz; tÞ
vðz; tÞ

�xhðz; tÞ þ yuðz; tÞ

8
<

:

9
=

;
ð17Þ

Based on the Von-Karman large deflection rela-

tions governing the strain in Euler–Bernoulli beam,

the strains created in beam can be expressed as

follows:

ezz ¼
ow

oZ
þ 1

2

ou

oZ

� �2

þ ov

oZ

� �2
" #

ð18Þ

By placing Eq. (17) in Eq. (18) with considering

Euler–Bernoulli assumption (u = –qv/qz and h = qu/
qz):

ezz ¼ �yu0 þ xh0 þ 1

2
u2 þ h2
� �

ð19Þ

Potential energy due to elasticity of rotor can be

obtained as follow:

U ¼ E

2

Z l

0

Z

A

e2zzdAdz

¼ E

2

Z l

0

Z

A

�yu0 þ xh0 þ 1

2
u2 þ h2
� �

� �2

dAdz

ð20Þ

At the end potential energy obtained as follow:

Fig. 2 Rotation and translation of the axes
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U ¼ EI

2

Z l

0

dh
dz

� �2

þ du
dz

� �2
" #

dz

þ EA

2

Z l

0

h4

4
þ u4

4
þ u2h2

2

� �
dz ð21Þ

As seen in Eq. (21), the nonlinear terms of strain

energy are considered up to 4th order too (like kinetic

energy). Always, no more than second order of

nonlinearity terms are considered in researches of

Rotordynamics. The reason for considering these

higher order terms is explained in Sect. 3.6.

Also, the work done by deriving system torque can

be obtained as follow:

W ¼ Taw ð22Þ

where Ta is applied torque by deriving system.

2.2 Finite element solution

In order to solve the problem by finite element method,

a standard element with two nodes is considered, so

that each node contains six degrees of freedom.

According to this issue, the rotor is divided to 10

elements (Fig. 3) and the displacement vector on each

element can be expressed according to the following

equation.

qeðtÞ ¼ ur; vr;wr;ur; hr;wr; us; vs;ws;us; hs;ws½ �T

ð23Þ

The terms related to the displacement field can be

expressed in terms of the displacement of the nodes

and the shape functions according to the following

equations.

uðz; tÞ ¼ NuðzÞ ur; hr; us; hs½ �T ð24Þ

vðz; tÞ ¼ NvðzÞ vr;ur; vs;us½ �T ð25Þ

wðz; tÞ ¼ NwðzÞ wr;ws½ �T ð26Þ

wðz; tÞ ¼ NwðzÞ wr;ws½ �T ð27Þ

So that the shape functions can be expressed as

follows:

NuðzÞ ¼ 1� 3n2 þ 2n3; ðn� 2n2 þ n3Þle; 3n2 � 2n3; ðn3 � n2Þle
� �

ð28Þ

NvðzÞ ¼ 1� 3n2 þ 2n3; ð�nþ 2n2 � n3Þle; 3n2 � 2n3; ðn2 � n3Þle
� �

ð29Þ

NwðzÞ;NwðzÞ ¼ 1� n; n½ � ð30Þ

2.3 Derivation of equations of motion

Equations of motion of a vibrating system can be

defined in different coordinate systems. In order to

describe the motion of an n-degree of freedom system,

n-independent coordinates are required, to a set of

which is referred as the generalized coordinate,

indicated by qi, where i = 1, 2,…,n. Using Lagrange

equation, equations of motion of a vibrating system

can be derived in terms of energy parameters.

Lagrange equations for an n-degree of freedom system

are as below:

d

dt

oT

o _qi

� �
� oT

oqi
þ oU

oqi
� oW

oqi
¼ 0 ð31Þ

and equations of motion of the concerned system

may be written in matrix form:

Me €qeþCe _qeþKeqe¼ Fe
n ð32Þ

where qe represents the developed vector of

unknowns, Me is the mass matrix for an element, Ke

is stiffness element matrix, Ce is damping matrix and

Fe
n is nonlinear force vector. Stiffness and damping of

the bearing will be added to corresponding rows and

columns of stiffness and damping matrices. All

nonlinear expressions that are ultimately derived from

the Lagrange equation are presented in the force

vector. Due to its very long components, it cannot be

written in the text of the article.

2.4 Validation of computational model

To validate the formulation of the present work, the

results of rotor vibrations are compared with the

results from a well-known rotordynamic software,Fig. 3 Rotor FEM model
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Dyrobes, which offers complete rotordynamic anal-

ysis, vibration analysis, bearing performance, and

balancing calculations based on Finite Element Anal-

ysis [32].

For this reason, a constant rotation speed

(x0 = 1000 rpm) is applied without any torque, and

vibration time responses are compared for a rotor

system with the specification of Table 2 in the next

section. The lateral vibration of the first rotor node in x

and y-directions are compared in Figs. 4 and 5 for the

first 0.5 s. The figures show excellent agreements

between results.

3 Results

3.1 Rotor time responses

Results of the vibration for a rotating cylindrical

flexible shaft with the specification of Table 2 are

plotted in this section. The material of the shaft is

aluminum and the stiffness and damping coefficient of

the both bearings in both x and y directions assumed

100,000 N/m and 20 Ns/m. Support stiffness is con-

sidered low, because with this degree of stiffness,

better figures are plotted and critical speeds are better

compared together.

The mass unbalance denoted by mu = 3 gr is also

situated at a radius of (e) from the shaft centerline, on

the position (zu) of the second node (see Fig. 3). Note

that the applied torque on the shaft is 50*Jp (Jp is the

moment of inertia of rotor section), which causes to

rotor angular acceleration of a = 50 rad/s2.

The first 3 critical speeds of the shaft are calculated

and shown in Table 3 in rad/s. The first and second

critical speeds are related to the first (cylindrical) and

second (conical) rigid critical speeds and the third one

is the first flexible critical speed (bending). The shape

Table 2 Rotor

specifications
L 1.2 m

r 25 mm

q 2700 kg/m3

E 70 GPa

K 100,000 N/m

C 20 Ns/m

mu 3 gr

e 25 mm

zu At Node 2

Torque 50*Jp N.m

Jp 0.002 kg.m2

Fig. 4 Vibration time history of the rotor first node displace-

ment in x-direction

Fig. 5 Vibration time history of the rotor first node displace-

ment in y-direction

Table 3 Rotor calculated critical speeds

1st critical speed 166.17 rad/s

2nd critical speed 303.72 rad/s

3rd critical speed 1048.75 rad/s

4th critical speed 2732.98 rad/s
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of the deformed centerline of the rotor about these

critical speeds is shown in Figs. 6, 7 and 8.

It should be noted that when the rotor is working

near the first critical speed, the centerline of the shaft

will make a cylinder in the space, which is because of

the first mode shape. Near the second critical speed,

the centerline will make two cones in the space, which

is because of the second mode shape. these 2 first

modes are called rigid modes of rotor because the

bending of the shaft is negligible in these rotational

speeds.

But when the rotor is working near the third critical

speed, the shaft is no more rigid and the shaft

centerline will have the sinusoidal deformation. this

mode shape is called the first bending mode shape of

the rotor.

Vibrations and time response history graphs of

several typical nodes of the shaft are plotted from

Figs. 9, 10, 11, 12, 13, 15, 16, to show the effects of

passing through the first 3 critical speeds. In Fig. 9 the

first 30 s time response of the first node is plotted in

x-direction. Increasing the amplitude of vibration due

to passing the 3 calculated critical speeds can be seen

clearly in this figure, in which the maximum vibration

amplitude of the first node (at first bearing) is

increased from the 1st to the 3rd critical speed, up to

more than 1 mm. Note that vibration of the rotor is in

the form of Limit Cycle Oscillation (LCO) which is

the property of nonlinear problems (whether for

beams, plates or other mechanical elements [33–35])

compared to linear problems, in which the amplitude

of vibration is increased continuously in resonance

situation.

In Fig. 10 the first 30 s time response of the last

node is plotted in the x-direction. Increasing the

amplitude of vibration due to passing the 3 calculated

critical speeds can be seen clearly in this figure too.

The little difference between Figs. 9 and 10, is

because of the different distances of unbalanced mass

from the first and last nodes. The difference between

these two figures is about t = 17 s. The amplitude of

the first node vibration is zero, but the last node is not.

It’s due to changing of the shape modes when

rotational speed increases from second critical speed

to third critical speed.

In the second mode shape (Fig. 7), at a certain

moment, one end of the rotor is above the bearing’s

axis and another end of the rotor is under this axis. ButFig. 6 Rotor centerline about 1st critical speed

Fig. 7 Rotor centerline about 2nd critical speed

Fig. 8 Rotor centerline about 3rd critical speed
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in the third mode shape (Fig. 8), both ends of the rotor

are on one side of the bearing’s axis. It means when the

rotor speeds up from second to third critical speed, one

end of the rotor should pass from the bearings axis and

goes to another side. It means one side of the rotor will

experience zero amplitude of vibration during this

displacement.

It can be concluded the end of the rotor, which is

closer to unbalanced mass (closer to unbalance forces)

Fig. 9 Vibration time history of the rotor first node displace-

ment in x-direction

Fig. 10 Vibration time history of the rotor end node displace-

ment in x-direction

Fig. 11 Vibration time history of the rotor central node

displacement in x-direction

Fig. 12 Vibration time history of the rotor first node rotation

angle in x-direction

Fig. 13 Vibration time history of the rotor central node rotation

angle in x-direction
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will have zero vibration amplitude. For example, in

this case, the unbalanced mass is located on the second

node, so the first node amplitude of vibration is zero in

t = 17 s.

this phenomenon also can occur from the first to the

second mode, but usually, these modes are close to

each other and this phenomenon is not visible.

In Fig. 11 the first 30 s time response of the 6th

node (central node) is plotted in the x-direction. The

interesting difference in Fig. 11 from the previous

figures is that the effects of 1st and 3rd critical speeds

are clear in this figure, but 2nd critical speed (about

t = 6 s) has no effect on the vibration of this node. The

reason is that the amplitude of the central node in the

2nd mode shape (conical shape) is zero and this node

does not sense passing through this critical speed due

to the symmetry of this rotor system. In the flexible

balancing procedure, it should be noted that the

proximity sensors at the central point cannot be used

for balancing the second critical speed of symmetric

rotors.

In Figs. 12 and 13, vibration of the shaft rotation

angle in x-direction (u) is plotted for the first and

central node. Time response history of this angle for

first node is like the displacement time response

history in x-direction (Fig. 9) and effects of all 3

critical speeds are visible. But this angular vibration

figure for central node (Fig. 13) is completely differ-

ent from time response of displacement for this node

(Fig. 11). In Fig. 11, passing through 2nd critical

speed has no Effects on displacement vibration, but In

Fig. 13, passing through 1st and 3rd critical speeds is

ineffective.

This difference can be interpreted in this way that

for symmetric rotor systems, the shape of first and

third modes do not rotate the central node in x (or y)

direction and just make some displacements, but the

shape of second mode just make some rotations in the

central node without any displacements in both

directions.

Vibrations in the y-direction are as like as in

x-direction, just with the phase difference of p/2,
because of the same properties of the rotor system in

both x and y-direction. So, the figures on y-direction

are not repeated again here for the purpose of

summarizing this section.

Rotor time responses in the z-direction (w) are

plotted below. With the assumption of the rotor

rigidity in axial and rotational directions, Fig. 14

shows the displacement of all nodes in the z-direction.

The rotor has no displacement and vibration in this

direction due to the absence of any axial load. In this

model, due to the absence of opposite torques on the

shaft, and the absence of axial forces, it can be

assumed that the rotor is rigid in axial and rotational

directions. In another separate future article by

authors, due to the presence of these forces and

torques, flexibility in torsional and axial directions has

been considered.

In Fig. 15, the time response of the rotational angle

(w) is plotted for all nodes. This figure is in the form of

a parabolic chart due to applied torque, which causes

angular acceleration.

Figure 16 shows the time response history of

rotational speed (x), which is increased in a straight

line with a slope of angular acceleration (a = 50).

After 30 s, rotation speed is increased from 0 to about

1500 rad/s and rotor passed through first 3 critical

speeds. Note that a little distortion is observed when

rotor passed the 3rd critical speed.

Fig. 14 Time history of the rotor displacement in z-direction

Fig. 15 Time history of rotational angle in z-direction
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3.2 Effects of unbalanced mass value (mu)

In this section, the effects of unbalanced mass value on

the rotor vibration and amplitudes of limit cycle

oscillation are studied for the same rotor with the

specification of Table 2, just with variable mu = 1, 3, 6

and 20 gr. In these figures just the maximum points of

vibration are plotted for a better observation. Note that

in this research, more emphasis has been placed on

presenting a new model with high accuracy for

analyzing the behavior of the rotor in passing through

critical speeds. Therefore, in behavioral analysis

researches, some results may not have practical

applications.

In Fig. 17 the vibration of the rotor first node is

plotted for different unbalanced mass values. By

increasing mu from 1 to 3 gr, the amplitude of

vibration is increased in passing through critical

speeds (blue and green lines). When mu is increased

to 6 gr (yellow line), the amplitude of vibration is

increased again and the rotor cannot pass through the

3rd critical speed. Applied torque is not enough to pass

3rd critical speed and rotor can just to pass through 1st

and 2nd critical speeds. So, rotor after the 3rd critical

speed will have a limit cycle oscillation with constant

amplitude and rotation speed. Since this study tries to

show the importance of considering higher order

nonlinear terms in calculations related to rotor

dynamics, for an aluminum shaft 1.2 m long, the

deformation of about 3 mm cannot be very critical for

the resistance of the shaft.

This phenomenon occurs because of increasing the

energy dissipation of the rotor system. Under certain

conditions, the structural vibration of the system, may

act like an energy sink, i.e. instead of the drive energy

being spent to increase the drive speed, a major part of

that energy is diverted to vibrate the structure. This is

formally known as the Sommerfeld effect. In such

cases, the energy supplied by the source to the flexible

spinning shaft is spent to excite the bending modes

rather than to increase the drive speed.

By increasing the mu again up to 20 gr (red line), the

amplitude of oscillations is increased again but the

rotor can just pass the first critical speed, which means

the energy dissipation of the system is very high.

In Fig. 18, the vibration of the rotating angle in the

x-direction (u) for the first node is shown. The effects
of increasing themu are like Fig. 17, in which the more

unbalanced mass value causes a higher amplitude for

Fig. 16 Time history of the rotational speed in z-direction

Fig. 17 Vibration time history of the rotor first node

displacement in x-direction

Fig. 18 Vibration time history of the rotor first node rotation

angle in x-direction
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angular vibration in the x-direction. The only differ-

ence is that the maximum amplitude for rotor with

mu = 6 gr (which cannot pass the 3rd critical speed) is

higher than the maximum amplitude for rotor with

mu = 20 gr (which cannot pass the 2nd critical speed),

which maybe is due to a bigger effect of 2nd mode

shape (comparing to 3rd mode shape) on the angle of

the first node in the x-direction (u1).

Rotor rotation angle and rotation speed in the

z-direction are plotted in Figs. 19 and 20. In Fig. 19 it

is shown that when the rotor cannot pass critical

speeds, the parabolic form of rotation angle time

history changes to a straight line in 3rd critical speed

(yellow line) and 2nd critical speed (red line). It means

the rotation of the rotor in z-direction will change from

constant rotation acceleration to constant rotation

speed. This figure indicates the amount of rotor

rotation in Radians and if divided by 2p, cycles of

rotor rotation can be calculated. It should be noted that

in some rotodynamic systems, the number of rotor

rotation cycles can be important.

Figure 20 clearly demonstrated that when the rotor

with mu = 20 gr cannot pass 2nd critical speed (red

line), the rotation speed will be held constant and rotor

will have limit cycle oscillation (LCO). This also

happened for rotor with mu = 6 gr at 3rd critical speed

(yellow line). Note that a little distortion is observed

again when rotor with mu = 3 gr passed the 3rd critical

speed (green line).

3.3 Effects of radius of unbalances mass (e)

In this section, the effects of unbalanced mass radius

on the rotor vibration and amplitudes of limit cycle

oscillation are studied for the same rotor with the

specification of Table 2, just with variable e = 3, 5, 10

and 25 mm and mu = 20 gr. In these figures just the

maximum points of vibration are plotted for a better

observation.

In Fig. 21 the vibration of the rotor first node is

plotted for different unbalanced mass radiuses. By

increasing e from 3 to 5 mm, the amplitude of

vibration is increased in passing through critical

speeds (blue and green lines). When e is increased to

Fig. 19 Time history of the rotation angle in z-direction

Fig. 20 Time history of the rotation speed in z-direction

Fig. 21 Vibration time history of the rotor first node

displacement in x-direction
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10 mm (yellow line), the amplitude of vibration is

increased again and the rotor cannot pass through the

3rd critical speed. This phenomenon occurs because of

increasing the energy dissipation of the rotor system.

Applied torque is not enough to pass 3rd critical speed

and rotor can just to pass through 1st and 2nd critical

speeds. So, rotor after the 3rd critical speed will have a

limit cycle oscillation with constant amplitude and

rotation speed. By increasing the e again up to 25 mm

(red line), the amplitudes of oscillations are increased

again but the rotor can just pass the first critical speed,

which means the energy dissipation of the system is

very high.

In Fig. 22, the vibration of the rotating angle in the

x-direction (u) for the first node is shown. The effects
of increasing themu are like Fig. 18, in which the more

unbalanced mass radius causes a higher amplitude for

angular vibration in the x-direction. The only differ-

ence is that the maximum amplitude for rotor with

e = 10 mm (which cannot pass the 3rd critical speed)

is higher than the maximum amplitude for rotor with

e = 25 mm (which cannot pass the 2nd critical speed),

which maybe is due to a bigger effect of 2nd mode

shape (comparing to 3rd mode shape) on the angle of

the first node in the x-direction (u1).

Rotor rotation angle and rotation speed in the

z-direction are plotted in Figs. 23 and 24. In Fig. 23 it

is shown that when the rotor cannot pass critical

speeds, the parabolic form of rotation angle time

history changes to a straight line in 3rd critical speed

(yellow line) and 2nd critical speed (red line). It means

the rotation of the rotor in z-direction will change from

constant rotation acceleration to constant rotation

speed.

Figure 24 clearly demonstrated that when the rotor

with e = 25 mm cannot pass 2nd critical speed (red

line), the rotation speed will be held constant and rotor

will have limit cycle oscillation (LCO). This also

happened for rotor with e = 10 mm at 3rd critical

speed (yellow line). Note that a little distortion is

observed again when rotor with e = 5 mm passed the

3rd critical speed (green line).

Fig. 22 Vibration time history of the rotor first node rotation

angle in x-direction

Fig. 23 Time history of the rotation angle in z-direction

Fig. 24 Time history of the rotation speed in z-direction
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3.4 Effects of applied torque

In this section, the effects of applied torque on the

rotor vibration and amplitudes of limit cycle oscilla-

tion are studied for the same rotor with the specifica-

tion of Table 2, with variable a = 30, 50, 100 and

150 rad/s2 (it is assumed that applied torque equals to

a*Jp), mu = 6 gr and e = 25 mm. In these figures just

the maximum points of vibration are plotted too for a

better observation. In this paper, for simplicity, the

motor is assumed to be an ideal source that applies a

constant torque to the system. In a separate future

article by authors, the issue of non-ideal source will be

considered and its effects on rotor performance will be

investigated.

In Fig. 25 the vibration of the rotor first node is

plotted for different applied torques. By increasing a
from 30 to 50 rad/s2, the amplitudes of vibrations

decrease slightly in passing through 1st and 2nd

critical speeds (blue and green lines) and rotor

negotiated critical speeds earlier due to increasing

the angular acceleration. In both cases, rotor cannot

pass through 3rd critical speed and just two peaks are

observed. When a is increased to 100 rad/s2 (yellow

line), the amplitude of vibration a little is decreased

again and the rotor cannot pass through the 3rd critical

speed yet.

By increasing the a up to 150 rad/s2 (red line), the

amplitudes of oscillations are decreased again, the

rotor can pass the 3rd critical speed (3 peaks are

observed) and then rotor cannot pass through the 4th

critical speed.

In Fig. 26, the vibration of the rotating angle in the

x-direction (u) for the first node is shown. The effects
of increasing the a are like Fig. 25, in which the more

applied torque causes a lower amplitude for angular

vibration in the x-direction.

Rotor rotation angle and rotation speed in the

z-direction are plotted in Figs. 27 and 28. In Fig. 27 it

is shown that when the rotor cannot pass critical

speeds, the parabolic form of rotation angle time

history changes to a straight line in 3rd critical speed

(yellow, green and blue lines) and 4th critical speed

(red line). It means the rotation of the rotor in

z-direction will change from constant rotation accel-

eration to constant rotation speed.

Figure 28 clearly demonstrated that when the rotor

with a = 150 rad/s2 cannot pass 4th critical speed (red

line), the rotation speed will be held constant and rotor

will have limit cycle oscillation (LCO). This also

happened for rotor with a = 30, 50 and 100 rad/s2 at

3rd critical speed (yellow, green and blue lines). Note

that a little distortion is observed when rotor with

a = 150 rad/s2 passed the 3rd critical speed (red line).

To investigate the behavior of the rotor while

decelerating, other physical factors must be added to

the problem that cause negative angular acceleration.

But due to the length of the article, the authors prefer to

study this phenomenon in the future papers.

Fig. 25 Vibration time history of the rotor first node

displacement in x-direction

Fig. 26 Vibration time history of the rotor first node rotation

angle in x-direction
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3.5 Effects of unbalanced mass position (zu)

In this section, the effects of changing the position of

unbalanced mass on z axis on the rotor vibration and

amplitudes of limit cycle oscillation are studied for the

same rotor with the specification of Table 2, with

different positions of unbalanced mass (zu). In these

figures, just the maximum points of vibration are

plotted too for a better observation.

In Fig. 29 the vibration of the rotor first node is

plotted for different zu. By changing this position from

1st to 6th (central) node (see Fig. 2), the amplitudes of

vibrations are decreased first and then increased

passing through critical speeds. The best case with

the minimum amplitude is when this mass position is

on the 3rd node. Just when the unbalanced mass is on

the first node, the rotor cannot pass through the 3rd

critical speed.

Note that when the unbalanced mass is on the

central node, passing through 2nd critical speed has no

effect on the amplitude of oscillations (black line).

Because the unbalanced forces on the central node of

rotor do not excite the 2nd mode shape.

In Fig. 30, the vibration of the rotating angle in the

x-direction (u) for the first node is shown. The effects
of changing the position of unbalanced mass on z axis

are like Fig. 29, in which by changing this position

from 1st to 6th (central) node (see Fig. 3), the

amplitudes of vibrations are decreased first and then

increased passing through critical speeds. The rest of

the features of the previous figure are repeated in this

figure too.

Rotor rotation angle and rotation speed in the

z-direction are plotted in Figs. 31 and 32. In Fig. 31 it

is shown that when the rotor cannot pass critical speed,

the parabolic form of rotation angle time history

changes to a straight line in 3rd critical speed (blue

line). It means the rotation of the rotor in z-direction

will change from constant rotation acceleration to

constant rotation speed. All other cases passed through

all critical speeds and probably have the same

parabolic forms.

Figure 32 clearly demonstrated that when the rotor

cannot pass 3rd critical speed (blue line), the rotation

speed will be held constant. Note that little distortions

Fig. 27 Time history of the rotation angle in z-direction

Fig. 28 Time history of the rotation speed in z-direction

Fig. 29 Vibration time history of the rotor first node

displacement in x-direction

123

Meccanica (2022) 57:193–212 207



are observed when rotor in other cases passed the 3rd

critical speed.

3.6 Effects of nonlinearities

Almost, in all previous researches in the field of

Rotordynamics, the 2nd order nonlinear terms are the

highest order of nonlinearity in equations. But, in

order to get the more accurate results, up-to 4th order

of nonlinearity is considered in this work, as explained

in the formulation section. The reason is illustrated in

the next 2 figures.

The nonlinear terms up-to 4th order, are considered

in deriving the kinetic and strain energy. The results of

research demonstrated that in the analysis of rotor-

bearing systems, up-to 4th order of nonlinearity should

be considered in kinetic and strain energy equations to

obtain correct results, especially when the rotor passes

through critical speeds. Also, a convergence study has

been derived by considering up to the 6th order of

nonlinearity. The results of the rotor vibrations were

not differing from those considered up to the 4th order

of nonlinearity.

In Fig. 33, the time response history of the rotor

vibrations in x-direction are plotted for a rotor with the

specification of Table 2, just with different mu = 4.2 gr.

If up-to 2nd order nonlinear terms are considered in

formulations, the rotor will pass through the 3rd critical

speed (red line), but by considering up-to 4th nonlinear

terms, the results change completely and the rotor

cannot pass through the 3rd critical speed (blue line).

In Fig. 34, the rotational speed results of the rotor

are plotted for these 2 rotors with different nonlinear

formulations too. This figure demonstrated again that

Fig. 30 Vibration time history of the rotor first node rotation

angle in x-direction

Fig. 31 Time history of the rotation angle in z-direction

Fig. 32 Time history of the rotation speed in z-direction

Fig. 33 Time history of the rotor vibration in x-direction
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the rotor with higher order nonlinear terms cannot pass

through the 3rd critical speed (blue line), but the other

rotor passes this critical speed (red line).

3.7 Stability analysis

Waterfall and stability boundary diagrams for the

dynamic behavior of the rotor-bearing system are

plotted in this section. Waterfall diagrams for rotor

with the different unbalanced masses, mu = 1,6 and 30

gr are plotted respectively in Figs. 35, 36 and 37.

These diagrams are in good agreement with the

results of Sect. 3.2. As shown in Fig. 35, in which the

unbalanced mass is mu = 1 gr, vibration amplitude

increases about first and second critical speeds (red

zone) and also about 3rd critical speed (orange zone).

As the bearings are linear, just the synchronous

vibrations are observed in this figure.

Figure 36 shows that by increasing the unbalanced

mass from 1 to 6 gr, the vibration amplitude increases

(as shown before in Sect. 3.2), and the highest

amplitudes are again about critical speeds (red and

orange zones). Also, some turbulences are observed at

about 3rd critical speeds (orange zone), which means

the instability and Sommerfeld effects begin in these

rotational speeds.

By increasing mu again up to 30 gr (Fig. 37), this

turbulence zone gets bigger (orange zone) and also

some turbulences are observed about 2nd critical

speed (red zone), which means the rotor instability

will be occurred in earlier critical speeds by increasing

the unbalanced mass. Also, it is noted that as the

bearings are linear, just the synchronous forces from

the unbalanced mass are applied to the rotor-bearing

system, so just the synchronous vibrations are

observed in the waterfall diagrams.

The boundary between stability and instability

behavior of the rotor-bearing system is plotted in

Figs. 38 and 39. In these figures, the relation between

the unbalanced mass and angular acceleration is

plotted when the rotor gets non-stable. With consid-

eration of applied torque as T = a*Jp, it can be said

that the relation between torque and unbalanced mass

is plotted as the boundary between stable and non-

stable zones.

At a speed of about 1000 rpm, it can be noted the

presence of sub-synchronous components. It would be

appropriate to plot the 1000 rpm curve separately to

show its frequency content. But, due to the length of

the article, the authors prefer to study this phe-

nomenon in the future papers.

In Fig. 38, this diagram is plotted for the rotor,

when passes through the 3rd critical speed and

stable and non-stable zones are determined. Also, a

Fig. 34 Time history of the rotational speed in z-direction

Fig. 35 Waterfall diagram

of rotor with mu = 1 gr
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fitted line (red line) with a linear equation (which

seems to be the best choice) is plotted to specify

clearly the bound of instability.

In Fig. 39, this diagram is plotted for the rotor,

when passes through the 2nd critical speed and

stable and non-stable zones are determined again.

Also, a fitted line (red line) with a cubic equation

(which seems to be the best choice for this figure) is

plotted to specify clearly the bound of instability.

4 Conclusions

A new computational model based upon well-estab-

lished fundamental principles and new results are

shown for the nonlinear vibrations of a rotating shaft

with applied torque and acceleration passing through

critical speeds. Because of the wide range of signif-

icant parameters, general conclusions are difficult to

reach. However, specific conclusions for each param-

eter studied are included in each of the sub-sections of

Sect. 3. As overarching conclusions, increasing unbal-

anced mass value and radius will cause to increasing

the amplitude of lateral vibrations and makes it

difficult to pass through critical speeds.

The effects of applied torque are distinctly differ-

ent, and increasing the applied torque will decrease the

vibration amplitude and the rotor can easier pass to

higher critical speeds. Also changing the location of

mass unbalanced in z-direction has different effects on

rotor responses that positioning on the first (or last)

and the central node will cause to increasing the

amplitude of lateral vibrations. Videos of the rotor

Fig. 36 Waterfall diagram of rotor with mu = 6 gr

Fig. 37 Waterfall diagram

of rotor with mu = 30 gr
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rotations (2D and 3D responses) for selected param-

eters are available upon request.

This work also demonstrated that in the analysis of

rotor-bearing systems, up-to 4th order of nonlinearity

should be considered in kinetic and strain energy

equations to obtain more accurate results, especially

when the rotor passes through critical speeds. Deter-

mination of boundary between stability and instability

behavior of rotor passing through critical speed is also

another significant result of this research.
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