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Abstract Focusing on the Fourier fluids in the liquid

state, which are characterized by linear thermal

constitutive equation and low compressibility, this

short note proposes a discrete approach based on the

elementary scales, which allows removing the so-

called Fourier paradox in classical continuum ther-

momechanics. As a corollary, the adopted line of

reasoning allows highlighting some features on the

elementary scales.
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1 Introduction

The phenomenological description of fluid flows is

founded on the spatio-temporal continuity of the

motion [1, 2]. In agreement with this hypothesis, the

generic field functions, such as density q, velocity v,

temperature T , pressure p, are regular functions of

both space r and time t. For the sake of clarity, this note

is restricted to homogeneous, isotropic, electrically

neutral, chemically inert fluids. The continuity in the

space involves the continuum hypothesis: the material

system is considered as a continuum system of fluid

particles; the fluid particles are, virtually, in one-to-

one correspondence with the points of the Euclidean

space. The size of the fluid particles coincides with the

Representative Elementary Volume (REV) dV . The

REV, which has been first introduced for modeling the

transport phenomena in porous media [3], is required

for any continuous macroscopic representation of the

material systems [4]. In line with the method of

homogenization, the REV is large compared to the

molecular size and small compared to the size of the

flow domain [4]. Consequently, the continuity in space

implies that
l
drj j � 1, where l is a characteristic length

of the material system, drj j the elementary spatial

scale (i.e. the REV scale). In classical continuum

thermomechanics, the continuity in time requires that
tr
dtj j � 1, where tr is the relaxation time, i.e. the interval

time required to restore a Local Thermodynamic

Equilibrium (LTE) condition in place of a local

thermodynamic non-equilibrium condition, dtj j the

elementary time scale. According to this formulation:

• the fluid is in LTE condition (also referred to as

hydrodynamic regime, [5]);

• the generic field function b is well defined in both r

and t;
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• b r� drð Þ ¼ b rð Þ for drj j\ drj j and b t � dtð Þ ¼
b tð Þ for dtj j\ dtj j;

• if dbj j is the elementary scale of b, then bþ db ¼ b

for dbj j\ dbj j.

In Sect. 2 some features of drj j and dtj j are

highlighted and the elementary scales of density

dqj j, pressure dpj j, and temperature dTj j, are intro-

duced. Focusing on the Fourier fluids in the liquid

state, which are characterized by linear thermal

constitutive equation and low compressibility, Sect. 3

defines the constraints to be imposed to elementary

scales. In Sect. 4, a discrete approach based on the

elementary scales allows removing the heat conduc-

tion paradox of the infinite speed of signal diffusion in

Fourier theory. The conjunction of the Fourier consti-

tutive equation and heat balance equation gives rise to

the parabolic heat equation which in turn leads to the

Fourier paradox [6, 7]. The conclusions close the

paper.

2 Elementary scales

From a mathematical point of view, the relationship:

r� ¼ rþ dr ¼ rþ v r; tð Þdt ð1Þ

where r identifies the position of a fluid particle at the

time t, can be thought of as a coordinate transforma-

tion [8], where the Jacobian tensor J is given as:

J ¼ or�

or
¼ rr� ¼ I þrvdt ð2Þ

By defining dV as the REV at the position r at the

time t, dV ¼ dV r; tð Þ, and

dV� ¼ dV r�; t�ð Þ ¼ dV rþ dr; t þ dtð Þ, with

t� ¼ t þ dt, the connection between dV and dV� is

expressed by:

dV� ¼ JdV ð3Þ

where J is the Jacobian determinant:

J ¼ detJ ¼ det I þrvdt

� �
ð4Þ

By identifying dV as a material volume (with

constant mass), the principle of mass conservation can

be expressed as:

qdV ¼ q�dV� ð5Þ

where:

q ¼ q r; tð Þ ð6Þ

q� r�; t�ð Þ ¼ q r þ dr; t þ dtð Þ

¼ q r; tð Þ þ o

ot
q r; tð Þdt þ o

or
q r; tð Þ dr

¼ qþ oq
ot

dt þrq dr

¼ qþ oq
ot

dt þrq vdt

ð7Þ

If krvdtk � 1, Eq. (4) can be approximated as [8]:

J ¼ 1þr � vdt ð8Þ

and Eq. (5) reads as:

qdV ¼ qþ oq
ot

dt þrq � vdt
� �

1þr � vdtð ÞdV

ð9Þ

Equation (9) reduces to the well-known continuity

equation:

oq
ot

þr � qvð Þ ¼ 0 ð10Þ

when the higher order infinitesimals are neglected.

Equation (10) is valid for both Linear Non-Equilib-

rium Regime (LNER, which corresponds to the

viscous flow regime) and Non-Linear Non-Equilib-

rium Regime (NLNER, which corresponds to the

turbulent flow regime). The LNER, which is stable and

regular, is characterized by small values of krvk and

rTj j: a perturbation of the mechanical and thermo-

dynamic state regresses during the evolution of the

motion. The NLNER, which is unstable and chaotic, is

characterized by large values of krvk and/or rTj j: a
perturbation amplifies and has systematic effects on

the motion features.

Formally, the obtained result implies that

8rv9dt : tr
dt � 1andk$vdtk � 1. If krvdtk � 1 also

r � vdtj j � 1 (if krvdtk � 1, det I þrvdt

� �
¼

1þr � vdt is very close to 1 and the following

approximation holds r � vdtj j � 1).

In equivalent forms, the continuity Eq. (10) can be

written as:

Dq
Dt

þ qr � v ¼ 0 ð11Þ
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or as:

dqþ qr � vdt ¼ 0 ð12Þ

where Db
Dt ¼ ob

ot þrb � v is the material derivative of b,

db ¼ ob
ot dt þrb � dr. Equation (12) allows to define

the elementary density scale as dqj j ¼ qr � vdtj j. The
comparison between Eq. (12) and the equation of state

q ¼ q p; Tð Þ, written in the differential form as [9]:

� 1

q
dq ¼ � 1

e
dpþ adT ð13Þ

- with e ¼ e p; Tð Þ the bulk modulus of elasticity,

and a ¼ a p; Tð Þ the thermal expansion coefficient–

yields to:

adT ¼ r � vdt þ 1

e
dp ð14Þ

Equation (13), which is valid for both LNER and

NLNER, shows the influence of dq and dp on dT .

According to Eq. (13), dpj j is the elementary scale of p

and dTj j the elementary scale of T .

3 Fourier fluids

Fourier Fluids (FF) are that for which the conduction

part of the heat flux vector is linearly related to the

temperature gradient [10–12]. For this kind of fluids,

the thermal constitutive equation is given as:

q ¼ �kTrT ð15Þ

In Eq. (15), q is the heat flux vector due to thermal

conduction, kT ¼ kT p; Tð Þ is the thermal conductivity.

Whitin the framework of FF, the attention is paid to

the Fourier Fluids in the Liquid State (FFLS). The

FFLS are characterized by low compressibility: the

bulk modulus of elasticity e is the order of 109Pa. In

agreement with Eq. (14), putting e ¼ O 109Pa
� �

� 1,

it follows that 1
e dpj j � 1, r � vdtj j � 1, a dTj j � 1.

Observing that dT ¼ oT
ot dt þrT � dr, the relationship

a dTj j � 1, formally, implies that 8rT9dr :
drj j � 1,

a rT � drj j � 1.

4 The so-called Fourier paradox

For FFLS at rest (v ¼ 0 in the chosen inertial reference

frame), the heat balance equation [9] reads as:

qc
oT

ot
¼ �r � q ð16Þ

where c is the liquid heat capacity. In conjunction

with the Fourier constitutive Eq. (15) it provides the

heat equation:

qc
oT

ot
¼ r kTrTð Þ ð17Þ

Setting kT ffi constant (as usual in many classical

continuum thermomechanics problems [12]), Eq. (17)

reduces to the well-known parabolic heat equation:

qc
oT

ot
¼ kTr2T ð18Þ

For one-dimensional heat flow in infinite domain,

Eq. (18) reduces to:

oT

ot
¼ D

o2T

ox2
ð19Þ

where D ¼ kT
qc is the thermal diffusivity. Assuming

that, in a given system of units, at the initial instant

t ¼ 0 the temperature takes the value 1 for x ¼ 0 and 0

elsewhere:

T x; 0ð Þ ¼ dðxÞ ð20Þ

where dðxÞ is the Dirac distribution, then the solution

of Eq. (19) decays exponentially [7]:

T x; tð Þ ¼ 1

2
ffiffiffiffiffiffiffiffi
pDt

p e�
x2

4Dt ð21Þ

It should be stressed that the condition T ¼ 0 at

infinity, for an infinite medium stimulated at x ¼ 0, is

not part of the Fourier model but it is a given boundary

condition used for solving Eq. (19).

According to Eq. (21), for t[ 0 and for any x, it

results that T[ 0. Such a property, which involves the

infinitesimal heat diffusion process, is considered by

many authors to be paradoxical [13, 14]. To overcome

the paradox, several generalizations of the classical

heat conduction theory have been proposed (a review

can be found in [7]). On the other hand, some

theoretical works against the existence of the paradox

have been suggested (a review can be found in [6]).
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In line with the formulation proposed in this note, if

dTj j\ dTj j, T þ dT ¼ T and, consequently, the para-

doxical nature of Fourier theory is only apparent: for

t\dt, T ¼ 0; for t	 dt9x : forx[ x; T\dT . The

infinitesimal heat diffusion process involves the

elementary temperature scale which, in turn, involves

the discrete aspect of classical continuum

thermomechanics.

5 Conclusions

Within the framework of classical continuum thermo-

mechanics, a discrete approach, based on the elemen-

tary scales, has been introduced. The spatio-temporal

continuity of the motion allows defining the elemen-

tary spatial scale, drj j, and the elementary time scale,

dtj j. Next to drj j and dtj j, the elementary scales for the

density, dqj j, temperature, dTj j, and pressure, dpj j,
have been defined. The link between dqj j, dTj j and
dpj j has been deduced using the continuity equation

and the equation of state. In agreement with the spatio-

temporal continuity of the motion, the elementary

scales are regular functions of both space r and time t.

The classical continuum thermomechanics imposes

some constraints to drj j and dtj j, which in turn involve
some dimensionless numbers, such as krvdtk,
r � vdtj j, a dTj j, a rT � drj j. These obtained results

indicate that drj j and dtj j, which are related to the

Local Thermodynamic Equilibrium (LTE) condition

and, in turn, to the krvk and rTj j, are frame

indifferent.

The proposed approach, based on the elementary

scales, has been employed to remove the heat

conduction paradox concerning the infinite speed of

signal diffusion in the Fourier theory.

For the sake of clarity, this paper is focused on the

Fourier fluids in the liquid state. The line of reasoning

can be extended to any continuum system which is in

hydrodynamic regime (in LTE condition). The hydro-

dynamic regime is characterized by long wavelengths

and low frequencies. Beyond these limits, the classical

continuum thermomechanics fails in providing an

adequate description of the physical phenomena: the

phenomena which involve very high frequencies and

short wavelengths require a formulation that extends

the classical continuum thermomechanics [14].
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