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Abstract A generalized model of the damper is

proposed in the form of the equivalent Voigt model for

viscoelastic materials, which fully correlates with the

differential equation for induced oscillations in the

system with a damper. The relations of parameters of

the differential equation and parameters of the equiv-

alent Voigt model with parameters of various models

for viscoelastic materials and with components of the

complex elastic modulus of these models are estab-

lished. An approach for the assessment of the damper

influence on the oscillation level of various elements

in the analyzed system that occur under the impact of a

coercive force of different frequencies is proposed for

the mechanical system. It is presented in the form of

the model with lumped parameters. Parameters of

viscoelastic materials, which are suitable for use in

dampers in the designed mechanical system, are

determined based on obtained estimations. Thus, the

proposed approach to the analysis of the behaviour of

viscoelastic dampers allows us to determine the

requirements for viscoelastic materials suitable for

use in the designed systems. Also, it allows us to

determine frequency response characteristics of dam-

pers with known frequency dependences of storage

modulus and loss modulus of the used viscoelastic

materials.

Keywords Damping � Models of viscoelastic

materials � Complex elasticity modulus � Vibrations in
mechanical systems

1 Introduction

The necessity to reduce oscillations that occur in

dynamic mechanical systems under the influence of

external and internal forces is explained by the

negative impact of oscillations of various system

elements on its operational behaviour. This impact is

appeared in the instability of the overall system

behaviour, decrease in service life of its individual

elements, which malfunction can lead to the destruc-

tion of the entire system. A typical pattern of structures

that are sensitive to oscillations is, for example, an

aircraft with air propellers. Rotation of these pro-

pellers is accompanied by undesirable oscillations of

structural units of an aircraft.

Dampers made of viscoelastic materials are widely

used to damp oscillations that occur in various

mechanical structures under the action of periodic

forces [1–3]. The analysis of the behaviour of

viscoelastic dampers under harmonic inputs becomes

particularly acute when forces, occurred in the

mechanical system, induce oscillations in a wide

frequency range.
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The frequency analysis of viscoelastic materials is

usually based on the theory of linear viscoelasticity

[4–8]. According to this theory, properties of vis-

coelastic materials that describe the relationship

between strains and stresses under harmonic inputs

are characterized by a complex elastic modulus at

small strains in a linear region [6, 9].

This approach allows, when designing viscoelastic

dampers, to avoid considering the specific structure of

viscoelastic materials and physical mechanisms of

viscoelasticity, which are very diverse for different

materials [9]. A huge number of studies and publica-

tions are devoted to the nature of viscoelasticity and

methods of describing the properties of viscoelastic

materials (from polymers to carbon-containing mate-

rials and metals). Let us note the works [8, 10–15]. In

these papers, the nature of the viscoelasticity of

various materials is analyzed, the corresponding

models and theories describing the materials’ proper-

ties are proposed, and a significant bibliography on

these issues is given. Modern theories of dynamic

analysis of viscoelasticity consider structures at the

nano-level, take into account the local gradient

behavior of deformation, extend it to the non-local

level, introducing the concept of an integral complex

modulus of elasticity [13–15].

Thus, the complex modulus of elasticity considered

in the paper is a characteristic of a viscoelastic

material that fully reflects the relationship between

stresses and strains in a viscoelastic shock absorber,

regardless of the physical mechanisms of viscoelas-

ticity and the models used.

Let us consider a mechanical system with a damper

made of viscoelastic materials in the forced-oscillation

regime. The system’s behaviour is described by a

differential equation with parameters dependent on

properties of viscoelastic materials as well as damped

masses [16–18]. As it shown in [19], coefficients of the

differential equation for induced oscillations in a

system with a viscoelastic damper can be determined

through parameters of any mechanical damper model,

i.e., through the coefficients of viscous friction and

elasticity coefficients of the model elements. Various

mechanical models of viscoelastic materials are

described in [4–6, 20]. A study of the relationship

between parameters of the differential equation and

characteristics of a viscoelastic damper (in particular,

components of its complex elastic modulus) is devel-

oped in the proposed paper.

Complex elastic modulus of the model can be

expressed using the model parameters. The modulus

helps to evaluate the adequacy of the assumed damper

model to the real viscoelastic material. Also, it helps to

investigate the influence of the damper made with the

studied viscoelastic material on the behaviour of the

system on exposure of a coercive force of the

particular frequency.

Quality of the model can be evaluated by compar-

ing components of the complex elastic modulus in a

required frequency range with such components of the

complex elastic modulus of the used material. It is

important to measure the parameters of viscoelastic

materials accurately, which is rather difficult and

labour-consuming, especially when components of the

complex elastic modulus are measured in a wide

frequency range. Measurement techniques for param-

eters of viscoelastic materials are presented, for

example, in papers [6, 21–25].

The influence of the damper on the system

behaviour described by the differential equation is

expressed as a relationship between equation param-

eters and components of the complex elastic modulus

of the model adequate to the viscoelastic material. In

this case, components of the complex elastic modulus

of the model should be expressed in terms of its

parameters. The parameters of the model, in turn,

determine the values of the coefficients of the

differential equation. The mentioned relationships

are discussed in this article.

In [18], difficulties are noted in determining the loss

coefficient (matrix) of a differential equation. It should

also be noted that losses in the material determined

through the coefficient of viscous friction used in the

differential equation, are proportional to the rate of

deformation changes [16–18]. While the losses deter-

mined by the loss modulus of the complex modulus of

elasticity are proportional to the magnitude of the

relative deformations [9].

However, the relationship between these two

approaches has not been determined so far, and, even

now, some researchers doubt the fact that these

methods for describing the properties of viscoelastic

materials are equivalent. They suppose that compo-

nents of the complex elastic modulus of the viscoelas-

tic material (and those of its adequate model) and

parameters of the differential equation, which describe

the behaviour of these materials in mechanical struc-

tures, cannot be connected one-to-one [9].
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This paper shows that this alleged contradiction can

be resolved when the complex elastic modulus of the

model adequate to the viscoelastic material is repre-

sented through the parameters of the model. On the

other hand, these parameters are expressed using

parameters of the differential equation for the system

with a damper, performing induced harmonic oscilla-

tions. This relationship is easily established by direct

comparison of stresses in a viscoelastic material at

specified harmonic strains with a force that induces

harmonic oscillations of a certain level in the system

with a damper.

The established relations between parameters of

damping material and parameters of the differential

equation allow us to simulate oscillations of different

elements of the mechanical system with a damper.

Also, the relations make it possible to determine

parameters of a viscoelastic material suitable for the

protection of system elements vulnerable to vibrations

in a required frequency range.

Thus, the main novelty of the article is that we

express the coefficients of the differential equation in

terms of the components of the complex elastic

modulus of the viscoelastic material. Therefore, we

can determine the system frequency response by the

parameters of the damper model. Also, vice versa, we

specify the material parameter requirements for the

damper to be used in a specific mechanical system

with a certain frequency response.

2 Induced oscillations in a single-mass system

with a damper

The mechanical system at given impacts will be

represented in the form of the model with lumped

parameters [18, 26, 27]. This model reflects the most

critical properties of the system with the specified

degree of accuracy [26, 27]. In such a system, the

viscoelastic damper is also represented as a mechan-

ical model with lumped parameters [18]. Mechanical

models are not tied to the structure of a specific

viscoelastic material and are used in this paper to

determine the characteristics of a damping material

suitable for use in the system being developed [28]. In

contrast to mechanical models, analytical models of

viscoelastic materials are widely used in the synthesis

of materials with the required characteristics [1, 29].

Let us first consider the system with a damper

positioned between a lumped mass, which is affected

by a disturbance force, and a bed of infinite mass. We

will call these systems as single-mass systems. The

effect of a damper on the level of damped mass

oscillations in the required frequency range of the

coercive force is the subject to study in these systems.

2.1 The differential equation for induced

oscillations and a generalized model

of the damper [17]

The differential equation for induced oscillations of

the mechanical system with lumped parameters is

given by [16, 17]:

mx00 þ rx0 þ kx ¼ FðtÞ; ð1Þ

where F(t) is the generalized periodic external

force related to the generalized coordinate x;

x0, x00 are the first and second derivatives of x with

respect to t, respectively;

m, r b k are generalized factors of inertia, friction,

and elasticity, respectively.

Values of the damping ratio of free oscillations d,
the frequency of free oscillations X0 and the resonant

frequency Xr are also typical for the system described

by Eq. (1) [9, 17]:

d ¼ r=2m; X0 ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

; Xr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0 � 2d2

q

:

According to Eq. (1), the external force is counter-

acted by three forces:

• the inertial force:

FmðtÞ ¼ mx00; ð2Þ

where m is the mass of the body to which the force

is applied,

• the friction force:

FrðtÞ ¼ rx0; ð3Þ

where r is the coefficient of viscous friction of the

dissipative element of the system,

• the elastic force;

FkðtÞ ¼ kx; ð4Þ

where k is the coefficient of elasticity (stiffness) of

the elastic element.
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The system described by this equation can be

schematically represented in the form shown in Fig. 1.

Dissipative and elastic elements connected in

parallel combine a damper. Its scheme corresponds

to the Voigt model of a viscoelastic material. Param-

eters of this model (coefficient of internal friction and

elastic coefficient) are frequency-independent and

equal to the corresponding parameters of the differ-

ential equation. Any model that relevantly reflects

properties of the used viscoelastic material can be

transformed into the Voigt model [19]. Moreover,

parameters of this transformed model (equivalent

coefficient of internal friction and elastic coefficient,

which generally depend on the frequency) will also be

equal to the parameters of the differential equation.

We will call this transformed model with frequency-

dependent parameters, which is matched the differen-

tial equation of induced oscillations, as the equivalent

Voigt model. This model will be taken as a generalized

model of the damper.

2.2 The complex elastic modulus of the damper

model and the parameters of the differential

equation

In the case of steady-state harmonic oscillations, the

complex relationship between the stress in the material

and the strain can be written as [6]:

rae
jXt ¼ GðXÞeaejðXt�uÞ ¼ GaðXÞejueaejðXt�uÞ; ð5Þ

where raejXt is a harmonic stress function with the

frequency X and amplitude ra;

eaejðXt�uÞ ¼ eðtÞ is a harmonic function of relative

strains of the material, with an amplitude ea relative to
the stress by an angle u;

GðXÞ is a complex elastic modulus of the material,

equal to:

GðXÞ ¼ GjðXÞ þ jGjjðXÞ ¼ GaðXÞeju;

GjðXÞ is a storage modulus (real part of the

complex elastic modulus);

GjjðXÞ is a loss modulus (imaginary part of the

complex elastic modulus);

GaðXÞ is an absolute value of the complex elastic

modulus;

u ¼ tan�1ðGjj=GjÞ—the phase shift relative to the

stress (loss angle).

The delay of deformations relative to the stress at

steady—state harmonic oscillations in a system with a

damper is due to the presence of losses in the

dissipative element of the damper. From a mathemat-

ical point of view, this fact determines the appearance

of an imaginary component in the elastic modulus [9].

In this paper, we will be limited to the study of axial

linear elastic strains of viscoelastic materials. In this

case, the relationship between the complex modulus of

elasticity and parameters of the differential equation

can be demonstrated simply and clearly, taking into

account the basic properties of viscoelastic materials.

Obviously, it is necessary to consider the possibility of

the appearance of orthogonal components of defor-

mations under axial force impact when the certain

constructions of dampers are studied [14, 30].

Passing from stresses r and relative values of

strains e to forces Fa acting on the damper made of

viscoelastic material (with a base area S and height l),

and to displacements xa under the influence of these

forces, using (5), we will get:

FaðtÞ
S

¼ Fa

S
ejXt ¼ GðXÞ xa

l
ejðXt�uÞ ð6Þ

or

FaðtÞ ¼ S
l GðXÞXae

jðXt�uÞ ¼ GaðXÞ Sl ejuXae
jðXt�uÞ

where FaðtÞ ¼ Fae
jXt is harmonic function of the force

acting on the damper;

Xae
jðXt�uÞ ¼ xaðtÞ—harmonic shift function.

Taking the force acting on the damper as FaðtÞ ¼
Fa cosðXtÞ; and the displacement as xaðtÞ ¼
Xa cosðXt � uÞ; taking the equation FaðtÞ ¼ FkðtÞ þ
FrðtÞ into account, and in accordance with (3) and (4),
we get:

FaðtÞ ¼ kxþ rx0

¼ kXa cosðXt � uÞ � rXXa sinðXt � uÞ:
ð7Þ

On the other hand, in accordance with (6):

Fig. 1 Schematic

representation of a

mechanical system with a

damper. F(t)—acting force;

m—inertial element; r—

dissipative element; k—

elastic element
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FaðtÞ ¼
S

l
GðXÞXa cosðXt � uÞ ¼

¼ S

l
XaðGjðXÞ cosðXt � uÞ � GjjðXÞ sinðXt � uÞ

ð8Þ

Comparing expressions (7) and (8) we get:

GjðXÞ ¼ k
l

S
; ð9Þ

GjjðXÞ ¼ rX
l

S
: ð10Þ

Components of the complex elastic modulus of

viscoelastic materials (and models that relevantly

reflect their properties) are frequency-dependent [7].

Hence, both parameters k and r of a differential

equation for induced harmonic oscillations in a

viscoelastic material should also have a certain

frequency dependence, as it follows from Eqs. (9)

and (10).

Thus, it is possible to establish a relation between

components of the complex elastic modulus of the

model of viscoelastic material and oscillation param-

eters in the system when frequency-dependent param-

eters of the differential equation for induced harmonic

oscillations in a viscoelastic material are used.

2.3 Frequency dependences for components

of the complex elastic modulus of damper

models

It was noted in [19], the model in the form of a certain

combination of dissipative and elastic components

with constant parameters ri and kj can be transformed

to the Voigt model with equivalent frequency-depen-

dent parameters reðXÞ and keðXÞ .
This model will show accurately damping proper-

ties of the damper made of a viscoelastic material.

Frequency properties of the material are defined by a

complex elastic modulus in accordance with relations

(9) and (10) with parameters k and r equal to ke and re ,

respectively.

Expressions for the equivalent parameters of some

models [19], as well as ones for the components of the

complex elastic modulus of corresponding models of

dampers, are summarized in Table 1.

The standard solid model combined from a series

coupling of an elastic element kK and the Voigt model

(‘‘KV’’ model), shown in Table 1, is, in fact, the two-

section generalized Voigt model. In the model, one

section (an elastic element) can be considered as a

degenerated Voigt section. Similarly, the standard

solid model combined from a parallel coupling of an

elastic element kK and the Maxwell model can also be

considered as the two-section generalized Maxwell

model (‘‘KM’’ model), where one section is a degen-

erated Maxwell section.

Frequency profiles of the storage modulus and the

loss modulus of the Voigt, Maxwell, and ‘‘KM’’

standard solid models are shown in Fig. 2. Frequency

profiles of the complex elastic modulus of the ‘‘KV’’

model are identical to similar profiles of the complex

elastic modulus of the ‘‘KM’’ model if certain

parameters of this model are chosen.

Ratios of damper sizes for all models are set to
l
S ¼ 1

3
m�1½ �. For the Voigt model, the parameter kF is

set to the value of the storage modulus of the ‘‘KM’’

model at the point X ¼ 0 (kF ¼ G
j
KMð0Þ ), and the

parameter rF is set to the value of the frequency

derivative of the loss modulus of the ‘‘KM’’ model at

the point X ¼ 0 (thus, rF ¼ G
j
KMð1Þ � G

j
KMð0Þ).

These parameters of the Voigt model result in the

lowest difference between compared dependencies in

the low-frequency range. For the Maxwell model, the

value of the kM parameter is set to the total value of kK
and kKM parameters of the ‘‘KM’’ model, where storage

modules of these models become equal at the

frequency X ¼ 1 : G
j
Mð1Þ ¼ G

j
KMð1Þ . Values of

the ‘‘KM’’ model parameters and the normalising

frequency X0 are determined from relations validated

for this example: kK
kKM

¼ 0:2; ðX0Þ2 ¼ kK
m with m = 1.

The value of the parameter rM of the Maxwell model is

set to the value of the parameter rKM of the KM model.

Thus, the higher values of the loss modules in both

models occur at the same frequency.

As it shown in Fig. 2, the both plots of the Voigt

model and of the standard solid model are closely

approximated within the low frequency band.

For the Maxwell model, the storage modulus of the

Maxwell model tends toward zero at any values of rM
and kM parameters at low frequencies (at X ! 0 )

unlike other models [6]. This circumstance makes it

impossible to use this model over the low frequency

range, at least for solid viscoelastic materials.
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However, it is possible to use the Maxwell model

within the higher frequency bands.

2.4 Frequency response of the system

with a viscoelastic damper

At first, it is necessary to determine the requirements

for a viscoelastic material suitable for use in the

damper in the designed system.

The frequency profile of an oscillation amplitude Xa

of the inertial element in the simplest system shown in

Fig. 1 (at frequency-independent parameters r and k)

has a resonant behaviour at values of the damping ratio

d\ X0
ffiffi

2
p [9, 16]:

Xa ¼
Fa

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX2
0 � X2Þ2 þ ð2dXÞ2

q

¼ Fa

mX2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
X0

� �2
� �2

þ4 d
X0

� �2
X
X0

� �2

s ;
ð11Þ

where the values d and Xo are determined by

parameters of the model of the viscoelastic damper

and the damped mass.

Table 1 Models and their parameters

Model and its parameters Equivalent parameters of the

transformed model: ke, re
Storage modulus and loss modulus of the

damper model: G= ¼ l
S ke;G

jj ¼ l
S reX

Voigt model ke ¼ kF

re ¼ rF

G
j
F ¼ l

S kF

G
jj
FðXÞ ¼ l

S kF
X
XF

XF ¼ kF
rF

Maxwell model

ke ¼ kM

X
XM

� �2

1þ X
XM

� �2

re ¼ rM

1þ X
XM

� �2

XM ¼ kM
rM

G
j
MðXÞ ¼ l

S ke

G
jj
MðXÞ ¼ l

S kM
X
XM

1þ X
XM

� �2

Standard solid model ‘‘KV’’

ke ¼ k0 þ
k1 X

X1

� �2

1þ X
X1

� �2 re ¼ rKF
kK

kKFþkK

� �2

k0 ¼ kKF
kK

kKFþkK
k1 ¼ kK

kK
kKFþkK

X1 ¼ k1
re
¼ kKFþkKð Þ

rKF

G
j
KFðXÞ ¼ l

S ke

G
jj
KFðXÞ ¼ l

S k1
X
X1

1þ X
X1

� �2

Standard solid model ‘‘KM’’

ke ¼ kK þ
kKM

X
XM

� �2

1þ X
XM

� �2

re ¼ rKM

1þ X
XK
M

� �2 X
K
M ¼ kKM

rKM

G
j
KMðXÞ ¼ l

S ke

G
jj
KMðXÞ ¼ l

S k
K
M

X
XK
M

1þ X
XK
M

� �2
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The frequency dependence of an oscillation ampli-

tude of the system’s inertial element against its

oscillation amplitude at low frequencies (at X ! 0 )

is the amplitude-frequency response of the system

[14, 17]:

a ¼ Xa

Xa0
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
X0

� �2
� �2

þc0
X
X0

� �2

s ; ð12Þ

where: a is a relative oscillation level of the inertial

element of the system, Xa0—amplitude of the inertial

element oscillation at low frequencies (at X ! 0 ),

c0 ¼ 4 d
X0

� �2

.

We will find characteristic points of the studied

amplitude-frequency response (taking into account

12). The value square of the relative damping factor

d
X0

� �2

at the maximum acceptable value of the relative

oscillation level ax at a resonant frequency Xr can be

represented as:

d
X0

� �2

¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

a2x

s
 !

: ð13Þ

Therein, the resonant frequency can be determined

from the following expression:

Xr

X0

� �2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

a2x

s

: ð14Þ

We also present expressions for the determination

of frequencies that exceed the resonant frequency,

where the value of relative oscillation level decreases

to 1 and 0.707 (respectively X1 and X0:7 ):

X1

X0

� �2

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

a2x

s

¼ 2
Xr

X0

� �2

: ð15Þ

and

X0:7

X0

� �2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

a2x

s

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 1

a2x

s

: ð16Þ

Amplitude-frequency response of the system at

d� X0
ffiffi

2
p behaves as a monotonically decreasing func-

tion (with frequency-independent parameters k and r),

and the value of X0:7

X0
is determined by the expression:

X0:7

X0

� �2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
d
X0

� �2

�1

 !2

þ1

v

u

u

t � 2
d
X0

� �2

�1

 !

:

ð17Þ

The value of X0:7

X0
is maximal and equal to 1 at

d
X0

� �2

¼ 1
2
. In this case, X0:7 ¼ X0 and the studied

frequency response is as flat as possible in the low-

frequency range with the largest drop at frequencies

higher than X0 . This dependence corresponds to the

frequency response of a two-section low-pass filter

with the cut-off frequency (boundary frequency) Xb at

Fig. 2 Frequency profile of components of the complex elastic modulus of the Voigt, Maxwell, and ‘‘KM’’ models
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the level of 0.707 equal to the frequency X0:7 of the

damper.

2.5 The frequency response of the system

and the parameters of the damper model

For the given cutoff frequency value and accept-

able value of oscillations in a damper (low-pass filter)

bandpass, determined by its operation conditions in

the system, and for the given value of the damped

mass, values of parameters r and k for the required

frequency profile are determined from given equations

as follows.

Values of differential equation parameters for

oscillations in the studied system with a damper can

be expressed at ax � 1 using (13), (14), and (16)

through required values of frequency response param-

eters as:

k ¼ mX2
0 ¼

mX2
0:7

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
a2x

q ; ð18Þ

r ¼ 2md ¼ mX0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

a2x

s
 !

v

u

u

t

¼ mX0:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
a2x

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
a2x

q

v

u

u

u

t :

ð19Þ

At d� X0
ffiffi

2
p we can submit d in the form d ¼ dnkd .

Here, the parameter kd (kd � 1 ) defines a magnifica-

tion value of the damping ratio against its minimal

value dn, equal to dn ¼ X0
ffiffi

2
p ; where the frequency

response starts to behave as a monotonically decreas-

ing function. The cutoff frequency X0:7 at d[ dn
becomes less thanX0. Thus, in accordance with (17) kd

can be expressed as a function of X0:7

X0
¼ kX: k2d ¼

1þ 1�k2X
2kX

: In this case (kd � 1), values of k and r

parameters will be equal to:

k ¼ mX2
0 ¼

mX2
0:7

k2X
; ð20Þ

r ¼ 2md ¼ 2mdnkd ¼ m
X0:7

kX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
1� k2

X

kX

s

: ð21Þ

Thus, parameters of the differential equation should

comply with relations (18) and (19) at d� X0
ffiffi

2
p (ax � 1 ),

or with relations (20) and (21) at d� X0
ffiffi

2
p (ax ¼ 1 ) to

meet the requirements for the amplitude-frequency

response of a system with a damper.

If the viscoelastic material is defined by the Voigt

model (which is acceptable over the low-frequency

band in many cases), parameters of the model will be

equal to parameters of the differential equation: kF ¼
k; rF ¼ r: Components of the complex elasticity

modulus of the viscoelastic damper model (and

material) will be equal to (Table 1):

G
j
F ¼ l

S kF ; G
jj
FðXÞ ¼ l

S kF
X
XF

; where l and S—are

determined to subject to conditions of the damper

operation in the system.

We can evaluate the performance of the damper in a

wider frequency range by using the standard solid

‘‘KM’’ model.

Amplitude-frequency response of the system in this

case (aKM ) can be obtained from (12) by replacing k

with ke in the expression X2
0 ¼ k

m , and by replacing r

with re in the expression d ¼ r
2m (for the ‘‘KM’’ model

according Table 1).

On rearrangement (12), we have:

aKM ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R
1þc2

k
c00R

1þckðckþ1Þc00R

� �2

þ c00
R
D2

r ;

where X2
00 ¼

kK
m

; R ¼ X
X00

� �2

;

D ¼ 1þ ckðck þ 1Þc00R; d00 ¼
rKM
2m

;

c00 ¼ 4
d00
X00

� �2

¼ rKM
m

� �2
m

kK
; cK ¼ kK

kKM
:

ð22Þ

The ‘‘ KM ’’ model is transformed into the Voigt

model at kKM ¼ 1 . In this case, frequency response

characteristics of both models (a and aKM) will be

equal at X00 ¼ X0, d00 ¼ d and c00 ¼ c0 . In this case,

parameters kK and rKM of the ‘‘KM’’ model are

determined by coefficients of the differential equation:

kK ¼ k and rKM ¼ r . It is convenient to express the

value of the c0 parameter as c0 ¼ 1
a2ðX0Þ , where aðX0Þ

is the relative oscillation amplitude of the mass m at

the frequency X0, when the Voigt model with

parameters kF ¼ kK ¼ k and rF ¼ rKM ¼ r is used.
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In case of real materials kKM 6¼ 1 , and at finite

values of kKM , the frequency response of the ‘‘KM’’

model will basically be equal to the same character-

istic of the Voigt model only over the low-frequency

band. The acceptable value of the kKM parameter

(which is acceptable in the sense of the influence on

the amplitude-frequency response of the system) can

be determined via variation of the cK parameter. The

variation is performed when modelling the frequency

profile aKM and choosing the studied amplitude-

frequency response behaviour in the range of medium

and high frequencies, which meets the requirements

for the damper. Values of kK and rKM parameters can

also be specified during the simulation.

Some results of the simulation are shown in Fig. 3.

Three curves represented by thick lines in Fig. 3,

show the frequency response of the system when the

damper is approximated by the Voigt model at

different values of the relative damping coefficient.

The middle thick line corresponds to the critical value

of the damping ratio d
X0

¼ 1
ffiffi

2
p

� �

when the amplitude-

frequency response characteristic is as flat as possible

with the largest drop within the range of attenuation. In

this case, the normalized frequency X0 is chosen to

fulfil the equation X0:7

X0
¼ 1 . Thick line in the left

corresponds to the case of a higher damping ratio

d
X0

¼ 1
� �

when the slope of the frequency response

decay and the boundary frequence X0:7

X0
¼ 0:644

� �

are

decreasing. The right thick line corresponds to the case

when a certain increase in the level of oscillations in a

filter (damper) bandpass is allowed (in this case it

increases to the level of ar ¼ 1:05 at d
X0

¼ 0:588 ). This

leads to an increase of the slope drop of the frequency

response characteristic and a moderate increase of the

boundary frequence (X0:7

X0
¼ 1:164 ).

The Voigt model parameters for the selected cases

at m = 1[kg] and X0 ¼ 1[HZ] are:

• for the case d
X0

¼ 1 : kF ¼ mX2
0 ¼ 1 N

m:½ � ; rF ¼
2md ¼ 2 Ns

m:½ � ;
• for the case d

X0
¼ 1

ffiffi

2
p : kF ¼ mX2

0 ¼ 1 N
m:½ � ; rF ¼

2md ¼ 1:414 Ns
m:½ � ;

• for the case d
X0

¼ 0:588 : kF ¼ mX2
0 ¼ 1 N

m:½ � ; rF ¼
2md ¼ 1:176 Ns

m:½ � .

Thin lines in Fig. 3 show frequency response

characteristics of the system when the damper is

represented by the standard solid model ‘‘KM’’.

Characteristics of this model are calculated to match

with the Voigt model (kK ¼ kF b rKM ¼ rF ) in a low

frequency range. The behavior of the amplitude-

frequency response in the higher frequency range is

determined by the value of the cK ¼ kK
kKM

parameter.

Simulation shows, that a decrease of the parameter kKM
from infinity to a certain final value results in a shift of

an initial amplitude-frequency response of the system

with a Voigt model to a higher frequency region. The

shift occures without sacrificing its general behaviour

Fig. 3 Amplitude-frequency response of the one-mass system with dampers, represented by the Voigt and ‘‘KM’’ models
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(as well as a gradual amplification of oscillations

within the resonant area). A significant amplification

of oscillations in the resonant region occurs with a

further decrease of the parameter kKM . Resonant area

appears even on monotonically decreasing profiles

(for cases d
X0

� 1
ffiffi

2
p ). This behaviour of the frequency

response characteristic is shown in Fig. 3 as the thin

solid line on the right. It corresponds to the case d
X0

¼
1
ffiffi

2
p at cK ¼ 0:16 . The value of cK is selected to reach

the maxumum value a ¼ aX (at the resonant fre-

quency) of 1. The value cK ¼ 0:2 for the case d
X0

¼
0:707 (thin dashed line) is selected from the condition

that the frequency response aKM remains as flat as

possible over the largest part of the range. The value

cK ¼ 0:17 for the case d
X0

¼ 0:588 (thin solid line on

the left) is selected from the condition for an

acceptable increase of the level aKM to the value of

aX ¼ 1:1.

The ‘‘KM’’ model parameters for the selected cases

at m = 1[kg] and X0 ¼ 1[HZ] are:

• for the case d
X0

¼ 1 and cK ¼ 0:16, kK ¼ 1 N
m:½ � ;

rKM ¼ 2 Ns
m:½ � ; kKM ¼ kK

cK
¼ 6:25 N

m:½ � ;
• for the case d

X0
¼ 1

ffiffi

2
p and cK ¼ 0:2, kK ¼ 1 N

m:½ � ;

rKM ¼ 1:414 Ns
m:½ � ; kKM ¼ 5 N

m:½ � ;
• for the case d

X0
¼ 0:588 and cK ¼ 0:17, kK ¼ 1 N

m:½ � ;
rKM ¼ 1:176 Ns

m:½ � ; kKM ¼ 5:88 N
m:½ �

Thus, the parameters of the ‘‘KM’’ model are

defined for the characteristics with the desired shape as

follows. Parameters kK and rKM are calculated from

Eqs. (18)–(21) as parameters kF and rF of the original

Voigt model, equal to coefficients k and r of the

differential equation.

Parameter kKM is calculated from the equation cK ¼
kK
kKM

(the value of cK is determined during the simulation

of its effect on the frequency response characteristic).

Components of the complex elastic modulus of the

viscoelastic damper model (and material) that provide

the required amplitude-frequency response of the

system are determined through the parameters of the

model, as shown in Table 1.

Frequency profiles for components of the complex

elastic modulus of the damper model wich ensure the

maximal flat amplitude-frequency response of the

damping system using the Voigt and ‘‘KM’’ models

are shown in Fig. 4. Parameters of these models are

taken from the example shown in Fig. 3, and the

relation l
S ¼ 1

3
[m.-1]. Frequency profiles of the system

with these dampers are also shown in this picture for

illustrative purposes.

Thus, the frequency response of a damper will

correspond to the plot aF, when the behaviour of a

viscoelastic material selected for the damper is closely

approximated by the Voigt model with the storage

modulus G
j
F and the loss modulus G

jj
F in a required

frequency range (as shown in Fig. 4). If frequency

dependences of components of the complex elastic

modulus of the studied material are closely approxi-

mated in a required frequency range by corresponding

dependences of the standard solid model ‘‘KM’’,

shown in the figure, the frequency response charac-

teristic of the damper will correspond to the plot aKM .

The proposed approach to the analysis of the

behaviour of viscoelastic dampers, which is based on

the use of a generalized model of the damper in the

form of the equivalent Voigt model with frequency-

dependent parameters, allows us to determinate

frequency response characteristics of designed dam-

pers, as well as characteristics of viscoelastic materials

approximated with more complex models.

2.6 Frequency characteristics of a system

with a damper approximated

by a multisectional generalized Maxwell

model

As an example, we will estimate the frequency

properties of a system with a damper, represented by

a three-section generalized Maxwell model (with one

degenerate section), which is shown in Fig. 5. We call

this model (with two complete and one degenerate

Maxwell sections) as ‘‘KMM’’ one.

We can express the parameters ke and re of the

‘‘KMM’’ model transformed to the equivalent Voigt

model (generalized damper model) in terms of the

parameters of the original model:

ke ¼ kK þ k1

X
X1

� �2

1þ X
X1

� �2
þ k2

X
X2

� �2

1þ X
X2

� �2
ð23Þ
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re ¼
r1

1þ X
X1

� �2
þ r2

1þ X
X2

� �2
; ð24Þ

where X1 ¼ k1
r1
; X2 ¼ k2

r2
; kK , k1, k2, r1, r2–elasticity

coefficients and coefficients of internal friction of

elastic and dissipative elements of the studied system.

Therefore, expressions for components of the

complex elastic modulus of the damper model (and

of the corresponding viscoelastic material) are ([12]):

Gj ¼ l

S
kK þ k1

X
X1

� �2

1þ X
X1

� �2
þ k2

X
X2

� �2

1þ X
X2

� �2

0

B

@

1

C

A

ð25Þ

Gjj ¼ l

S
k1

X
X1

1þ X
X1

� �2
þ k2

X
X2

1þ X
X2

� �2

0

B

@

1

C

A

ð26Þ

Full sizes of a damper (l and S) are selected with

respect to the actual loading of a damper in the studied

system and strength properties of the proposed

material.

Frequency profiles for components of the complex

elastic modulus are shown in Fig. 6. In this case, the

model is formed by adding one section to the ‘‘KM’’

model which characteristics are used in the example

shown in Fig. 4 ( lS ¼ 1
3
[m-1]). For comparison, Fig. 6

shows the characteristics aKMM and aKM of both

models ‘‘KMM’’ and ‘‘KM’’.

Parameters of the ‘‘KMM’’ model section addi-

tional to the ‘‘KM’’ model are specially selected in this

case to obtain the deviation of the frequency charac-

teristic from the average value (equal to 1) not more

than 0.1 within the damper bandpass. In any other

(optional) case, we can at least determine a frequency

response characteristic of a damper made of a

particular material, which frequency properties are

simulated by more intricated models, on the basis of

this suggested approach.

We now give the general expression for the

frequency response characteristic of the system with

a damper, when a viscoelastic material is expressed by

a multisectional generalized Maxwell model with one

degenerate section:

Fig. 4 Frequency profiles of components of the complex elastic modulus of the Voigt and ‘‘KM’’ models of the damper and the relative

oscillation level of the damped mass

Fig. 5 Three-section generalized Maxwell model
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ac ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R
D

� �2þ 4 d0
X0

� �2

R

P

i

ri
P

i
ri

1þR

D

v

u

u

t

; ð27Þ

where X2
0 ¼ kK

m ; R ¼ X
X0

� �2

, D ¼ 1þ
P

i

ki
kK
R

1þR, d0 ¼
P

i
ri

2m ; Xi ¼ ki
ri

; m—the damped mass; i—index

corresponding to the number of the complete Maxwell

section; kK , ki, ri—parameters of the model.

Expression (27) can also be submitted in a form:

ac ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R
D

� �2þ 4 d0
X0

� �2

R

P

i

ri
P

i
ri

1þc2
i
diR

D

v

u

u

t

;

The last expression uses the following notations:

ci ¼ kK
ki
;D ¼ 1þ

P

i
cidiR

1þc2i diR
, di ¼ 4 di

X0

� �2

, where di ¼
ri
2m .

3 Induced oscillations in a dual-mass system

with a damper

3.1 Basic relations for a dual-mass system

with a damper

In a dual-mass system, the damper is positioned

between two oscillating masses (m b M), as shown in

Fig. 7.

In this case:

FM ¼ Fr þ FK ; ð28Þ

FðtÞ ¼ Fm þ Fr þ FK ¼ Fm þ FM: ð29Þ

Assuming

FðtÞ ¼ Fa cosðXtÞ; ð30Þ

xm ¼ Xm cosðXt � uÞ; ð31Þ

Fig. 6 Frequency response characteristics of the ‘‘KMM’’ and ‘‘KM’’ models

Fig. 7 A damper in a dual-mass system. F(t)—driving

(coercive) force; Fm and FM—inertial forces of masses m and

M; Fr, Fk—an internal friction force and an elasticity force

respectivly
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xM ¼ XM cosðXt � wÞ; ð32Þ

where the current values of m and M masses’

displacements are indicated by symbols xm and xM ,

respectively; Xm and XM are amplitudes of these

displacements; u and w are phase shifts of the

displacements relative to the driving force. Thus, we

obtain:

Fm ¼ mðxmÞ00 ¼ �mX2Xm cosðXt � uÞ; ð33Þ

FM ¼ MðxM Þ00 ¼ �MX2XM cosðXt � wÞ: ð34Þ

Since the deformation of the damper model (in the

accepted approximation of linear, axial deformations

of the viscoelastic body) can be represented by a

difference between displacement of its ends, i.e. xm �
xM , the equations for the damper resistance forces in

accordance with (31) and (32) are:

Fr ¼ rðxm � xMÞ0;
¼ �rXðXm sinðXt � uÞ � XM sinðXt � wÞÞ;

ð35Þ

Fk ¼ kðxm � xMÞ
¼ �kðXm cosðXt � uÞ � XM cosðXt � wÞÞ:

ð36Þ

From (29), with consideration to (30), (33), and

(34), we find:

Fa cosðXtÞ
¼ �X2ðmXm cosðXt � uÞ þMXM cosðXt � wÞÞ:

ð37Þ

From (35) we get:

Xm ¼ Fa sinw

mX2 sinðu� wÞ
; ð38Þ

XM ¼ Fa sinu

MX2 sinðw� uÞ
: ð39Þ

Converting (28) with consideration to (34), (35),

(36), we get:

XMðk cosðXt � wÞ � rX sinðXt � wÞÞ
� Xmðk cosðXt � uÞ � rX sinðXt � uÞÞ
¼ MX2XM cosðXt � wÞ:

ð40Þ

From (40) it follows:

Xm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ðrXÞ2
q

sinðc� ðXt � uÞÞ

¼ XM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk �MX2Þ2 þ ðrXÞ2
q

sinðb� ðXt � wÞÞ;
ð41Þ

where c and b are defined by the relations:

tan c ¼ k

rX
; ð42Þ

tan b ¼ k �MX2

rX
: ð43Þ

From (41) it follows:

u� w ¼ b� c ð44Þ

and

Xm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ðrXÞ2
q

¼ XM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk �MX2Þ2 þ ðrXÞ2
q

: ð45Þ

Converting (38) and (39) in consideration of (44),

we find:

sinw ¼
� mXm

MXM
sinðb� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2 mXm

MXM
cosðb� cÞ þ mXm

MXM

� �2
r ; ð46Þ

sinu ¼
MXM

mXm
sinðb� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2MXM

mXm
cosðb� cÞ þ MXM

mXm

� �2
r : ð47Þ

Then (38) and (39), taking into account (44), (46)

and (47), give:

Xm ¼ Fa

mX2

� mXm

MXM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2 mXm

MXM
cosðb� cÞ þ mXm

MXM

� �2
r ð48Þ

and

XM ¼ Fa

mX2

�MXM

mXm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2MXM

mXm
cosðb� cÞ þ MXM

mXm

� �2
r : ð49Þ

Transforming (48, 49) with consideration to (42),

(43), (44), we have:
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Xmj j ¼
Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
XM

� �2
� �2

þce0
X
Xe

0

� �2

s

ðmþMÞX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
Xe

0

� �2
� �2

þce0
X
Xe

0

� �2

s

¼
Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1þ M
m

� �

X
Xe

0

� �2
� �2

þce0
X
Xe

0

� �2

s

ðmþMÞX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
Xe

0

� �2
� �2

þce0
X
Xe

0

� �2

s ;

ð50Þ

XMj j ¼
Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ce0
X
Xe

0

� �2
r

ðmþMÞX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
Xe

0

� �2
� �2

þce0
X
Xe

0

� �2

s ;

ð51Þ

where: ðXe
0Þ

2 ¼ k
me

, me ¼ M
1þM

m

, ce0 ¼ 4 de

Xe
0

� �2

¼ r
me

r
k,

de ¼ r
2me

, ðXMÞ2 ¼ k
M .

The fundamental difference between oscillations in

a dual-mass system and oscillations in a system with

one damped mass is an increase of oscillation ampli-

tude in the low-frequency range (at X ! 0 ):

Xmj jX�0’ XMj j ’ Fa

X2ðMþmÞ . (For a single-mass system

Xaj jX�0’ Fa

X2m
).

3.2 Frequency response of the dual-mass system

with a damper, represented by the Voigt model

We will study oscillations of mass m, which are

affected by a driving force when the damper is

positioned between two masses (as it shown in Fig. 7),

relative to oscillations in the system without damper.

When the Voigt model (with constant parameters

kF and rF equal to parameters of the differential

equation k and r) is used as the damper model, the

frequence responce (amm ) can be represented as

follows, taking (50) into account:

amm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1þ M
mÞ X

Xe
0

� �2
� �2

þce0
X
Xe

0

� �2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
Xe

0

� �2
� �2

þce0
X
Xe

0

� �2

s : ð52Þ

Analysis of the Eq. (52) shows that the local

minimum and maximum in a frequency response take

place at frequencies Xn and Xx respectivly at c
e
0\

2q
qþ1

,

where q ¼ 1þ M
m . The values of these frequencies are

determined by the expressions: X2
n ¼

qþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq�1Þ2þ2ce
0
ðqþ1Þ

p

2q�ce
0
ðqþ1Þ and X2

x ¼
qþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq�1Þ2þ2ce
0
ðqþ1Þ

p

2q�ce
0
ðqþ1Þ ,

so Xn\Xx .

Maximum in the high frequency region disappears

at ce0 �
2q
qþ1

, and the frequency response tends

monotonically to the value 1þ M
m : amm �!

X!1
1þ M

m .

As we can see, this value is determined by the ratio of

oscillating masses, and it can far exceed the oscillation

level over the low-frequency band. The minimum

value of amm takes place at the frequency Xn ¼
qþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq�1Þ2þ2ce
0
ðqþ1Þ

p

2q�ce
0
ðqþ1Þ at ce0 �

2q
qþ1

:

The relative frequency profile of oscillations

amplitude of the massM under the impact of a driving

force on the mass m (amM ) in view of (51) can be

represented as:

amM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ce0
X
Xe

0

� �2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X
Xe

0

� �2
� �2

þce0
X
Xe

0

� �2

s : ð53Þ

This function has a maximum on the frequency,

determined from: Xx

Xe
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffi

1þ2ce
0

p
�1

ce
0

r

. This maximum is

equal to

ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ce0
4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þce
0
�
ffiffiffiffiffiffiffiffiffi

1þ2ce
0

p
ce
0

� �2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ce0
p

� 1

s :

Oscillation level of the mass M decreases mono-

tonically with increasing of frequency: amM �!
X!1

0 ,

when the frequency is higher thanXx In this region, a
m
M

becomes equal to 1 at X1

Xe
0

� �2

¼ 2 and reaches the value

of 0.707 at the X0:7

Xe
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þce
0
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þce
0ð Þ2þ4

q

2

s

frequency.

Examples of such frequency profiles of a dual-mass

system under the impact of a coercive (driving) force
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on the mass m are shown in Fig. 8. These plots were

calculated at various values of the ce0 parameter, which

characterizies the value of oscillations in a systemwith

a damper, represented by the Voigt model at Mm ¼ 5 .

Dashed thick lines in the figure represent frequency

profiles of the mass m oscillations at three different

values of the relative damping coefficient ce0. Solid

thick lines represent the frequency profiles of the mass

M oscillations at the same values of the relative

damping coefficient. For the comparison, the dashed

thin line represents the initial extremely flat frequency

profile of the mass m oscillations (am) in the single-

mass system at d
X0

¼ 1
ffiffi

2
p . As it shown in the figure, use

of the damper in a dual-mass system over a low

frequency band allows to decrease the level of the

mass m oscillations, affected by a coercive force,

withoit a significant increase of the mass M oscilla-

tions. However, suppression of oscillations of the mass

Mwith a significant increase in the massm oscillations

is observed in the high frequency range.

Thus, parameters of the differential equation of

induced oscillations in the studied system can be

determined as a result of the simulation of a

viscoelastic material by the Voigt model, on the basis

of the maximum acceptable value of the relative

oscillation level and the cut-off frequency value (X0:7

or X1 ). As described above, values of these coeffi-

cients are used as the initial data to determine the

required values of the parameters of the viscoelastic

material which is acceptable for the designed damper.

3.3 Frequency response characteristics

of the dual-mass system with a damper,

represented by the ‘‘KM’’ model

We now give expressions for the relative oscillations

of masses m and M used in a simulation of a

viscoelastic material with the standard solid model

‘‘KM’’. These expressions can be obtained from (50)

and (51) by the subtitution of k and r parameters in the

expressions for Xe
0 and d

e
0 (45) with parameters ke and

re of the ‘‘KM’’ model (Table 1). The substitution can

be done in the same way as it was done for a single-

mass system:

amm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1þ M
m

� �

R
1þc2

k
ce
00
R

D

� �2

þ ce
00
R

D2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R
1þc2

k
ce
00
R

D

� �2

þ ce
00
R

D2

r ð54Þ

amM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ce
00
R

D2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R
1þc2

k
ce
00
R

D

� �2

þ ce
00
R

D2

r ð55Þ

In expressions (54), (55) R ¼ X
Xe

00

� �2

,

D ¼ 1þ ckðck þ 1Þce00R, de00 ¼ rM
2me

, Xe
00

� �2¼ kK
me

,

ce00 ¼ 4
de00
Xe

00

� �2

.

Fig. 8 Frequency profiles of oscillations in the dual-mass system with a damper, represented by the Voigt model, on exposure to the

coercive force on the mass m
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Frequency profiles of the relative oscillation level

of masses m and M in the dual-mass system with a

damper, represented by the ‘‘KM’’ model (comparing

with the Voigt model) on exposure M
m ¼ 5 to the

coercive force on themassm, are represented in Fig. 9.

Dashed thick lines in the figure represent frequency

profiles of oscillation amplitudes of massesm andM of

the Voigt model at ce00 ¼
2q
qþ1

, and thin lines represent

similar dependences of the ‘‘KM’’ model calculated

for the same k and r parameters of the differential

equation and the value of the ck ¼ 0:1 parameter. The

dashed thin line represents the initial extremely flat

frequency profile of the relative level of mass m oscil-

lations amplitude in the one-mass system.

Figure 10 shows similar frequency profiles of the

relative level of masses’ oscillations in the dual-mass

system with a damper for the case of exposure to the

coercive force on the mass M (at M
m ¼ 5).

As it can be shown in the simulation, the stronger

the difference between frequency parameters of the

viscoelastic material and frequency parameters of the

Voigt model, the higher level of mass oscillations is

observed within the medium frequency band.

The proposed approach to estimate oscillations in a

dual-mass system with a damper is also applicable for

more complex models of viscoelastic materials, sim-

ilar to the data shown in Sects. 2.3–2.6 for a single-

mass system.

4 Conclusion

Summing up, we note the following points.

The behaviour of viscoelastic damping materials

under harmonic inputs is described by the differential

equation for induced oscillations in a system with a

damper. A system damper behaviour is determined by

two parameters of the differential equation—the

elasticity (stiffness) coefficient k and the coefficient

of viscous friction r. Basic regularities of the damper

behaviour are described by the theory of linear

viscoelasticity and characterized by the complex

modulus of elasticity. Frequence dependences of

components of the complex elastic modulus determine

the frequence dependences of the coefficients k and

r of the differential equetion.

In this way, a viscoelastic material is represented by

some initial model with frequency-independent

parameters ki and rj of elastic and dissipative elements

respectivly. Components of the complex elastic mod-

ulus of the initial model, represented in terms of ki and

rj , might be adequate to the corresponding compo-

nents of the viscoelastic material. The initial model is

transformed to the equivalent Voigt model containing

two elements with ke and re parameters wich are equal

to k and r coefficients of the differential equation.

Thus, coefficients of the differential equation for

oscillations in the system with a viscoelastic damper

can be expessed in terms of frequency-independent

parameters of an arbitrary model of a viscoelastic

Fig. 9 Frequency profiles of oscillations in the dual-mass system with a damper, represented by the ‘‘KM’’ model, on exposure to the

coercive force on the mass m
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material. In this case, levels of oscillations of inertial

elements of a system with a damper in the required

frequency range (i.e. frequency response characteris-

tics of the system) can also be determined in terms of

frequency-independent parameters of the initial dam-

per model.

The proposed approach to the analysis of the

behaviour of viscoelastic dampers allows us to deter-

mine the requirements for viscoelastic materials

suitable for use in the designed dampers. The approach

is based on the use of a generalized damper model in

form of the equivalent Voigt model with frequency-

dependent parameters. Therefore, it allows to deter-

mine parameters of the initial damper model corre-

sponding to the requirements for the frequence

response of the designed system.

Naturally, difficulties to select an acceptable model

of viscoelastic materials increase when the operating

frequency range expands, and simple models cannot

adequately reflect properties of real materials. Never-

theless, simple models can be used to determine the

required values of parameters of the studied model,

which defines its behavior in the low-frequency range.

Intensive studies in the field of dynamic analysis of

beam-type structures at the nano-level with local

gradient behaviour of deformation and its propagation

to the non-local level lead to the analysis of device

models, the parameters of which depend on the device

dimensions. The study of the features of the applica-

tion of the proposed approach to the analysis of such

structures and models is supposed to be implemented

while continuing the work on the design of viscoelas-

tic dampers.
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