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Abstract An closed-form solution of simply sup-

ported FGM plates under thermal loads is developed

based on medium-thick plate assumption. Further to

assume constant Poisson’s ratio and thermal expan-

sion coefficient, the closed-form solutions of the FGM

plates with through-the-thickness Young’s modulus

under temperature change in x- and z-directions are

evaluated, expressed in terms of the thermal axial

force and thermal bending moment. The closed-form

solutions confirmed by finite element analysis give a

complete insight into the thermal–mechanical behav-

ior of FGM plates. Hence, the deflection, strain, stress,

axial force, and bending moment of the FGM plate

under thermal loads in axial and thickness directions

are discussed. Results show that the use of FGM

makes the maximum stress from the top or bottom

surface move to the inner portion of the FGM plate,

and significantly reduces the maximum stress of the

plates. Moreover, although the FGM plate is subjected

to thermal load in the thickness direction, the deflec-

tion of the FGM plate can be zero if properly choosing

the steep material gradation from the obtained closed-

form solution.

Keywords FGM plate � Closed-form solution �
Finite element solution � Thermal load

1 Introduction

Composite media have been widely used because of

the high performance demands of engineering devices.

However, in the interface of two different materials

there exists stress concentration occurred by the

mismatch of material properties, especially in the

environment of high-temperature change. Therefore,

the concept of Functional Graded Material (FGM) was

introduced to simultaneously reduce thermal expan-

sion mismatch [1], increase interface bonding strength

[2, 3], and enhance coating toughness [4].

Literatures corresponding to FGM plates subjected

to thermal loads have been rapidly increased recently.

Lee and Erodgan [5] studied the exponentially metal-

rich, ceramic-rich, and linear FGMs under uniform

thermal loading and showed that the metal-rich has the

lowest stress singularity. Chi and Chung [6] evaluated

the stress intensity factors of cracked coating–sub-

strate composite media by the finite element method,

and indicated if the material strength of the coating is

weaker than that of the substrate, although the use of

the S-type functionally graded material can eliminate

the stress singularity on the interfaces, the S-type

functionally graded material that behaves like a bridge
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connecting the material difference of the coating and

substrate will help the crack further extends into the

substrate. Based on the classical plate theory and

Fourier series expansion, Chung and Chang [7]

obtained the series solutions for power-law FGM,

sigmoid FGM, and exponential FGM plates with the

coefficient of thermal expansion varying continuously

throughout the thickness direction subjected to linear

temperature change in the z direction. The mechanical

behaviors of simply supported beams made of func-

tionally graded materials (FGM) under an in-plane

loading was investigated by Ma and Lee [8], indicat-

ing that the response of load–frequency for the beams

is quite different from what was observed in the

analysis for beams made of pure materials when

effects of both the transverse shear deformation and

the temperature dependent material properties are

simultaneously taken into account. Chareonsuk [9]

used a high-order control volume finite element

method to explore thermal stress analysis for FGM

structural components subjected to steady-state ther-

mal and mechanical loads at steady state with the

unstructured mesh capability for arbitrary-shaped

domain. Ghannadpour [10] applied a finite strip

method to analyze the buckling behavior of rectangu-

lar functionally graded plates (FGPs) under thermal

loadings, and discussed the effects of geometrical

parameters and material properties on the FGPs’

buckling temperature difference. Thermal effect on

buckling and free vibration behavior of functionally

graded (FG) microbeams based on classical and first

order shear deformation beam theories to count for the

effect of shear deformations is presented by Nateghi

[11], indicating that higher temperature changes

signify size dependency of FG microbeam. Tahvilian

[12] examined the thermal residual stress distribution

in a functionally graded cemented tungsten carbide

(FG WC– Co) hollow cylinder with an emphasis on

the effects of key variables, such as gradient profile

and gradient thickness on the magnitude and distribu-

tion of the stress field, and pointed that the effect of

gradient thickness. By the investigation of two-

dimensional thermoelastic sliding frictional contact

of functionally graded material (FGM) coated half-

plane under the plane strain deformation, Liu [13]

showed that the distribution of the contact stress can be

altered and therefore the thermoelastic contact damage

can be modified by adjusting the gradient index, Peclet

number and friction coefficient. To gain better

understanding of the thermo-mechanical behavior of

layered structures, Liu [14] investigated the problem

of a finite line bond between two orthotropic func-

tionally graded strips under thermal loading, by using

Fourier transforms technique. Zhang et al. [15] applied

to study the mechanical and thermal buckling behav-

iors of ceramic–metal functionally grade plates and to

investigate the influences of volume fraction expo-

nent, boundary condition, length-to-thickness ratio

and loading type on the buckling behaviors of

functionally grade plates. Taking into account the

effects of transverse shear strains as well as the

transverse normal strain, Zenkour [16] refined plate

theory as well as different plate theories to study the

thermoelastic response of multilayered cross-ply

laminates and angle-ply sandwich plates resting on

Pasternak’s or Winkler’s elastic foundation. Assuming

that the material properties depended on the temper-

ature vary in the thickness direction by a simple power

law distribution, Parandvar and Farid [17] studied

large amplitude vibration of functionally graded

material (FGM) plates subjected to combined random

pressure and thermal load using finite element modal

reduction method. Kulikov and Plotnikova [18]

developed the method of sampling surfaces and its

implementation for the three-dimensional steady-state

problem of thermoelasticity for laminated functionally

graded plates subjected to thermomechanical loading

and indicated that sampling surfaces method can be

applied efficiently to the 3D stress analysis for

thermoelastic laminated FG plates with a specified

accuracy utilizing the sufficient number of sampling

surfaces. Trabelsi, et al. [19] investigated geometri-

cally nonlinear post-buckling responses of Function-

ally Graded Material shell structures exposed to

uniform, linear and nonlinear temperature distribu-

tions through the thickness direction based on a

modified first order shear deformation theory. And the

effect the geometrical parameters, the volume fraction

index and boundary conditions on nonlinear responses

are performed. A hybrid genetic algorithm with the

complex method is developed by Ding and Wu [20]

for the optimization of the material composition of a

multi-layered functionally graded material plate with

temperature-dependent material properties in order to

minimize the thermal stresses induced in the plate

when it is subjected to steady-state thermal loads.

Sator et al. [21] presented the development of

completely 2D formulation for bending of
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functionally graded plates subjected to stationary

thermal loading. Zhang et al. [22] investigated the

dynamic thermal buckling and postbuckling of imper-

fect functionally graded material (FGM) annular

plates based on the nonlinear plate theory. And the

effects of the loads, the material gradient and the initial

geometric imperfections on the dynamic responses

and the buckling critical temperatures of the FGM

annular plates are analyzed in detail. Liew et al. [23]

delt with the linear and nonlinear vibration analysis of

a three-layercoating-FGM-substrate cylindrical panel

with general boundary conditions and subjected to a

temperature gradient across the thickness due to

steady heat conduction. Wu et al. [24] investigated

the parametric instability of functionally graded

graphene reinforced nanocomposite plates that

undergo a periodic uniaxial in-plane force and a

uniform temperature rise, and found that the addition

of a small amount of graphene nanoplatelets (GPLs)

reinforcements considerably increases the critical

buckling load and natural frequencies. Consequently,

thermoelastic analysis of functionally graded material

reinforced with graphene nanoplatelet (GPLs) was

further studied by Yang et al. for circular and annular

plates [25], for elliptical plates [26], and for rectan-

gular plates [27].

FGMs may be utilized to plate structures in

engineering applications as a thermal barrier. Hence

understanding the mechanical behavior of the thermal

barrier is important in assessing the safety of FGM

plate structures. It is well known that the closed-form

solutions can provide a much better understanding of

the thermo-mechanical behavior of FGM plates. In

this study, based on the Fourier series expansion, the

closed-form solutions to the problem of simply-

supported rectangular FGM plates subjected to tem-

perature distribution change in the x- or z-direction is

developed and proved by finite element calculation.

To the authors’ best knowledge, the closed-form

solutions to the problem concerned that is not found in

the literature.

2 Governing equations of FGM plates

under thermal Loading

Consider a simply-supported, medium-thick, rectan-

gular FGM plate with uniform thickness exposed to a

temperature change Tðx; y; zÞ. It is assumed that the

thickness of the medium-thick FGM plate is in the

range 1
20

* 1
100

of its span approximately. Then the

plate is thick enough to carry the transverse load, and

the plate is not so thick that the transverse shear

deformation can be neglected [28]. Further assume

that the through-thickness functionality of material

properties is graded. For the non-homogeneous elastic

FGM plate, the stress–strain relation under thermal

loading Tðx; y; zÞ based on the assumptions of small

deformation is [7]:
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By the definitions of the in-plane axial forces

ðNx;Ny;NxyÞ ¼
R h1

�h2
ðrx; ry; sxyÞdz and the bending

moments ðMx;My;MxyÞ ¼
R h1

�h2
ðzrx; zry; zsxyÞdz, the

in-plane axial forces and the bending moments

expressed in matrix forms are:

Nf g ¼ ½A� e0f g þ ½B� jf g � fNDTg ð2Þ

Mf g ¼ ½B� e0f g þ ½C� jf g � fMDTg ð3Þ

where fNg ¼ fNx;Ny;NxygT ; fMg ¼ fMx;My;MxygT ;

fe0g ¼ fex0; ey0; cxy0gT are the strains at the neutral

surface; fjg ¼ fjx; jy; jxygT are curvatures of the

FGM plate; fNDTg ¼ fNDT ;NDT ; 0gT and fMDTg ¼
fMDT ;MDT ; 0gT are temperature dependent quantities

in which the entries NDT , MDT are of the following

forms:

NDT ¼
Z h1

�h2

EðzÞaðzÞ
1 � mðzÞ Tðx; y; zÞdz ð4Þ

MDT ¼
Z h1

�h2

zEðzÞaðzÞ
1 � mðzÞ Tðx; y; zÞdz ð5Þ

where h1 and h2 are the distances of the neutral surface

to the bottom and top surfaces of the FGM plate. The

entries of ½A�; ½B�; ½C� in Eqs. (2) and (3) are the

integration of the material properties of the FGM

plate:
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ðAij;Bij;CijÞ ¼
Z h1

�h2

ð1; z; z2Þ EðzÞ
1 � vðzÞ2

dz ð6Þ

By introducing the stress function / x; yð Þ such that

Nx ¼
o2/
oy2

;Ny ¼
o2/
ox2

;Nxy ¼ � o2/
oxoy

ð7Þ

the equilibrium equation of FGM plates under thermal

loading is expressed in terms of the deflection w and

the stress function / x; yð Þ as followings [29]:

Q12

o4/
ox4

þ 2Q11 � 2Q66ð Þ o4/
ox2oy2

þ Q12

o4/
oy4

þ S11

o4w

ox4

þ 2S12 þ 4S66ð Þ o4w

ox2oy2
þ S11

o4w

oy4

¼� ðQ11 þ Q12Þ
o2NT

ox2
þ o2NT

oy2

� �

� o2MT

ox2
þ o2MT

oy2

� �

ð8Þ

And the compatibility equation of an FGM plates,

o2ex
oy2 þ o2ey

ox2 ¼ o2cxy
oxoy, can be rewritten in terms of stress

function / x; yð Þ and the deflection w as:

P11

o4/
ox4

þ 2P12 � P66ð Þ o4/
ox2oy2

þ P11

o4/
oy4

� Q12

o4w

ox4
� 2 Q11 � Q66ð Þ o4w

ox2oy2
� Q12

o4w

oy4

¼ �ðP11 þ P12Þ
o2NT

ox2
þ o2NT

oy2

� �

ð9Þ

where the definitions of quantities Qij, Sij and Pij can

be found in Chi and Chung [29]. The equilibrium

equations, Eq. (8), and the compatibility equation,

Eq. (9), provide the simultaneous equations to solve

for the stress function / x; yð Þ and the deflection w for

an FGM plate subjected to thermal loads.

3 Series solution of simply-supported FGM plates

under thermal loading

Consider a simply-supported rectangular FGM plate

with length a, width b, and uniform thickness h

subjected to a temperature change Tðx; y; zÞ. Further

assume that the temperature change Tðx; y; zÞ can be

expressed as Tðx; y; zÞ ¼ FðzÞGðx; yÞ where FðzÞ and

Gðx; yÞ are the temperature change in the z-direction

and x–y plane, respectively. For the simply-supported

FGM plates, the transverse and tangential components

of displacements are restricted to move but the axial

components are allowed on all four edges. Therefore,

the boundary conditions of the simply supported

rectangular FGM plate are:

t ¼ w ¼ 0

Nx ¼ Mx ¼ 0

�

at x ¼ 0 and x ¼ a ð10aÞ

u ¼ w ¼ 0

Ny ¼ My ¼ 0

�

at y ¼ 0 and y ¼ b ð10bÞ

First, expanding the thermal load Tðx; y; zÞ into

Fourier series as follows:

Tðx; y; zÞ ¼ FðzÞGðx; yÞ
¼ FðzÞ

XX
Tmn sinðk1xÞ sinðk2yÞ ð11aÞ

where

Tmn ¼
4

ab

ZZ

G x; yð Þ sinðk1xÞ sinðk2yÞdxdy ð11bÞ

and k1 ¼ mp=a, k2 ¼ np=b. Then, substituting

Eq. (11) into Eqs. (4) and (5) yields the temperature

dependent quantities NDT and MDT :

NDT ¼ N�
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ ð12aÞ

MDT ¼ M�
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ ð12bÞ

where

N� ¼
Z h1

�h2

EðzÞaðzÞFðzÞ
1 � mðzÞ dz ð13aÞ

M� ¼
Z h1

�h2

zEðzÞaðzÞFðzÞ
1 � mðzÞ dz ð13bÞ

The quantities N�, M� represent axial force and

bending moment caused by temperature change,

called thermal axial force and thermal bending

moment in this study. To satisfy the loading condition

in Eq. (11) and the boundary conditions in Eq. (10),

the deflection function w and the stress function

/ x; yð Þ of the FGM plate can be expressed in the forms

of:
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wðx; yÞ ¼
X

m

X

n

wmn sinðk1xÞ sinðk2yÞ ð14aÞ

/ðx; yÞ ¼
X

m

X

n

/mn sinðk1xÞ sinðk2yÞ ð14bÞ

where wmn and /mn are unknown constants. By

substituting Eq. (14) into the equilibrium as well as

the compatibility equations in Eqs. (8), (9), and then

solving the simultaneous equations, one can obtain the

coefficients wmn and /mn:

wmn ¼
nJ � Kg
K2 þ HJ

� �

Tmn ð15aÞ

/mn ¼
nK þ Hg
K2 þ HJ

� �

Tmn ð15bÞ

where

H ¼ S11k
4
1 þ 2 S12 þ 2S66ð Þk2

1k
2
2 þ S11k

4
2 ð15cÞ

J ¼ P11k
4
1 þ 2P12 � P66ð Þk2

1k
2
2 þ P11k

4
2 ð15dÞ

K ¼ Q12k
4
1 þ 2 Q11 � Q66ð Þk2

1k
2
2 þ Q12k

4
2 ð15eÞ

n ¼ Q11 þ Q12ð ÞN� þM�½ � k2
1 þ k2

2

� �
ð15fÞ

g ¼ N�ðP11 þ P12Þ k2
1 þ k2

2

� �
ð15gÞ

Consequently, the strains at neutral surface are:

ex0
¼
X

m

X

n

Tmn
K2 þ HJ

�P12 nK þ Hgð Þ þ Q11 nJ � Kgð Þ½ �k2
1

�

þ �P11 nK þ Hgð Þ þ Q12 nJ � Kgð Þ½ �k2
2

�

sinðk1xÞ sinðk2yÞ
þ P11 þ P12ð ÞN�

X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16aÞ

ey0
¼
X

m

X

n

Tmn
K2 þ HJ

�P11 nK þ Hgð Þ þ Q12 nJ � Kgð Þ½ �k2
1

�

þ �P12 nK þ Hgð Þ þ Q11 nJ � Kgð Þ½ �k2
2

�
sinðk1xÞ sinðk2yÞ

þ P11 þ P12ð ÞN�
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16bÞ

cxy0
¼
X

m

X

n

Tmn
K2þHJ

P66 nKþHgð Þ�2Q66 nJ�Kgð Þ½ �

�k1k2 cosðk1xÞcosðk2yÞ ð16cÞ

And the strain and stress fields of the FGM plate

under thermal loads are found as:

ex ¼
X

m

X

n

Tmn
K2 þ HJ

�P12 nK þ Hgð Þ þ Q11 þ zð Þ nJ � Kgð Þ½ �k2
1

�

þ �P11 nK þ Hgð Þ þ Q12 nJ � Kgð Þ½ �k2
2

�
sinðk1xÞ sinðk2yÞ

þ P11 þ P12ð ÞN�
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16dÞ

ey ¼
X

m

X

n

Tmn
K2 þ HJ

�P11 nK þ Hgð Þ þ Q12 nJ � Kgð Þ½ �k2
1

�
¸

þ P11 þ P12ð ÞN�
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16eÞ

cxy ¼
X

m

X

n

Tmn
K2 þ HJ

P66 nK þ Hgð Þ � 2 Q66 þ zð Þ nJ � Kgð Þ½ �

� k1k2 cosðk1xÞ cosðk2y

ð16fÞ

and

rx ¼
EðzÞ

1 � mðzÞ2

X

m

X

n

Tmn
K2 þ HJ

�P12 nK þ Hgð Þ þ Q11 þ zð Þ nJ � Kgð Þ½ � k2
1 þ mðzÞk2

2

	 
�

þ �P11 nK þ Hgð Þ þ Q12 nJ � Kgð Þ½ � k2
2 þ mðzÞk2

1

	 
�

sinðk1xÞ sinðk2yÞ

þ EðzÞaðzÞ
1 � mðzÞ P11 þ P12ð ÞN� � FðzÞ½ �

X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16gÞ

ry ¼
EðzÞ

1 � mðzÞ2

X

m

X

n

Tmn
K2 þ HJ

�P11 nK þ Hgð Þ þ Q12 nJ � Kgð Þ½ � k2
1 þ mðzÞk2

2

	 
�

þ �P12 nK þ Hgð Þ þ Q11 þ zð Þ nJ � Kgð Þ½ �
k2

2 þ mðzÞk2
1

	 
�
sinðk1xÞ sinðk2yÞ

þ EðzÞ
1 � mðzÞ P11 þ P12ð ÞN� � FðzÞ½ �

X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16hÞ

rxy ¼
EðzÞ

2ð1 � mðzÞÞ
X

m

X

n

Tmn
K2 þ HJ

P66 nK þ Hgð Þ � 2ðQ66 þ zÞ nJ � Kgð Þ½ �
�k1k2 cosðk1xÞ cosðk2yÞ

ð16iÞ
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With the aid of Eq. (7), the in-plane axial forces and

the bending moments of the FGM plate subjected to

thermal loads are also obtained:

Nx ¼
o2/
oy2

¼ �
X

m

X

n

nK þ Hg
K2 þ HJ

� �

k2
2Tmn sinðk1xÞ sinðk2yÞ

ð16jÞ

Ny ¼
o2/
ox2

¼ �
X

m

X

n

nK þ Hg
K2 þ HJ

� �

k2
1Tmn sinðk1xÞ sinðk2yÞ

ð16kÞ

Nxy ¼ � o2/
oxoy

¼ �
X

m

X

n

nK þ Hg
K2 þ HJ

� �

k1k2Tmn cosðk1xÞ cosðk2yÞ

ð16lÞ

and

Mx ¼
X

m

X

n

Tmn
K2 þ HJ

Q12 nK þ Hgð Þ þ S11 nJ � Kgð Þ½ �k2
1

�

þ Q11 nK þ Hgð Þ þ S12 nJ � Kgð Þ½ �k2
2

�
sinðk1xÞ sinðk2yÞ

� Q11 þ Q12ð ÞN� þM�½ �
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16mÞ

My ¼
X

m

X

n

Tmn
K2 þ HJ

Q11 nK þ Hgð Þ þ S12 nJ � Kgð Þ½ �k2
1

�

þ Q12 nK þ Hgð Þ þ S11 nJ � Kgð Þ½ �k2
2

�
sinðk1xÞ sinðk2yÞ

� Q11 þ Q12ð ÞN� þM�½ �
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð16nÞ

Mxy ¼
X

m

X

n

�Tmn
K2 þ HJ

Q66 nK þ Hgð Þ þ 2S66 nJ � Kgð Þ½ �

� k1k2 cosðk1xÞ cosðk2yÞ
ð16oÞ

4 The solution of the FGM plate with constant

Poisson’s ratio

Delale and Erdogan [30] indicated that the influence of

the Poisson’s ratio on the deformation of the FGM

plates will be much less than that of Young’s modulus.

The same conclusion also obtained by Chi and Chung

[31]. Therefore, this paragraph will derive the solu-

tions for the FGM plates with Poisson’s ratio and the

coefficient of thermal expansion being constant, but

Young’s modulus varying in the thickness direction.

Consequently, the relations of the quantities Aij,Bij,

Cij, Qij, Sij and Pij for the material with a,m ¼ constant

but E ¼ EðzÞ can be simplified as follows:

A12 ¼ mA11;A66 ¼ ð1 � mÞA11=2;B12 ¼ mB11

B66 ¼ ð1 � mÞB11=2;C12 ¼ mC11;

C66 ¼ ð1 � mÞC11=2

P11 ¼ 1

ð1 � m2ÞA11

;P12 ¼ �mP11;

P66 ¼ �2ð1 þ mÞP11

Q11 ¼ �B11

A11

;Q12 ¼ 0;Q66 ¼ Q11

S11 ¼ B11Q11 þ C11; S12 ¼ mS11; S66 ¼ ð1 � mÞS11=2

ð17Þ

Substituting Eq. (17) into Eq. (15) gives:

H ¼ S11 k2
1 þ k2

2

� �2
; J ¼ P11 k2

1 þ k2
2

� �2
;K ¼ 0 ð18Þ

Notably, if the origin of the z-axis of the FGM plates is

located on the neutral surface, one can obtain B11 ¼ 0

and then eliminate stretching–bending coupling in

FGM plates, indicated by Chung and Chen [32, 33].

Subsequently, the condition of B11 ¼ 0 further pro-

vides B12 ¼ B66 ¼ 0, Q11 ¼ Q12 ¼ Q66 ¼ 0, and

S11 ¼ C11.

4.1 linear temperature change in the x–y plane

Assume that the temperature change of the FGM plate

varies only in the x–y plane, i.e.,

Tðx; y; zÞ ¼ Gðx; yÞ ¼
X

m

X

n

Tmn sinðk1xÞ sinðk2yÞ

ð19Þ

where Tmn can be evaluated from Eq. (11b). For the

assumption of aðzÞ ¼ a, mðzÞ ¼ m, and FðzÞ = 1, the

thermal axial force N� and thermal bending moment

M� defined in Eq. (13) are simplified as:

N� ¼ ð1 þ mÞaA11;M
� ¼ ð1 þ mÞaB11 ¼ 0 ð20Þ
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and the parameters n and g are:

n ¼ 0; g ¼ a k2
1 þ k2

2

	 

ð21Þ

It is noted that the thermal bending moment

M� ¼ 0, Eq. (20), coincides with the phenomenon of

FGM plates subjected to thermal change in the x–y

plane. And the thermal axial force N� is independent

of Young’s modulus. By the use of Eqs. (14), (15),

(18), (20) and (21), the deflection and the stress

functions of the FGM plates with constant Poisson’s

ratio and constant thermal expansion coefficient

subjected to temperature change in the x–y plane are

then found as:

wðx; yÞ ¼ 0 ð22aÞ

/ðx; yÞ ¼ð1 � m2ÞaA11

X

m

X

n

Tmn
k2

1 þ k2
2

sinðk1xÞ sinðk2yÞ
ð22bÞ

Finally, the strains, stresses, axial forces and the

bending moments of the FGM plates with the material

of E ¼ EðzÞ are:

ex ¼ 1 þ mð Þa
X

m

X

n

kaaTmn sinðk1xÞ sinðk2yÞ ð23aÞ

ey ¼ 1 þ mð Þa
X

m

X

n

kbbTmn sinðk1xÞ sinðk2yÞ

ð23bÞ

cxy ¼ �2 1 þ mð Þa
X

m

X

n

kabTmn cosðk1xÞ cosðk2yÞ

ð23cÞ

rx ¼ �aE zð Þ
X

m

X

n

kbbTmn sinðk1xÞ sinðk2yÞ ð23dÞ

ry ¼ �aE zð Þ
X

m

X

n

kaaTmn sinðk1xÞ sinðk2yÞ ð23eÞ

rxy ¼ �aE zð Þ
X

m

X

n

kabTmn cosðk1xÞ cosðk2yÞ

ð23fÞ

Nx ¼ �ð1 � m2ÞaA11

X

m

X

n

kbbTmn sinðk1xÞ sinðk2yÞ

ð23gÞ

Ny ¼ �ð1 � m2ÞaA11

X

m

X

n

kaaTmn sinðk1xÞ sinðk2yÞ

ð23hÞ

Nxy ¼ �ð1 � m2ÞaA11

X

m

X

n

kabTmn sinðk1xÞ sinðk2yÞ

ð23iÞ

Mx ¼ My ¼ Mxy ¼ 0 ð23jÞ

where

kaa ¼
k2

1

k2
1 þ k2

2

; kbb ¼
k2

2

k2
1 þ k2

2

; kab ¼
k1k2

k2
1 þ k2

2

ð23kÞ

The closed-form solution in Eq. (23) reveals if an

FGM plate with constant a and m is subjected to

temperature change in the x–y plane, the strains and

axial forces are independent of Young’s modulus. The

bending moment Mx ¼ My ¼ Mxy ¼ 0, as expected.

Moreover, the stresses in Eq. (23) indicate that the

stresses are a function of EðzÞ, and hence the stresses

along the thickness of the FGM plate have the same

shapes as the corresponding variations of Young’s

moduli.

4.2 linear temperature change in the z-direction

Consider the situation that the temperature change of

the FGM plate varies in the z-direction, i.e.

Tðx; y; zÞ ¼ FðzÞGðx; yÞ ¼ FðzÞ with Gðx; yÞ ¼ 1

ð24Þ

The temperature change Gðx; yÞ equal to one gives

Tmn ¼ 16=mnp2 for m; n ¼ 1; 3; 5; ::::. For the FGM

plates with constant Poisson’s ratio m and constant

thermal expansion coefficient a, the quantities H; J; K

are the same as those given in Eqs. (15c–e), however

the parameters n and g become:

n ¼ M�ðk2
1 þ k2

2Þ; g ¼ N�

ð1 þ mÞA11

ðk2
1 þ k2

2Þ ð25Þ

With the aid of Eqs. (14a) and (15a–b), the deflection

of FGM plates with E ¼ EðzÞ subjected to temperature

change in the z-direction is:

wðx; yÞ ¼ M�

C11

X

m

X

n

Tmn
k2

1 þ k2
2

sinðk1xÞ sinðk2yÞ ð26Þ

123

Meccanica (2022) 57:355–369 361



Consequently, the strain, stress, axial force, and

bending moment fields are:

ex ¼
N�

A11

þ zM�

C11

� �
X

m

X

n

kaaTmn sinðk1xÞ sinðk2yÞ

ð27aÞ

ey ¼
N�

A11

þ zM�

C11

� �
X

m

X

n

kbbTmn sinðk1xÞ sinðk2yÞ

ð27bÞ

cxy ¼ �2
N�

A11

þ zM�

C11

� �
X

m

X

n

kabTmn cosðk1xÞ cosðk2yÞ

ð27cÞ

rx ¼
EðzÞ

ð1 � m2Þ
X

m

X

n

N�

A11

þ zM�

C11

� �

kmb � ð1 þ mÞaFðzÞ
� �

Tmn sinðk1xÞ sinðk2yÞ

ð27dÞ

ry ¼
EðzÞ

ð1 � m2Þ
X

m

X

n

N�

A11

þ zM�

C11

� �

kma

�

�ð1 þ mÞaFðzÞgTmn sinðk1xÞ sinðk2yÞ
ð27eÞ

sxy ¼ � EðzÞ
ð1 þ mÞ

X

m

X

n

N�

A11

þ zM�

C11

� �

kabTmn cosðk1xÞ cosðk2yÞ

ð27fÞ

Nx ¼ �ð1 � mÞN�
X

m

X

n

kbbTmn sinðk1xÞ sinðk2yÞ

ð27gÞ

Ny ¼ �ð1 � mÞN�
X

m

X

n

kaaTmn sinðk1xÞ sinðk2yÞ

ð27hÞ

Nxy ¼ �ð1 � mÞN�
X

m

X

n

kabTmn cosðk1xÞ cosðk2yÞ

ð27iÞ

Mx ¼ �ð1 � mÞM�
X

m

X

n

kbbTmn sinðk1xÞ sinðk2yÞ

ð27jÞ

My ¼ �ð1 � mÞM�
X

m

X

n

kaaTmn sinðk1xÞ sinðk2yÞ

ð27kÞ

Mxy ¼ �ð1 � mÞM�
X

m

X

n

kabTmn cosðk1xÞ cosðk2yÞ

ð27lÞ

where kmb ¼ k2
1
þmk2

2

k2
1
þk2

2

, kma ¼ mk2
1
þk2

2

k2
1
þk2

2

. It is noted from

Eq. (27) that the strains and stresses along the

thickness of the FGM plate with constant a and m
subjected to temperature change in the z-direction are

functions of z and zEðzÞ, respectively, and herein the

stress curves along the thickness of the FGM plate will

be the shapes of zEðzÞ. Furthermore, the axial forces

and the bending moment are functions of thermal axial

force N� and thermal bending moment M� respec-

tively. The quantities N� and M� are temperature-

dependent and will be evaluated in Sect. 5.2 for given

temperature change.

4.3 Material gradation

The Young’s modulus of the considered FGM plates is

assumed to vary continuously in the thickness direc-

tion (z-axis) based on power-law function (simply

called P-FGM), sigmoid function (S-FGM), or expo-

nential function (E-FGM).

4.3.1 P-FGM plates

The Young’s modulus of P-FGM plates is defined by:

E zð Þ ¼ gðzÞE1 þ 1 � gðzÞ½ �E2;with

g zð Þ ¼ zþ h2

h

� �p ð28Þ

where E1 and E2 are Young’s moduli of the lowest

(z ¼ h1) and top surfaces (z ¼ �h2) of the FGM plate,

respectively. The quantity p is the material parameter.

By solving the simultaneous equations of B11 ¼ 0 and

h ¼ h1 þ h2 yields

h1 ¼
hE2 2 E � 1

� �
þ pþ 1ð Þ pþ 2ð Þ

	 


2 pþ 2ð ÞðE þ pÞ

h2 ¼
hE2 pþ 1ð Þ 2 E � 1

� �
þ pþ 2ð Þ

	 


2 pþ 2ð ÞðE þ pÞ

ð29Þ

Then the coefficients A11 and C11 of the P-FGM

plates evaluated from Eq. (6) are:

A11 ¼ hE2ðE þ pÞ
ð1 � m2Þð1 þ pÞ ð30aÞ
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C11 ¼ E2h
3

12ð1 � v2Þ 12ðE � 1Þ 1

pþ 3
� 2h2

pþ 2
þ

h2

� �2

pþ 1

" #(

þ4 h1

� �3þ h2

� �3
h io

ð30bÞ

Where E ¼ E1=E2, h1 ¼ h1=h, h2 ¼ h2=h are dimen-

sionless quantities. The term E2h
3

12ð1�m2Þ is the stiffness of

homogeneous plate with Young’s modulus E2. Thus

the characteristic of C11 is the stiffness of FGM plates.

4.3.2 S-FGM plates

The Young’s modulus of S-FGM plates can be

calculated by:

EðzÞ ¼ g1ðzÞE1 þ ½1 � g1ðzÞ�E2 for � h2 � z� � h2

þ h=2

ð31aÞ

EðzÞ ¼ g2ðzÞE1 þ ½1 � g2ðzÞ�E2

for � h2 þ h=2� z� h1

ð31bÞ

with g1ðzÞ ¼ 1
2

h2þz
h=2

� p
for �h2 � z� � h2 þ h=2, and

g2ðzÞ ¼ 1 � 1
2

h1�z
h=2

� p
for �h2 þ h=2� z� h1. Hence,

with the aid of B11 ¼ 0 and h ¼ h1 þ h2, the quantities

h1 and h2 of S-FGM plates can be evaluated as:

h1 ¼
h E þ 3
� �

4 E þ 1
� �þ

h E � 1
� �

2 pþ 1ð Þ pþ 2ð Þ E þ 1
� � ð32aÞ

h2 ¼
h 3E þ 1
� �

4 E þ 1
� � �

h E � 1
� �

2 pþ 1ð Þ pþ 2ð Þ E þ 1
� � ð32bÞ

Consequently, the coefficients A11 and C11 of S-

FGM plates expressed in terms of material properties

and the plate thickness are found as:

A11 ¼ hE2ðE þ 1Þ
2ð1 � m2Þ ð33aÞ

C11 ¼ E2h
3

12 1 � v2ð Þ 3ðE � 1Þ
h2

� �2� h1

� �2

pþ 1ð Þ pþ 2ð Þ

" #(

þ12E
1

12
� h1

2
þ h1

� �2
� �

þ12
1

12
� h2

2
þ ðh2Þ2

� ��

ð33bÞ

4.3.3 E-FGM plates

The Young’s modulus of E-FGM plates is specified as

EðzÞ ¼ E2e
Bðzþh2Þ; where Bh ¼ lnðEÞ ð34Þ

With the manner similar with P-FGM plates, the

quantities h1, h2, A11 and C11 of the E-FGM plates are:

h1 ¼ h

1 � E
þ h

lnE
; ð35aÞ

h2 ¼ hE

E � 1
� h

lnE
ð35bÞ

A11 ¼ hE2ðE � 1Þ
ð1 � m2Þ lnðEÞ

ð35cÞ

C11 ¼ E2h
3

12ð1 � v2Þ 12E
ðh1Þ2

lnE
� 2h1

ðlnEÞ2
þ 2

ðlnEÞ3

 !"

�12
ðh2Þ2

lnE
þ 2h2

ðlnEÞ2
þ 2

ðlnEÞ3

 !#

ð35dÞ

5 Numerical results

The dimensions of the FGM plate are taken as a ¼
b ¼ 100 cm and h ¼ 2 cm. The Poisson’s ratio and the

coefficient of thermal expansion are v ¼ 0:3 and

a ¼ 1 � 10�5=�C. The Young’s modulus at the top

(z ¼ �h2) of the FGM plate is fixed to E2 ¼ 21GPa

and that at the bottom of the plate varies according to

the ratio of E2=E1 = 1, 2, 5, 10, 20 and 50, while

Young’s modulus inside the FGM plate is determined

based on the material gradation defined in Sect. 4.3.

The theoretical solutions are obtained according to the

closed-form solutions and compared with the finite

element analysis.

5.1 linear temperature change in the x-direction

Simply assume that the temperature change of the

FGM plate linearly varies in the x-direction from T0 at

x ¼ 0 to Ta at x ¼ a.The distribution of the temper-

ature change Tðx; y; zÞ is expressed as:

Tðx; y; zÞ ¼ THðx; yÞ ¼ Ta � T0ð Þ x

a

� 
þ T0 ð36Þ
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Then Tmn ¼ 8½T0 � Ta cosðmpÞ�=mnp2 with

m; n ¼ 1; 3; 5; :::::. Hence, substituting Tmn into

Eq. (23) gives the solutions of strains, stresses, axial

forces and the bending moments for the FGM plates

with the material of E ¼ EðzÞ subjected to the

temperature change in x-directions. Taking

T0 = 10�C and Ta = 100�C. The strains ex; ey; cxy at

x ¼ a=2, y ¼ b=2 of the FGM plate versus the aspect

ratio a=b for Ta=T0 ¼ 10 is plotted in Fig. 1(a),

implying that strain ex decreases rapidly for increasing

aspect ratio a=b, stain ey increases with an increase of

a=b, and the strain cxy ¼ 0, as expected. The strain ex at

x ¼ a=2, y ¼ b=2 of the FGM plate for Ta=T0 ¼ 10,

30, 100, 200, 500 displayed in Fig. 1(b) shows that the

strain ex vanishes for small as well as large temper-

ature changes as the aspect ratio a=b 	 3. The stresses

rx at the central points of the P-FGM (p ¼ 2), S-FGM

(p ¼ 2), and E-FGM plates for E2=E1 ¼ 1, 2, 5, 10, 20,

50 are illustrated in Fig. 2, showing the decrease of the

compressive stress rx with the increase of E2=E1. This

phenomenon is attributed to that the increase E2=E1

for fixed E2 means the decrease of the overall strength

of the FGM plate, causing a decreases of the stresses.

Moreover, it can be seen from Fig. 2 that the stress

distribution along the thickness direction exhibits EðzÞ
curves for P-, S-, and E-FGM plates. The distribution

of axial force Nx along y-direction at x ¼ a=2 are

plotted in Fig. 3 for different aspect ratio a=b.

Figure 3 reveals that the axial force Nx appears peaks

near the edges of y ¼ 0 and y ¼ b for small aspect

ratio. This event is attributed to the simply-supported

(a) (b)

Fig. 1 The strains at central

point (x ¼ a=2,y ¼ b=2) of

FGM plate under linear

temperature change in the x-

direction versus the aspect

ratio a=b

(a) (b)                   (c)

Fig. 2 The stresses rx at the central point of FGM (p ¼ 2) plate under linear temperature change in the x-direction for E2=E1 ¼ 1, 2, 5,

10, 20, 50 for a P-FGM, b S-FGM, c E-FGM
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edges. Moreover, the axial force Nx increases as a=b

increases.

5.2 Linear temperature change in the z-direction

Assume that the temperature change varies linearly in

the z-direction from Tðx; y; zÞ ¼ T1 at the bottom

surface to Tðx; y; zÞ ¼ T2 at the top surface:

Tðx; y; zÞ ¼ TVðzÞ ¼ T1 � T2ð Þ z� h1

h
þ T1 ð37Þ

Then the quantities N� and M� defined in Eq. (13) are

evaluated as:

N� ¼ ahE2T2

2ð1 � mÞ
ðT þ 1Þðpþ EÞ

ðpþ 1Þ þ pðT � 1ÞðE � 1Þ
ðpþ 1Þðpþ 2Þ

� �

ð38aÞ

M� ¼ ah2E2T2

4ð1 � mÞ
pðT þ 1ÞðE � 1Þ
ðpþ 1Þðpþ 2Þ

�

þ
ðT � 1Þ 3ðp2 þ pþ 2ÞE þ pðp2 þ 3pþ 8Þ

	 


3ðpþ 1Þðpþ 2Þðpþ 3Þ

�

ð38bÞ

for P-FGM plates,

N� ¼ ahE2T2

4ð1 � mÞ ðT þ 1ÞðE þ 1Þ þ pðpþ 3ÞðT � 1ÞðE � 1Þ
2ðpþ 1Þðpþ 2Þ

� �

ð39aÞ

M� ¼ ah2E2T2

8ð1 � mÞ
pðpþ 3ÞðT þ 1ÞðE � 1Þ

2ðpþ 1Þðpþ 2Þ þ ðT � 1ÞðE þ 1Þ
3

� �

ð39bÞ

for S-FGM plates, and

N� ¼ ahE2T2

2ð1 � mÞ
ðT þ 1ÞðE � 1Þ

lnE

�

þ
ðT � 1Þ ðE þ 1Þ lnE � 2ðE � 1Þ

	 


ðlnEÞ2

) ð40aÞ

M� ¼ ah2E2T2

4ð1 � mÞ
ðT þ 1Þ ðE þ 1Þ lnE � 2ðE � 1Þ

	 


lnðE1=E2Þ½ �2

�

þ
ðT � 1Þ ðE � 1Þ½ðlnEÞ2 þ 8� � 4ðE þ 1Þ lnE

h i

ðlnEÞ3

9
=

;

ð40bÞ

for E-FGM plates, where T ¼ T1=T2. By the Substi-

tution Eqs. (38–40) to Eq. (27), one can obtain the

closed-form solutions of the FGM plates with the

material property of E ¼ EðzÞ subjected to the

temperature linearly change in the z-direction.

Taking T1 ¼ 100 �C and T2 ¼ 10 �C, the deflec-

tions at y ¼ b=2 of S-FGM plates for different E2=E1

Fig. 3 The axial forces Nx at points ða=2; yÞ of P-FGM plates

under linear temperature change in the x-direction for different

aspect ratios a=b

Fig. 4 The deflections at the points ðx; b=2Þ of S-FGM plate

under linear temperature change in the z-direction for different

E2=E1 ratios
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ratios are illustrated in Fig. 4. Notably, it can be seen

from Fig. 4 that the deflection w ! 0 as E2=E1 	 5.

This indicates that for FGM plates under temperature

change in the thickness direction, one can choose the

ratio of E2=E1 to a certain value such that no deflection

occurs. This occurrence can be easily achieved by

setting M� ¼ 0. Herein, with the aid of Eq. (39b), the

material steep

E2

E1

¼ 3pðpþ 3ÞðT þ 1Þ þ 2ðpþ 1Þðpþ 2ÞðT � 1Þ
3pðpþ 3ÞðT þ 1Þ � 2ðpþ 1Þðpþ 2ÞðT � 1Þ

ð41Þ

provides M� ¼ 0, and consequently gives zero deflec-

tion for S-FGM plates. Taking p ¼ 2, T ¼ 10 in

Eq. (41) yields E2=E1 ¼ 4:789, closely corresponding

to the result in Fig. 4. Similarly,

E2

E1

¼ pðpþ 3ÞðT þ 1Þ þ 3ð2 þ pþ p2ÞðT � 1Þ
pðpþ 3ÞðT þ 1Þ � pð8 þ 3pþ p2ÞðT � 1Þ

ð42Þ

gives zero deflection for P-FGM plates. The maximum

deflections wmax of the S-FGM plates versus the aspect

ratio is displayed in Fig. 5 for different E2=E1 ratios

and in Fig. 6 for different T1=T2 ratios, revealing that

the maximum deflections wmax increase as the aspect

ratio, or material gradient, or temperature steep

increases.

The stress distributions at the center of P-FGM, S-

FGM, and E-FGM plates under linear temperature

change in the z-direction are represented in Fig. 7,

indicating that the maximum stress of FGM plates,

except E-FGM plates, is in the inner portion of the

FGM plates for E2=E1 6¼ 1 instead of locating at the

top or the bottom surface for the homogeneous plates.

Notably, it also can be seen from Fig. 7 that the

maximum stress of the FGM plates is much smaller

than that of the homogeneous plate (E2=E1 ¼ 1).

Thus, the use of FGM moves the maximum stress from

the top or bottom surface to the inner portion of the

Fig. 5 The maximum deflections of S-FGM plate

(p ¼ 2,T1=T2 ¼ 10) under linear temperature change in the z-
direction versus the aspect ratio a=b for different E2=E1 ratios

(a) (b)

Fig. 6 The maximum deflections of S-FGM plate (p ¼ 2) under linear temperature change in the z-direction versus the aspect ratio a=b
for different T1=T2 ratios, a E2=E1 ¼ 0:1, b E2=E1 ¼ 10
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FGM plate concerned, and significantly reduces the

maximum stress of the plates.

The comparison of the different kind of FGM plates

are illustrated in Fig. 8 for E2=E1 ¼ 2; 5; 20; 50,

respectively. For the objectivity of comparison, the P-

FGM plates with material parameters p ¼ 1=2,p ¼ 1,

and p ¼ 2, and the S-FGM plates with p ¼ 1=2 and

p ¼ 2 are analyzed and discussed. For convenience,

the P-FGM plate with p ¼ 1=2, p ¼ 1 and p ¼ 2 are

simply denoted as P1=2 � FGM, P1 � FGM and

(a) (b) (c)

Fig. 7 The stress distributions at central point of P-FGM plate (p ¼ 2) under linear temperature change in the z direction for different

E2=E1 ratios

Fig. 8 The comparison of

the stress distributions for

the different FGM plates

under linear temperature

change in the z-direction for

T2=T1 ¼ 1=10,

E2=E1 ¼ 2; 5; 20; 50
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P2 � FGM, respectively. And the S-FGM plate with

p ¼ 1=2 and p ¼ 2 are simply symbolized as S1=2 �
FGM and S2 � FGM. Figure 8 depict that the maxi-

mum stresses ofP2 � FGM and S1=2 � FGM plates are

much larger than those of E-FGM,P1=2 � FGM, and

S2 � FGM plates. Therefore, among the comparison,

P2 � FGM and S1=2 � FGM are worse material dis-

tributions. Moreover, as E2=E1 ratio increases, the

stress at the bottom surface (z ¼ h1) decreases.

6 Conclusion

Based on the medium-thick plate assumption, the

closed-form solutions of the simply-supported FGM

plates under thermal loading by Fourier series expan-

sion has been successfully developed and leads to the

following conclusion:

(1) Under the assumption of constant Poisson’s

ratio and constant thermal expansion coeffi-

cient, the closed-form solutions of the FGM

plates with through-the-thickness Young’s

modulus under temperature change in the radial

and thickness directions are evaluated, and give

a complete insight into the thermal–mechanical

behavior of FGM plates.

(2) For the situation that the temperature change

linearly varies in the x-direction, the strains and

axial forces are independent of Young’s mod-

ulus, the bending moments are zero, and the

stresses along the thickness of the FGM plate

have the same shapes as the corresponding

variations of Young’s moduli.

(3) If the temperature change is linear in the z-

direction, the strains and stresses along the

thickness of the FGM plate are functions of z

and zEðzÞ, respectively. And, the axial force and

the bending moment are functions of thermal

axial force N� and thermal bending moment M�,
respectively.

(4) The steep of material gradation for which the

deflection of the FGM plate subjected to tem-

perature change in the thickness direction is zero

can been easily evaluated from the obtained

closed-form solutions.

(5) Among E-FGM,P1=2 � FGM, P1 � FGM,

S1=2 � FGM and S2 � FGM, the maximum

stresses of P2 � FGM and S1=2 � FGM plates

are much larger than those of E-FGM,

P1=2 � FGM, and S2 � FGM plates, and thus

P2 � FGM and S1=2 � FGM are worse material

distributions when the temperature change is

linear in the z-direction.
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