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Abstract The concentric face gear split-torque

transmission system is a new gear mechanism which

integrates the advantages of face gears, split-torque

transmissions and concentric transmissions. The

power transmission through multiple branches

improves the systematic load capacity. However, the

uniformity of load sharing between branches seriously

restricts the service life of the entire system. Accord-

ing to the Newton theorem, a lumped parameter model

coupled with the vibrations of the gear with six

degrees of freedom, the torsion of input shafts, the

meshing of gear pairs, and the bearing supporting is

established. Gear backlash, meshing damping, support

stiffness, time-varying mesh stiffness, and modified

transmission errors are considered in this dynamic

model. The discrete solution of dynamic equations is

obtained by using the numerical integral method of

Runge–Kutta. Natural characteristics and the perfor-

mance of dynamic load sharing are investigated.

Furthermore, the effects of the factors including

torsional stiffness, gear backlash and time-varying

mesh stiffness on dynamic load sharing are explored.

The results indicate that the above-mentioned factors

greatly affect the performance of dynamic load

sharing, and the phenomenon of tooth disengagement

is observed.

Keywords Face gear � Split-torque transmission �
Concentric transmission � Lumped parameter model �
Dynamic load sharing

1 Introduction

The face gear transmission has the properties of high

speed, heavy load and relatively light weight [1, 2]. In

a split-torque transmission, the totally transmitted

power can be expanded by the form of multiple

transmission branches based on the minimum number

of gears [3, 4]. The layout of concentric transmissions

is to overlap the gears as coaxial as possible in limited

space to reduce the overall size [5, 6]. The advantages

of these three aspects are concentrated in a concentric

face gear split-torque transmission system

(CFGSTTS). Thus, the CFGSTTS has the character-

istics of high speed, heavy load, high power density,

which has laid a foundation for its application in
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aviation transmissions and other fields. As for the

multi-branch gear transmission system, failures usu-

ally occur earlier in heavy load branches if loads are

unevenly shared [4]. Therefore, the evenness of load

sharing between branches, especially the dynamic

one, is an important limitation to the service life of a

gear transmission system.

In the previous work of authors [5, 6], the assembly

conditions, time-varying mesh stiffness, transmission

error (TE) excitations, simulation modelling, and

static load sharing of CFGSTTS have been studied.

The highlight of this paper is to analyze the charac-

teristics of dynamic load sharing in CFGSTTS.

1.1 Face gears

In view of the promising prospects and the successful

application of face gears in the main reduction system

of helicopters in North America, some western

European countries called face gears as ‘‘the hope of

the rotor transmission in twenty-first century’’. Sub-

sequently, the research about face gears has quickly

become a hot topic. Litvin et al. [7–9] systematically

probed into the technologies of face gears, including

the tooth surface design, tooth modifications, grinding,

tooth contact analysis, and the static simulation based

on finite element analysis, and they accomplished a

related monograph [10]. Zhou et al. [11] established a

new method to explicitly calculate the enveloping

surface of face gears according to the geometric

characteristics of the shaper tooth surface. In this way,

the problem of solving nonlinear meshing equations

can be avoided. Zschippang et al. [12] elaborated the

generation of face gears simultaneously companying

with helix angles, shaft angles and axis offsets based

on the simulation of enveloping process of face gears.

Further, they carried out the tooth contact analysis of

face gears. Liu et al. [13] presented a new gear

transmission that consist of a planar noncircular gear

and an undulating face gear for transmitting varying

angular velocities. As they mentioned, this kind of

face gears can achieve non-uniform transmission

ratios. Shen et al. [14] proposed an optimization

methodology to generate the tooth surface of face

gears with the method of longitudinal ease-off topog-

raphy on a multi-axis CNC machine, and this

methodology was validated to be suitable for the error

correction of tooth flanks. Litvin and Handschuh et al.

[1, 15] tested the face gear transmission under the

conditions of high speed and heavy load, and the

feasibility of application was demonstrated after mil-

lions of rotation cycles.

1.2 Dynamics of face gear transmissions

In the aspect of face gear dynamics, the researches

mainly focused on the single pair of face gear drive,

while few studies on the face gear transmission system

were carried out. Hu et al. [16, 17] explored the

dynamics of the face gear system that coupled with

translation-rotation vibrations by adopting a lumped

parameter model (LPM) with fourteen degrees of

freedom (DOF), and observed the jump phenomenon,

periodic windows, doubling-periodic bifurcations, and

chaotic behaviors of the system. Moreover, they

researched the effect of mesh stiffness on the dynamic

response of the face gear transmission with backlash

nonlinearities, and pointed out that the dynamic

contact force changed obviously with the forms of

mesh stiffness differing. Lin et al. [18, 19] analyzed

the dynamic efficiency and dynamic response of an

orthogonal face gear system with the impact of

meshing frequencies. They summarized that different

meshing frequencies led to different dynamic

responses, such as chaotic responses, single-cycle

responses and multi-cycle responses. Li et al. [20, 21]

investigated the dynamic behavior of the face gear

with root cracks and constructed an active control

solution of face gear webs. Chen et al. [22] analyzed

nonlinear jumps, chaotic motions, period doubling

bifurcations, and multiple stable solutions of the face

gear drive with profile modifications by employing a

6-DOF model concerning gear backlash, time-varying

mesh stiffness and moment arms. With the consider-

ation of time-varying instantaneous centers, Liu et al.

[23] provided a dynamic model coupled with torsion,

bending and translation for a new type of noncircular

face gear systems, and presented performance

improvement methods to calculate the multi-fre-

quency components in dynamic responses. Zhu et al.

[24] analyzed the nonlinear dynamics of the face gear

drive system with multi-stage engagements by using a

piecewise torsion-bending-translation model. Hu et al.

[25, 26] applied a coupled dynamic model to study the

kinematics and vibration characteristics of the multi-

stage planetary transmission with face gears.
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1.3 Load sharing of split-torque transmissions

In a split-torque transmission system, power is trans-

mitted through multiple branches to expand the load

capacity of the system without weakening strength of

any branch. Theoretically, the transmitted power is

evenly shared by parallel branches. Because of

inevitable backlash and errors in manufacturing and

assembly, the power would be unevenly shared among

multiple branches.

According to whether there is a concentric struc-

ture, split-torque transmissions can be divided into two

categories, namely non-concentric ones and concen-

tric ones. The former is applied earlier and is not the

mainstream anymore. White [3] described a split-

torque transmission that was composed of double-

helical pinions and applied in double-input helicopter

transmission systems, and reported the advantages of

extremely low height and low power loss in this gear

system. Krantz et al. [4] conducted experiments to

study tolerances and clocking angles to adjust the load

sharing in a split-torque transmission with spur

pinions.

The planetary gear is one of the most common types

of concentric split-torque transmission systems. Singh

et al. [27–29] applied a systematic model of finite

element analysis to study the load sharing perfor-

mance of planetary gears. And they experimentally

and theoretically studied the key factors that affect the

gear stress and load sharing in planetary transmissions.

Montestruc [30, 31] numerically calculated the load

sharing coefficient (LSC) between planets in a plan-

etary gear drive with the variables of planet number

and spring constant, and he also studied the influence

of planet pin stiffness on load sharing. Iglesias et al.

[32] researched the quasi-static load sharing of the

planetary transmission with the effect of radial posi-

tioning errors of planets. According to the formation of

interference zones and high stress zones, Li et al. [33]

predicted the reliability of planetary gear trains under

the condition of partial loads. Mo et al. [34] analyt-

ically investigated the dynamic load sharing of

herringbone planetary gears, and studied the influence

mechanism of the flexible support on load sharing

characteristics.

Currently, there is little research on CFGSTTS,

especially on the dynamics. Dong et al. [5, 6] inves-

tigated the assembly conditions, static power flow

directions and load sharing of CFGSTTS, and

proposed a semi-analytical method to compute the

mesh stiffness of the gear pairs in this system.Mo et al.

[35] established a LPM which considered the transla-

tional and torsional vibrations of gears for CFGSTTS.

Unfortunately, the dynamic models in current

researches on CFGSTTS did not mention such

important factors as the torsional flexibility of shafts,

the gear backlash and the time-varying mesh stiffness.

The dynamic load sharing of CFGSTTS was also not

comprehensively analyzed by dissecting power flow

directions, and the DOFs of gear deformation were

incompletely considered. In conclusion, current

researches either studied the static load sharing of

CFGSTTS or ideally analyzed the dynamic load

sharing between input gears, rather than delving into

other more important issues, such as the dynamic load

sharing between face gears.

In this paper, a LPM which simultaneously con-

siders gear backlash, meshing damping, TE excita-

tions, torsional stiffness, support stiffness, and time-

varying mesh stiffness for CFGSTTS is proposed.

Firstly, the TE formula is modified according to the

characteristics of face gear drives. The expressions of

time-varying mesh stiffness and TE excitations in the

dynamic model are introduced. Secondly, the natural

characteristics of CFGSTTS, such as critical speeds

and modals, are explored based on the established

dynamic model. The dynamic load sharing among

multiple branches is researched according to the

power flow direction, and the speed-sweep response

is involved. Then, the proposed model is validated by

comparing the results of the proposed model and the

ADAMS simulation. Finally, the effects of system

parameters including gear backlash, torsional stiff-

ness, and time-varying mesh stiffness on dynamic load

sharing performance are investigated.

2 Modeling

2.1 Structure

A CFGSTTS is composed of two face gears and

several pinions. The two face gears are oppositely

assembled, and the pinions are distributed around the

circumference of the face gears. The tooth surface

parameters of the two face gears are identical, so are

the pinions. The structural characteristics of

CFGSTTS can meet the requirements of multi-input
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and multi-output for transmission mechanisms such as

the gear systems in helicopters. Moreover, the struc-

ture of CFGSTTS is space-saving because of the

concentricity. The gears with same tooth surface

parameters have differences in gear structure, which is

determined by their different roles in the system.

During the transmission process, all pinions rotate in

the same direction around their respective axes, but

two face gears rotate in opposite directions.

Actually, a CFGSTTS can be composed of different

numbers of pinions as long as the conditions of

assembly and non-interference [5] are met. As

demonstrated in Fig. 1, the CFGSTTS mentioned in

this article contains five pinions. Different to idler

gears and tail gear, two input gears are connected to

engines via input shafts.

In the CFGSTTS showed in Fig. 1, power is input

from left input and right input, and output from upper

face gear and tail gear. During the process of power

transmitting, there is a problem whether the load

sharing between branches is even or not. Before the

issue of load sharing is classified and discussed, the

power flow direction should be figured out. If the

assembly conditions in Ref. [5] are met, the positions

of pinions are determined by distribution angles cj
(j = 1, 2, 3, 4, 5), as illustrated in Fig. 2.

2.2 Physical model

The dynamic responses of CFGSTTS are generated

from the torsion of input shafts, the gear meshing, the

supporting of bearings, and the translation, bending

and torsion of gear bodies. In fact, the whole system is

flexible and will deform accordingly. The deformation

coordination and coupling relations are very complex,

so some assumptions are proposed.

(i) The torsional deformation of input shafts, the

meshing deformation of gear pairs, and the

supporting deformation of bearings are con-

sidered. The hubs of face gears and pinions

are assumed to be rigid.

(ii) For different gear pairs, the TE excitation and

mesh stiffness are consistent and time-vary-

ing, while the meshing damping and backlash

are consistent and constant. There may be

phase differences in the transmission error

(TE) excitation and mesh stiffness between

different gear pairs.

(iii) The torsional stiffness of two input shafts is

equivalent constant, so are the supporting

stiffness of five pinions and the supporting

stiffness of two face gears.

As illustrated in Fig. 3, the masses of gears No. 1–7

areMk (k =1, 2…7), the polar inertia of the gears is Jkz,

the diameter moments of inertia about x-axis and y-

axis are Jkx and Jky, respectively, and kkx, kky, kkz
respectively denotes the support stiffness component

in each coordinate direction.

For the ten gear pairs that are composed of five

pinions and two face gears, eij (i = 6, 7; j = 1, 2…5)

represents the TE excitation, and bij means the half

value of backlash. The meshing damping coefficient is

cij, and the time-varying mesh stiffness is kij.

The polar inertia of two input shafts is Jnp (n =1, 2),

the torsional stiffness is knt, and the driving torque is

Tn.

Additionally, the symbol TU is the torque stressed

on upper face gear, the symbol TO denotes the torque

stressed on tail gear, and the symbol Zw (w = p, g) is

the tooth number of the pinion and the face gear.

Left input

Right input

Upper face gear

Lower face gearTail gear

Left idler

Right idler

Fig. 1 Three-dimensional model

Right input

γ4

γ2γ3

γ1

Tail gear

Right idler

Left input

Left idler γ5

Fig. 2 Top view
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2.3 Excitations

There are many types of external and internal excita-

tions in this dynamic model, as illustrated in Fig. 3.

The internal excitations mainly cover the gear back-

lash, the meshing damping, the support stiffness, the

torsional stiffness of input shafts, the time-varying

mesh stiffness, and the time-varying TE excitations.

While the external excitations are mainly the load

torques that act on upper face gear and tail gear. The

highlight of this section is the time-varying mesh

stiffness and the modified TE of face gear drives.

2.3.1 Time-varying mesh stiffness

The mesh stiffness is one of the main sources resulting

in the vibrations of gear systems. In Ref. [6], it has

been proved that the mesh stiffness of the gear pairs in

CFGSTTS is time-varying, periodic and load-depen-

dent. The mesh stiffness obtained by the simulation of

CFGSTTS cannot be used to solve the dynamic

equations, because the stiffness involves the influence

of the system structural deformation, however, this

influence has been already considered in the dynamic

equations. Therefore, the mesh stiffness is figured out

by the simulation of single gear pair instead of the

simulation of the whole system.

Firstly, the CFGSTTS should be simulated to

compute the contact forces of gear pairs in the system,

and the average of the contact forces is calculated as

the load torque Tm. Then, the single pair of face gear is

simulated under the condition of load torque Tm, and

the meshing deformation d can be figured out through

the rotation angles hw (w = p, g) of gears, which is

d = rp*hp- rg*hg. Finally, the mesh stiffness can be
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e64

e74

e65

e75
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k4yk2y

k2x

k6x
k6y
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Fig. 3 Physical model
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calculated as Tm/d. The details of the finite element

simulation of gears are introduced in Ref. [6].

In this dynamic model, the periodic mesh stiffness

is converted into the form of Fourier series.

kij tð Þ ¼
X1

f¼0

af sin jxm t � /j þ wj

� ��

þbf cos jxm t � /j þ wj

� ��
ð1Þ

Here, kij (i = 6, 7; j = 1, 2…5) is the mesh stiffness

of gear pairs, and af and bf are the coefficients of

harmonic components. /j is the phase angle which is

related to the distribution angle, and wj is the phase

angle related to the face gear position. xm is the

meshing frequency. In Fig. 2, tail gear is taken as the

datum, and the phase angles can be formulated as

/j ¼
Zgcj
2p

T

wj ¼
0 upper face gear
T=2 lower face gear

� ð2Þ

where T is the meshing period, and cj (j = 1, 2,…, 5) is

the distribution angle illustrated in Fig. 2.

One of the pinions should be selected as the

referential gear at first, and its phase angle is defined as

0. Then, the phase angles of other pinions can be

calculated by using Eq. (2).

2.3.2 Modified transmission error of face gears

The TE is defined as the difference between the actual

angular position of the driven gear and where it would

be if all gears were perfect [36]. Generally, the TE is

modelled as a periodic displacement excitation along

the meshing line.

In a spur gear drive, both the angular displacements

of the driving gear and the driven gear function along

the meshing line, as showed in Fig. 4a, and the TE can

be expressed as their difference. However, in a face

gear drive, the angular displacement of the pinion is

tangential along the pitch circle, and the angular

displacement of the face gear acts along the peripheral

direction, as demonstrated in Fig. 4b.

Actually, the face gear has no meshing line, so the

TE of the face gear drive should be tangential along

the pitch circle of the pinion. The TE formula of face

gear drives should be modified and expressed as

C¼rphp� rghg cos a ð3Þ

Here, the symbol Cmeans the TE, and the symbol a
is the pressure angle. rp and rg respectively represent

the moment arms of the driving gear and the driven

gear. The symbols hp and hg represent the rotational

angles of the driving gear and the driven gear,

respectively.

Both the definitions of dynamic transmission error

(DTE) and unloaded TE of face gear drives are

formulated in Eq. (3). Differently, the unloaded TE is

an internal excitation, and can be obtained in advance

according to the finite element simulation under the

condition of a slight load. In the calculation of

unloaded TE excitations, the rotation angles hp and

hg can be extracted from the finite element simulation,

which is introduced in Ref. [6]. However, the DTE is a

response that can only be calculated after the dynamics

equations are solved.

Similar to the mesh stiffness, the time-varying

unloaded TE is also discretized into the Fourier series

in Eq. (1) whose high-order harmonics can be filter out

according to specific accuracy. For the same gear pair,

(a) (b)Fig. 4 Schematic diagrams

of TEs (a) Spur gear drive
(b) Face gear drive
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the phase of unloaded TE is consistent with that of the

mesh stiffness.

2.4 Dynamic model

Ref. [35] researched the translational vibration and the

torsional vibration of CFGSTTS based on a LPM.

However, some important factors such as torsional

flexibility of shaft, gear backlash and time-varying

meshing stiffness are not considered. The dynamic

load sharing of the system is not fully analyzed by

dissecting the power flow direction, and the deformed

DOFs considered are incomplete.

In the dynamic model of CFGSTTS in this paper,

each gear has three translational DOFs that are xk, yk,

zk (k =1, …7), and three rotational DOFs that are hkx,
hky, hkz, as demonstrated in Fig. 5. As the torsional

deformation of two input shafts is considered, there

should be two rotational DOFs which are represented

by the symbol hnp (n=1, 2).
Consequently, there are as many as 44 DOFs in this

dynamic model, which forms the generalized coordi-

nate system as presented below.

q ¼ x1; y1; z1; h1x; h1y; h1z; x2; y2; z2; h2x; h2y; h2z
�

. . . ; x7; y7; z7; h7x; h7y; h7z ; h1p ; h2p
�T

ð4Þ

According to the definition, the meshing deforma-

tion d of a face gear drive should be reflected as the

difference between the DTE and the unloaded TE.

d ¼ C� e ð5Þ

Here, the symbol C denotes the DTE in Eq. (3), and

the symbol e is the unloaded TE which is calculated

based on the errors of geometric model and gear

backlash. In general, the unloaded TE is much smaller

than the DTE, so the meshing deformation is basically

equal to the DTE. To demonstrate the relationship

between the meshing deformation d in Eq. (5) and the

generalized coordinate related to the DOF in Eq. (4),

the intermediate coordinate system Sij (xij, yij, zij)

(i = 6, 7; j =1, 2…5) is set up as Fig. 6.

The transformation matrix between the intermedi-

ate coordinate Sij and the generalized coordinate in

Eq. (4) is

x6j
y6j
z6j

2
4

3
5 ¼

cos cj � sin cj 0

sin cj cos cj 0

0 0 1

2
4

3
5

x6
y6
z6

2
4

3
5 ð6Þ

x7j
y7j
z7j

2
4

3
5 ¼

cos cj sin cj 0

� sin cj cos cj 0

0 0 1

2
4

3
5

x7
y7
z7

2
4

3
5 ð7Þ

Where cj (j = 1, 2, …, 5) is the distribution angle

illustrated in Fig. 2.

According to Eqs. (3), (5), (6) and (7), the meshing

deformation can be expressed by the generalized

coordinate in Eq. (4) as

d6j ¼ xj� cos cjx6� sin cjy6ð Þ½ �cosa
þ yjþ z6ð Þ sin aþ rphj� rgh6 cos a� e6j

ð8Þ

d7j ¼ xj� cos cjx7þ sin cjy7ð Þ½ � cos a
þ yj� z7ð Þ sin aþ rphj� rgh7 cos a� e7j

ð9Þ

Here, j (j = 1, 2…, 5) represents the pinion number.

The unloaded TEs e6j and e7j in Eqs. (5, 8 and 9)

should be consistent with the TE excitations in Fig. 3.

Besides, the torsional deformation angles (dnh =1, 2) of
the input shafts are
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z4z1
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z7 x5
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z7

z6

y1,2

z1,2 x1,2
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θiz
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θ7zθ1z
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θ1y

θ4x

θ4z
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θ2z
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θ5x

θ5y
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θ3z
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θ7x

θ6x

θ7yθ6y

Fig. 5 Generalized

coordinate
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dnh ¼ hnp� hnz ð10Þ

where the symbols hnp and hnz are the generalized

coordinate in Eq. (4).

Because of the existence of gear backlash, the

actual meshing deformation dij (i = 6, 7; j = 1, 2…5)

should be replaced by the non-linear displacement

function f(dij) [36], and can be formulated as

f ðdijÞ ¼
dij� bij dij� bij
0 dijj j\bij

dijþ bij dij� � bij

8
<

: ð11Þ

Correspondingly, the dynamic contact force Fij [37]

of a gear pair can be obtained based on the mesh

stiffness kij and the meshing damping cij.

Fij ¼
kij dij� bijð Þ þ cij _dij dij� bij
0 dijj j\bij
kij dijþ bijð Þ � cij _dij dij� � bij

8
<

: ð12Þ

The dynamic equations of the gears numbered 1–7

in Fig. 3 can be established based on force analysis in

the generalized coordinate in Eq. (4). In the investi-

gation of the input terminals, the force analysis of an

input shaft and an input gear is carried out separately.

Each translational and angular DOF of gears respec-

tively corresponds to an equilibrium equation.

The input gear without shaft is not directly driven

by input power and achieves dynamic balance under

the combined action of contact forces, damping forces,

supporting forces and inertia forces. Thus, the

dynamic equations of left and right input gears are

Eqs. (13 and 14), respectively.

M1€x1þ cosaðc61 _d61þ c71 _d71Þþ cos a k61f ðd61Þþk71f ðd71Þ½ � þ k1xx1¼0

M1€y1þ sin aðc61 _d61þ c71 _d71Þþ sin a k61f ðd61Þþk71f ðd71Þ½ � þ k1yy1¼0

M1€z1þ k1zz1¼ 0

J1x€h1x ¼ 0

J1y€h1y ¼ 0

J1z€h1zþ rpðc61 _d61þ c71 _d71Þþrp k61f ðd61Þþk71f ðd71Þ½ � � k1tðh1p� h1zÞ¼0

8
>>>>>><

>>>>>>:

ð13Þ

M2€x2þ cosaðc62 _d62þ c72 _d72Þ + cosa k62f ðd62Þþk72f ðd72Þ½ � þ k2xx2¼0

M2€y2þ sin aðc62 _d62þ c72 _d72Þ + sina k62f ðd62Þþk72f ðd72Þ½ � þ k2yy2¼0

M2€z2þ k2zz2¼ 0

J2x€h2x¼ 0

J2y€h2y¼ 0

J2z€h2zþrpðc62 _d62þ c72 _d72Þ þ rp k62f ðd62Þþk72f ðd72Þ½ � � k2tðh2p� h2zÞ¼ 0

8
>>>>>><

>>>>>>:

ð14Þ
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In Eqs. (13 and 14), the lateral rotation of the two

input gears is not affected by the moments, so the

bending vibrations are only affected by the inertia

forces.

Similarly, the dynamic equations of left idler and

right idler can be obtained, and respectively expressed

by Eqs. (15 and 16). However, the tail gear is stressed

by a small load torque, and its dynamic equation is

Eq. (17).

The axial vibrations of two face gears are affected

by contact forces and damping forces, which is

different from five pinion gears. Moreover, upper face

gear bears a large load torque because it outputs the

main power of the system. Thus, the dynamic equa-

tions of two face gears are presented as Eqs. (18 and

19), respectively.

M3€x3þ cosaðc63 _d63þ c73 _d73Þ + cosa k63f ðd63Þþk73f ðd73Þ½ � þ k3xx3¼0

M3€y3þ sin aðc63 _d63þ c73 _d73Þ + sina k63f ðd63Þþk73f ðd73Þ½ � þ k3yy3¼0

M3€z3þ k3zz3¼ 0

J3x€h3x¼ 0

J3y€h3y¼ 0

J3z€h3zþ rpðc63 _d63þ c73 _d73Þþrp k63f ðd63Þþk73f ðd73Þ½ �¼0

8
>>>>>><

>>>>>>:

ð15Þ

M4€x4þ cosaðc64 _d64þ c74 _d74Þ + cosa k64f ðd64Þþk74f ðd74Þ½ � þ k4xx4¼0

M4€y4þ sin aðc64 _d64þ c74 _d74Þ + sina k64f ðd64Þþk74f ðd74Þ½ � þ k4yy4¼0

M4€z4þ k4zz4¼ 0

J4x€h4x¼ 0

J4y€h4y¼ 0

J4z€h4zþ rpðc64 _d64þ c74 _d74Þþrp k64f ðd64Þþk74f ðd74Þ½ �¼0

8
>>>>>><

>>>>>>:

ð16Þ

M5€x5þ cosaðc65 _d65þ c75 _d75Þ + cosa k65f ðd65Þþk75f ðd75Þ½ � þ k5xx5¼0

M5€y5þ sin aðc65 _d65þ c75 _d75Þ + sina k65f ðd65Þþk75f ðd75Þ½ � þ k5yy5¼0

M5€z5þ k5zz5¼ 0

J5x€h5x¼ 0

J5y€h5y¼ 0

J5z€h5zþrpðc65 _d65þ c75 _d75Þ þ rp k65f ðd65Þþk75f ðd75Þ½ �¼ � TO

8
>>>>>><

>>>>>>:

ð17Þ
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Two input shafts tend to balance under the

combined action of the driving torques, the inertial

forces and the reaction torques from input gears. Their

dynamic equations are expressed by Eq. (20).

J1p€h1pþk1tðh1p� h1zÞ¼T1
J2p€h2pþk2tðh2p� h2zÞ¼T2

�
ð20Þ

After the Eqs. (13–20) are jointly solved, the

dynamic response of each DOF can be obtained. Then,

the dynamic contact force of each gear pair can be

achieved, and the load sharing can be analyzed.

Generally, the LSC [5] is applied to measure the

uniformity of load sharing in a split-torque transmis-

sion system, which is defined as

e¼NMaxðrpF1Þ
PN

1¼1

rpF1

ð21Þ

whereN is the path number of power transmission, and

Ff is the contact force of a gear pair.

3 Numerical examples

The geometric parameters and the structural parame-

ters of CFGSTTS in this paper are presented in

Table 1. Based on these parameters, the geometric

model of CFGSTTS can be established.

As demonstrated in Table 2, the mass and inertia of

each gear can be measured directly in the CATIA

software based on the geometric model. Besides, the

support stiffness can be calculated in KissSoft soft-

ware according to the working condition presented in

Table 3. Referring to current experience and Ref. [16],

the backlash value of each gear pair is temporarily set

at 20 um.

M6€x6� cosaðc61 _d61cosc1þ c62 _d62cosc2þ c63 _d63cosc3þ c64 _d64cosc4þ c65 _d65Þ�
cos a cos c1k61f ðd61Þþ cos c2k62f ðd62Þþ cos c3k63f ðd63Þþ cos c4k64f ðd64Þþk65f ðd65Þ½ �þk6xx6¼ 0

M6€y6þðc61 _d61sinc1þ c62 _d62sinc2þ c63 _d63sinc3þ c64 _d64sinc4þ c65 _d65Þcosaþ
cos a sin c1k61f ðd61Þþ sin c2k62f ðd62Þ þ sin c3k63f ðd63Þþ sin c4k64f ðd64Þ½ �þk6yy6¼ 0

M6€z6 + sinaðc61 _d61þ c62 _d62þ c63 _d63þ c64 _d64þ c65 _d65Þþ
sin a k61f ðd61Þþk62f ðd62Þ þ k63f ðd63Þþk64f ðd64Þ þ k65f ðd65Þ½ �þk6zz6¼0

J6x€h6x¼0

J6y€h6y¼0

J6z€h6z� rgðc61 _d61þ c62 _d62þ c63 _d63þ c64 _d64þ c65 _d65Þcosa�
rg cos a k61f ðd61Þþk62f ðd62Þþk63f ðd63Þþk64f ðd64Þþk65f ðd65Þ½ �¼ � TU

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð18Þ

M7€x7� cosaðc71 _d71cosc1þ c72 _d72cosc2þ c73 _d73cosc3þ c74 _d74cosc4þ c75 _d75Þ�
cos a cos c1k71f ðd71Þþ cos c2k72f ðd72Þþ cos c3k73f ðd73Þþ cos c4k74f ðd74Þþk75f ðd75Þ½ �þk7xx7¼ 0

M7€y7� cosaðc71 _d71sinc1þ c72 _d72sinc2þ c73 _d73sinc3þ c74 _d74sinc4þ c75 _d75Þ�
cos a sin c1k71f ðd71Þþ sin c2k72f ðd72Þþ sin c3k73f ðd73Þþ sin c4k74f ðd74Þ½ �þk7yy7¼ 0

M7€z7� sinaðc71 _d71þ c72 _d72þ c73 _d73þ c74 _d74þ c75 _d75Þ�
sina k71f ðd71Þþk72f ðd72Þþk73f ðd73Þþk74f ðd74Þþk75f ðd75Þ½ �þk7zz7¼ 0

J7x€h7x¼0

J7y€h7y¼0

J7z€h7z� rgðc71 _d71þ c72 _d72þ c73 _d73þ c74 _d74þ c75 _d75Þcosa�
rg cos a k71f ðd71Þþk72f ðd72Þ þ k73f ðd73Þþk74f ðd74Þ þ k75f ðd75Þ½ �¼0

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð19Þ
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As mentioned in Sect. 2.3.2, the mesh stiffness and

TE excitations of the gear pairs in CFGSTTS are time-

varying. To improve the numerical accuracy of the

dynamic model as much as possible, such time-

varying properties should be considered. With refer-

ence to the method introduced in Sect. 2.3.1, the mesh

stiffness of face gear pairs in CFGSTTS under the

working condition in Table 3 is worked out, as

demonstrated in Fig. 7.

In Fig. 7, the black dotted line represents the mesh

stiffness with standard phase angle, and corresponds to

the gear pairs numbered 61, 62, 63, 64 and 75 in Fig. 3.

The green solid line means the mesh stiffness with

half-period phase angle corresponding to the gear

pairs numbered 71, 72, 73, 74 and 65. The average

value of the mesh stiffness in Fig. 7 is

4.1178 9 108 N/m, and the harmonic components in

Fig. 8 are figured out based on Eq. (1).

TE excitations of gear pairs can be calculated

according to the method in Sect. 2.3.2. After the

unloaded TE excitation is expanded into Fourier

Table 1 Geometric

parameters of CFGSTTS
Parameters Pinion Face gear

Modulus m (mm) 3.75

Pressure angle a (�) 25

Shaft angle g (�) 90

Helical angle b (�) 0

Distribution angle c1, c2, c3, c4, c5 (�) 245.455/114.545/303.375/56.643/0

Tooth number Zp/Zg 23 143

Tooth width B (mm) 40 35 (R280/r245)

Table 2 Dynamic parameters of CFGSTTS

Parameters Values

Material density q (kg.m-3) 7840

Mass of pinion M1, M2, M3, M4, M5 (kg) 1.515

Mass of upper face gear M6 (kg) 31.295

Mass of lower face gear M7 (kg) 23.784

Polar inertia of pinion J1z, J2z, J3z, J4z, J5z (kg.m
2) 0.002

Diameter moment of inertia of pinion J1v, J2v, J3v, J4v, J5v (v = x, y) (kg.m
2) 0.002

Polar inertia of input shaft J1p, J2p (kg.m
2) 0.0001

Moment of inertia of upper face gear J6x, J6y, J6z (kg.m
2) 0.712, 0.712, 1.407

Moment of inertia of lower face gear J7x, J7y, J7z (kg.m
2) 0.811, 0.811, 1.604

Moment arms of pinion and face gear rp / rg (m) 0.039 / 0.243

Backlash of gear pair 2bij (i =6, 7; j =1, 2, …5) (m) 20 9 10–6

Support stiffness of pinion kjx, kj y, kjz (j = 1, 2, …5) (N/m) 6.5 9 107, 6.5 9 107, 8.5 9 106

Support stiffness of face gear kix, kiy, kiz (i =6, 7) (N/m) 8.7 9 109, 8.7 9 109, 8.0 9 108

Torsional stiffness of input shaft k1t, k2t (N.m/rad) 6.0 9 105

Table 3 Rated working condition of CFGSTTS

Parameters Values

Rated input speed n1, n2 (rpm) 7600

Rated power of single input P1, P2 (kW) 1700

Rated output power of upper face gear PU (kW) 2500

Rated output power of tail gear PO (kW) 900

Driving torque of single input T1, T2 (N m) 2136

Load torque of upper face gear TU (N m) 19,530

Load torque of tail gear TO (N m) 1130
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series, all the higher-order components except the

0-order and 1-order harmonic components are filtered

out. The TE excitation of the gear pair numbered 61 in

Fig. 3 is e61 = em1 ? ep1cos[xm (t-/ j ? wj)]. Here,

the average em1 is 20 9 10–6 m, and the peak ep1 is

25 9 10–6 m. The average and peak of the TE

excitations of other gear pairs are coincide with e61,

and the phase of the TE excitation is consistent with

that of mesh stiffness.

According to Refs. [38–41], the meshing damping

cij (i = 6, 7; j = 1, 2…5) is formulated as:

cij ¼ 2fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

1
�
mp þ 1

�
mg

s
ð22Þ

where fm denotes the mesh damping ratio that is an

empirical value, k0 is the average of time-varying

mesh stiffness, and mw (w = p, g) represents the mass

of the driving gear and driven gear, respectively.

Kahraman et al. [36] and Zhou et al.[39] set a value

0.02 as the meshing damping ratio fm for the spur gear

pairs under general meshing conditions, and they

stated that the ratio is as large as 0.05 under special

working conditions. Omar et al. [40] assumed fm-
= 0.03 for gear meshing in a spur gearbox. Chen et al.

[38] assigned a value 0.045 to fm and obtained the

meshing damping c & 1000 N.s/m in a bevel gear

system. Xiao et al. [41] argued that fm usually varied

from 0.05 to 0.08. In this paper, fm is assigned as 0.025

for face gear drives, and the symbolmg is calculated as

the average of the mass of two face gears. By

substituting k0 = 4.1178 9 108 N/m, mp = 1.515 kg

and mg = 27.540 kg into Eq. (22), the meshing

damping c is calculated as 1215.9 N.s /m, and the

integer value is 1200 N.s /m.

3.1 Natural characteristics

The natural characteristics in modal domain are first

analyzed to facilitate the comparison with the

responses in time domain later. The natural charac-

teristics of CFGSTTS include natural frequencies,

critical speeds and modal shapes, which are deter-

mined by the properties of mass and stiffness, rather

than backlash or load. The frequency equation is

det K � x2M
� �

¼ 0 ð23Þ

Here, the symbols K and M are respectively the

stiffness matrix and the mass matrix, whose expres-

sions are introduced in Ref. [16]. Besides, the mesh

stiffness component in stiffness matrix is substituted

by the average value rather than the time-varying

stiffness. Based on the parameters in Table 1 and

Table 2, the eigenvalues corresponding to 44-order

DOFs in Eq. (4) can be directly calculated by using the

eigenvalue function command in MATLAB, and the

heavy roots should be deleted. Then, the natural

frequencies and critical speeds in Table 4 can be

obtained correspondingly.

The results in Table 4 indicate that the rated speed

in Table 3 (7600 rpm) is distinct from all critical

speeds, and the rated speed is between the critical

speeds of the 10th and the 11th orders. In addition, the
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modal shapes corresponding to the natural frequencies

in able 4 are obtained, and one of the modal shapes of

each type is selected as the representative, as showed

in Fig. 9.

In Fig. 9, the abscissa represents the DOFs in

Eq. (4). For instance, the 1th order of abscissa refers to

x1 and the 44th order of abscissa corresponds to h2p.
The ordinate is the ratio of each modal amplitude to

the maximummodal amplitude. In general, the modals

of CFGSTTS mainly contain translation, torsion, and

translation-torsion coupling. Torsion refers to the

rotation around the gear axis.

In translational modals, the translation deforms

largely and the torsional deformation is close to 0.

There are not only single-gear modals, but also some

coupled translational modals for multiple pinions. The

1th natural frequency in Table 4 corresponds to the

respective translational modals of the five pinions, and

Fig. 9a presents the translational modal of left input.

The 8th natural frequency in Table 4 corresponds to

the coupled translational modal of the five pinons in

Fig. 1. In the coupled translational modal illustrated in

Fig. 9b, the modal amplitude of the left pinion is larger

than that of the right pinion.

In torsional modals, the torsion deforms largely and

the translational deformation is close to 0. The coupled

torsional modals consist of multiple gears and input

shafts, which correspond to the natural frequencies

from 13 to 18th in Table 4. For instance, Fig. 9c

illustrates the torsional modal coupled with two input

shafts and two input gears, which corresponds to the

18th natural frequency in Table 4. As Fig. 9c shows,

the modal deformation of the shaft is significantly

greater than that of the gear. Figure 9d shows the

torsional modal coupled with two input shafts and five

pinions, corresponding to the 17th natural frequency in

Table 4. The amplitude of torsional modal of tail gear

and two idler gears in Fig. 9d is more obvious than that

of two input gears. Besides, the results reveal that

input shafts and input gears deform simultaneously in

torsional modals.

Additionally, the modals coupled with translation

and torsion have the largest number of orders, and the

order numbers are from 2 to 7th and from 9 to 12th in

Table 4. These coupled modals deform obviously both

in translation and torsion. Fig. 9e and Fig. 9f are the

translation-torsion modals of seven gears and two

input shafts, corresponding to the 13th and 18th

natural frequencies in Table 4, respectively. The

former involves only translation for face gears, but

the latter involves both translation and torsion for face

gears. Obviously, the torsional deformation in these

coupled modals is larger than the translational

deformation.

In conclusion, the high critical speeds

([ 10,000 rpm) mainly correspond to torsional mod-

als, while the low critical speeds (\ 1500 rpm) and the

critical speed 2719.5 rpm in Table 4 mainly corre-

spond to translational modals. Other critical speeds in

Table 4 are mainly associated with coupled modals of

translation and torsion.

3.2 Dynamic responses and load sharing

According to the parameters in Table 1, Table 2, and

Table 3, the time-domain numerical solution of the

dynamic equations in Sect. 2.4 can be obtained by

using the integration method of Runge–Kutta. Accord-

ing to the authors’ statistics, the dynamic equations

with single rotation speed and 200 cycles can be

solved once every 5 min, and each cycle has 100

Table 4 Critical speeds and natural frequencies

Orders (xith/nith) i = 1, 2… Frequencies (Hz) Speeds (rpm)

0 0 0

1 377.0 983.4

2 745.2 1944.1

3 747.5 1950.0

4 751.3 1959.8

5 756.6 1974.0

6 770.2 2009.3

7 889.5 2320.4

8 1042.5 2719.5

9 1559.8 4069.0

10 2679.5 6990.0

11 3093.8 8070.7

12 3123.9 8149.2

13 5445.1 14,204.6

14 5475.0 14,282.6

15 5508.7 14,370.7

16 5583.0 14,564.3

17 5702.9 14,877.2

18 12,669.3 33,050.3
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Fig. 9 Modal shapes (a) Translation of single pinion (b) Translation of pinions (c) Torsion of shafts and input gears (d) Torsion of

shafts and pinions (e) Translation-torsion coupling of shafts and gears (f) Translation-torsion coupling of shafts and gears
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discrete points. According to the responses of 44

DOFs, the DTE and the meshing deformation of each

gear pair in CFGSTTS can be figured out, and it is

found that the average difference between the former

and the latter is within 4%. The DTEs of ten gear pairs

are elaborated in Fig. 10, and the torsional angles of

two input shafts are presented in Fig. 11.

As presented in Fig. 10, under the rated working

condition in Table 3, the DTEs of all gear pairs in

CFGSTTS tend to periodic fluctuations. Thus, the

system enters into a stable state of vibration. The

DTEs of different gear pairs have phase differences,

which is determined by the phases of mesh stiffness

and TE excitations.

In Fig. 10a and c, the DTEs are fluctuating between

5.0 9 10–5 m and 15.0 9 10–5 m when input gears

mesh with upper face gear. The DTEs in Fig. 10b and

d are varying between 1.0 9 10–5 m and

8.0 9 10–5 m when input gears mesh with lower face

gear. Hence, the excitation of each input gear meshing

with upper face gear is greater than that with lower

face gear, because the upper face gear bears a heavy

load.

Fig. 10e–h, show that the DTEs of the four gear

pairs that are composed of two face gears and two idler

gears change from 0 to 4.0 9 10–5 m. Apparently, the

vibrations of two idler gears are less than that of two

input gears because the idler gears are not driven or

loaded directly by torques.

In Fig. 10i, the DTE of the meshing between tail

gear and upper face gear fluctuates from

-4.0 9 10–5 m to 2.0 9 10–5 m, and the DTE

appears the phenomenon of positive and negative

signs, which indicates that the contact force and power

transmission between the driving gear and the driven

gear in this gear pair have changed directions. As

demonstrated in Fig. 10j, the DTE of the meshing

between tail gear and lower face gear is varying

between-3.0 9 10–5 m and-8.0 9 10–5 m. In view

of the average value, the DTE of lower face gear is

larger than that of upper face gear. The larger average

DTEs result from the larger forces. Thus, tail gear is

heavily forced by lower face gear, rather than upper
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face gear, which indicates that the vibration of tail gear

meshing with lower face gear is greater than that with

upper face gear.

In conclusion, the DTEs of all gear pairs in

CFGSTTS basically retain at the order of magnitude

of 10–5 m. Only the DTEs of the meshing between

input gears and upper face gear reach the order of

magnitude of 10–4 m in a short time. The vibrations of

input gears are larger than that of idle gears, which

reflects the joint excitation effect of driving torques

and load torques. Additionally, the vibration of tail

gear meshing with upper face gear is less than that with

lower face gear, while the other pinions are the

opposite, because tail gear has a direct power output.

In Fig. 11, the torsional angles of two input shafts

are basically consistent and keep the fluctuations in

ranging from 3.5 9 10–3 rad to 3.7 9 10–3 rad. The

torsional deformation is affected by the torsional

stiffness of input shafts, which will be further studied

in the discussion below.

The four-period dynamic contact force of each gear

pair in CFGSTTS, as illustrated in Fig. 12, can be

calculated by substituting the DTEs in Fig. 10 into

Eqs. (8, 9, 11 and 12).

Curves in Fig. 12 denote that the dynamic contact

forces are periodic and stable, and their values are the

same order of magnitude that is 104 N, which prelim-

inarily indicates that the load sharing between gear

pairs in CFGSTTS is relatively even. When a pinion

simultaneously meshes with two face gears, there is a

semi-periodic phase difference between the two

contact forces, which is determined by the phase of

mesh stiffness.

The peak of the contact force between upper face

gear and either of input gears is about 4.8 9 104 N,

while the peak of the contact force between lower face

gear and either of input gears is about 3.0 9 104 N.

Thus, for the same input gear, its contact force stressed

by upper face gear is greater than that by lower face

gear. Because upper face gear is stimulated by a high-

power load torque.

For left idler or right idler, the contact force stressed

by upper face gear is equal to that stressed by lower

face gear, and the peak force is around 1.3 9 104 N.

Both idler gears are not driven or loaded by torques,

each idler gear needs to be kept in balance under the

action of the contact forces stressed by two face gears.

Besides, there is a short period of time in each cycle

when the contact force equals 0 N, that is, idler gear

separates from meshing with face gears. It is tenta-

tively inferred that this phenomenon may be caused by

gear backlash, which will be verified in Sect. 3.3.

There is a big difference between the two contact

forces that are generated from tail gear respectively

meshing with upper and lower face gears. The peak of

contact force generated by upper face gear is about

1.5 9 104 N, and peak of contact force generated by

lower face gear is nearly 3.1 9 104 N. Moreover, the

contact force between tail gear and upper face gear

tends to change direction, which is similar to the result

in Fig. 10 (i). Therefore, only part of the power

transferred from lower face gear to tail gear is

delivered to upper face gear, and the rest of the power

is directly output from tail gear.

To sum up, the contact forces of input gears are

slightly larger than that of idler gears and tail gear,

which is consistent with the conclusions of the static

research in Ref. [5]. Particularly, the power transmis-

sion direction between tail gear and upper face gear is

changing. Based on the method in Ref. [5], the

direction of dynamic power flow in CFGSTTS is

expressed in Fig. 13.

As the power flow direction in Fig. 13 shows, there

are twomulti-branch routes for the power transmission

in CFGSTTS. One route is that the power of two input

gears is directly transferred to upper face gear, and

then is to be output. The other route is that the power of

input gears is transferred to lower face gear, and then

to upper face gear through tail gear and two idler gears,

and the tail gear directly output a small amount of

power. During a short period of time, there is a reverse
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Fig. 11 The angles of torsional deformation of input shafts (a) left input shaft (b) right input shaft
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direction of power flow between tail gear and upper

face gear.

To avoid local damages caused by overload, it is

necessary to conduct the investigation of dynamic load

sharing among different branches. According to the

power flow direction in Fig. 13, the CFGSTTS has

three cases of load sharing. (i) The load sharing

between upper and lower face gears that simultane-

ously mesh with the same input gear. (ii) The load

sharing between two input gears. (iii) The load sharing

between left and right idler gears. The cases of load

sharing are basically accordant with static ones in Ref.

[5].

According to the definition of LSC in Eq. (21), the

dynamic LSCs of CFGSTTS are calculated, as

demonstrated in Fig. 14.

According to the curves in Fig. 14, the LSC

between two input gears is basically equal to 1.0. It

is indicated that the load sharing between two input

gears is acceptable.

In the curve of LSC between two idlers, the

coefficient also equals 1.0 at most of the periods.

However, in a few periods, the LSC has no real value,

because the two idlers are not stressed, thus it will not

result in the problem of uneven load sharing. It can be

concluded that the load sharing between two idlers is

relatively ideal.

Additionally, the LSC between two face gears

continuously fluctuates from 1.1 to 1.86, and the large

values of LSC indicate the poor performance of load

sharing. Therefore, the most serious problem of

dynamic load sharing is not between two input gears

or between two idler gears, but between two face gears

during the simultaneously meshing with the same

input gear. It can be predicted that damage is most

likely to generate in the meshing area between power-

input gears and power-output gears in CFGSTTS due

to the large stress that exceeds the strength limit. This
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prediction is also applicable to other multi-branch gear

systems.

Actually, a gear transmission has to alternatively

start and stop, which means that the gears operate at

different speeds. In the design stage of a mechanical

system, it is necessary to select a rated working

condition and set reasonable parameters such as the

rated speed. To study the characteristics of dynamic

load sharing at different input speeds, 400 speeds are

set between 200 rpm and 20,000 rpm for analysis, and

the root mean square (RMS) of DTE of gear pairs is

figured out, as presented in Fig. 15.

In Fig. 15, the RMS curves of DTEs are fluctuant as

the input speed sweeps, and the ten curves change in

synchronization. Peaks appear at some special speeds,

such as 993 rpm,1986 rpm, 4021 rpm, 7097 rpm and

14,244 rpm. These speeds are nearly close to some

critical speeds in Table 4, for instance, 993 rpm &
n1th, 1986 rpm & n5th,4021 rpm & n9th,7097 rpm

&n10th,and 14,244 rpm &n14th. This phenomenon is

resonance.

The extreme points of the ten RMS curves are

consistent. However, not all the critical speeds in

Table 4 appear extreme values on the RMS curves,

which means not all natural frequencies are excited.

Even the RMS curves of different DTEs differ slightly

in resonance peaks. For instance, when the speed is

around 7097 rpm, the resonance peaks are not excited

on the four RMS curves d63, d73, d64, and d74, while the
resonance peaks appear on the rest six RMS curves.

These four RMS curves correspond to the gear pairs

formed by idler gears, which reflects the different

dynamic characteristics between idler gears and other

pinions.

3.3 Verification

The multi-body simulation in ADAMS software is

employed to verify the LPM proposed in this paper. As

presented in the dynamic simulation model of

CFGSTTS in Fig. 16, the rotation pairs around their

axes are established for seven gears, and ten contact

pairs are established to simulate the meshing of ten

gear pairs that formed by five pinions and two face

gears. The time-varying mesh stiffness and the

meshing damping coefficient are set according to the

parameters in Table 2, the penetration depths of

contact pairs are equal to 0.1 mm, and the force

exponents are 1.5. By referring to the working

condition in Table 3, two input speeds are applied to

two input gears, and two load torques are added to

upper face gear and tail gear, respectively.

The four-period contact forces of gear pairs in

ADAMS model are compared with that of LPM, as

illustrated in Fig. 17. Similarly, the LSCs are obtained

by adopting the method in Sect. 3.2. Fig. 18 illustrates

the comparison diagram of the results of two methods,

namely the LPM and the ADAMS model.

As presented in Fig. 17, the contact forces obtained

by the ADAMS model are basically consistent with

those gained by the LPM in both the size and the

variation trend. In view of the average value, the

contact force of the meshing between left input and

upper face gear in ADAMS model is 3.47 9 104 N,

and the contact force of the same gear pair in LPM is

3.13 9 104 N. The difference between the two aver-

age values is 9.8%. Besides, the differences between

the contact forces of other gear pairs calculated with

the two models are within 9.8%.

At 0.0278 s, the contact forces between tail gear

and two face gears in LPM appear abrupt peaks. The

authors believe that this situation is related to the

sensitivity of the initial value near 0 in the iterative

0.0275 0.028 0.0285

1.2

1.4

1.6

1.8

2

T / s

lo
ad

 sh
ar

in
g 

co
ef

fic
ie

nt upper & lower face gear

0.0275 0.028 0.0285
0.9998

1

1.0002

1.0004

1.0006

1.0008

1.001

T / s

lo
ad

 sh
ar

in
g 

co
ef

fic
ie

nt left & right input

0.0275 0.028 0.0285
0.9998

1

1.0002

1.0004

1.0006

1.0008

1.001

T / s

lo
ad

 sh
ar

in
g 

co
ef

fic
ie

nt left & right idler

Fig. 14 Dynamic LSCs in four periods

123

2910 Meccanica (2021) 56:2893–2918



algorithm. Since the contact force is about 0, these

peaks can be filtered out.

At 0.0278 s, the contact forces of left and right

idlers in ADAMS model appear non-zero values

earlier than that in LPM, which is caused by the errors

of the geometric model imported into ADAMS

software. The geometric surfaces of face gears are

obtained by fitting with the discrete points calculated

by the face gear equations. In the ADAMS simulation

of the gear transmission with high speed, the pinion

without driving torque or load torque is more sensitive

to small geometric errors.

In Fig. 18, the curve variation trend of the LSCs

calculated by two methods is basically identical. The

average values of the LSCs of two face gears obtained

by using two models are 1.4428 and 1.3982, which

companies with a difference of 3.1%. The averages of

the LSCs of two input gears are respectively 1.0099

and 1.0, which companies with a difference of 0.99%.

In the LSC curves of two idler gears, there is a

special period in which the LSC is either equal to 2 or

invalid, because the forces on two idlers are close to 0

during this special period (see Fig. 17). In Fig. 18, the

LSCs in addition to the special period are basically

kept within 1.2. There is no statistical value of the

LSCs in the special period, which should be ignored.
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Therefore, the averages of the LSCs of two idlers are

1.035 and 1.0 respectively, and the difference is 3.5%.

In conclusion, the differences of both the contact

forces and LSCs obtained by the two models are

acceptable, which has verified the calculating accu-

racy of the proposed LPM. However, in both Fig. 17

and Fig. 18, the curves extracted from the ADAMS

simulation are smooth, while the curves figured by

LPM have burrs. The main reason of the differences

are the precision deficiencies of the multi-body

dynamic model in ADAMS. For instance, the pene-

tration depth is not an accurate value, but is selected

according to the meshing deformation. In addition, the

force exponent in ADAMS model is selected accord-

ing to experience.

Furthermore, to verify the conclusion in Sect. 3.2

that gear backlash may cause the tooth disengagement

of idler gears, the LSCs of the systemwithout backlash

are also calculated, as demonstrated in Fig. 19.

In Fig. 19, all points in LSC curves without

backlash have continuous effective values, and the

LSC equal to 2.0 is not obtained. According to the

definition of LSC in Eq. (21), there is no case that gears

are not stressed, which means the disappearance of the

tooth disengagement in Fig. 12. Therefore, gear

backlash is one of the causes of the disengagement

of two idler gears.
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4 Discussions

In fact, it is difficult to make the service life of

different gear pairs in CFGSTTS to become the same.

Thus, appropriate structural parameters should be

designed to make the load sharing as even as possible.

As concluded in Sect. 3.2, the load sharing between

two input gears and that between two idler gears are

reasonable and acceptable. However, poor perfor-

mance of load sharing occurs when two face gears

mesh with the same input gear. Therefore, this section

focuses on the influence of system parameters on the

dynamic load sharing between two face gears in

CFGSTTS.

Without the special explanation, the geometric

parameters of CFGSTTS in all examples of this

section are presented in Table 1. The parameters of the

dynamic model are in Table 2 and the parameters used

for the load working condition are presented in

Table 3.

4.1 Effect of gear backlash on dynamic load

sharing

The current research [36] indicated that gear backlash

has a great influence on the dynamic responses of gear

transmissions. As mentioned above, the functions of

the pinions in CFGSTTS are different, though these

pinions have same tooth surface parameters. In

practical application, the backlash value of gear pairs

can be differently controlled.

To respectively study the effect of the backlash of

input gears, idler gears and tail gear on the dynamic

performance of CFGSTTS, the following comparative

analyses are made. (i) All gear pairs have no backlash.

(ii) The backlash values 2b of the gear pairs that

contain input gears are 20 um, and the rest gear pairs

have no backlash. (iii) The backlash values 2b of the

gear pairs that contain idler gears are 20 um, and the

rest gear pairs have no backlash. (iv) The backlash

values 2b of the gear pairs that consist of tail gear are

20 um, and the rest gear pairs have no backlash. (v) All

gear pairs have the same gear backlash with the value

of 20 um. LSCs in above-mentioned five cases were

compared in a single period, as demonstrated in

Fig. 20.

In Fig. 20, the LSC curve in case (ii) is basically

coincident with that in case (v). In these two cases,

gear backlash appears in the gear pair containing input

gear, or in all gear pairs. Likewise, the LSC curve in

case (i) is coincident with those in case (iii) and case

(iv). The characteristics of these three cases are that

the backlash values of the gear pairs containing input

gears are 0 um.

During the period from 0.02755 s to 0.0276 s, there

is no backlash for input gears when the peaks of LSC

are 1.68 in cases (i), (iii) and (iv). The backlash of
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input gears is not equal to 0 um when the LSC peaks

reach 1.86 in cases (ii) and (v). As a result, the value of

LSC trends to be smaller if the input gear has no

backlash.

These analytical results fully show that the backlash

of input gears has the most significant effect on the

dynamic responses of CFGSTTS. The backlash of the

gear pairs that are not composed of input gears has less

effect on the dynamic performance.

Actually, it is high precision for gear pairs if the

value of backlash 2b is equal to 20 um. The single-

period LSC curves in Fig. 21 corresponds to the

situation that all gear pairs in CFGSTTS have same

backlash.

During the period from 0.0275 s to 0.0276 s, when

the backlash value 2b is 0 um or 20 um, the

corresponding peaks of LSC are 1.65 or 1.88 respec-

tively. While the gear backlash is greater than or equal

to 40 um, the peak of LSC in this period reaches 2.0,

that is, tooth disengagement occurs.

Similarly, during the period from 0.0277 s to

0.0278 s, as the backlash value 2b increases succes-

sively from 0 to 80 um, the peak of LSC increases from

1.40 to 2.0.

It can be concluded from the results in Fig. 21 that

when the backlash value increases, the whole LSCwill

become larger. That means gear backlash is unfavor-

able to the performance of dynamic load sharing in

CFGSTTS. It is suggested that backlash design should

consider the current manufacturing technology and

minimize the backlash value without affecting the

assembly. For the consistency of gear manufacturing

process, the gear backlash of all gear pairs should be

set the same value.

4.2 Effect of torsional stiffness of input shafts

on dynamic load sharing

A highlight of the dynamic model in this paper is the

consideration of the torsional deformation of input

shafts. In the research of static simulations, it was

proved that the flexibility of input shafts has a certain

effect on the characteristics of static load sharing in

CFGSTTS. Therefore, it is necessary to explore

whether the torsional stiffness of input shafts has

effect on dynamic load sharing of CFGSTTS. Differ-

ent values are set for the torsional stiffness kti (i = 1, 2)

of input shafts, and the comparative curves of single-

period LSC are presented in Fig. 22.

In Fig. 22, the LSC differs as the value of torsional

stiffness changes, which indicates the torsional stiff-

ness of input shafts has significant effect on dynamic

load sharing.

In the period of 0.0275 s to 0.0276 s, the peak of

LSC is 2.0 when the value of torsional stiffness is

6.0 9 104 N.m/rad, which means that there has been

the tooth disengagement. While the values of torsional

stiffness are equal to 6.0 9 103 N.m/rad,

6.0 9 105 N.m/rad, 6.0 9 106 N.m/rad and

6.0 9 107 N.m/rad, respectively, the corresponding
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peaks of LSC are 1.98, 1.85, 1.87 and 1.87. Thus, as

the torsional stiffness increasingly grows, the corre-

sponding LSC tends to decrease and then increase, and

the phenomenon of tooth disengagement starts from

being to not being. In other periods, the LSCs of five

different torsional stiffness are close.

Therefore, the torsional stiffness of input shafts has

great effect on the characteristics of dynamic load

sharing in CFGSTTS, but this effect is not positive

correlation. There is an optimal range of torsional

stiffness, which corresponds to the smallest LSC and

the best performance of load sharing. Some larger or

smaller values are not conducive to the dynamic load

sharing. In this example, an optimal range of the

torsional stiffness is around 6.0 9 105 N.m/rad.

4.3 Effect of time-varying mesh stiffness

on dynamic load sharing

The mesh stiffness in Fig. 7 is calculated based on a

specific material and load condition, and the mesh

stiffness can be redesigned by changing the gear

material and operating conditions. Thus, it is signif-

icant to research the effect of mesh stiffness on

dynamic load sharing of CFGSTTS. The single-period

LSCs corresponding to the mesh stiffness with the

same phase as Sect. 3 and different averages are

demonstrated in Fig. 23.

The phase is another variable of the time-varying

mesh stiffness in addition to the average. According to

the static research in Ref. [6], when the tooth number

of a pinion is odd, there must be a half-period phase

difference in the mesh stiffness of two gear pairs

formed by the same pinion. However, when the

number of teeth is even, the phase difference disap-

pears. The comparative diagram of the dynamic LSCs

corresponding to two kinds of phases are presented in

Fig. 24.

Obviously, the dynamic LSCs in Fig. 23 vary

greatly as the averages of mesh stiffness change. As

the average of mesh stiffness gradually increases from

9.0 9 107 N/m to 8.0 9 108 N/m, the corresponding

LSC increases from 1.70 to 1.9 during the period of

0.0275 s to 0.0276 s, but dramatically decreases from

1.90 to 1.42 during the period of 0.0277 s to 0.0278 s.

The tendencies in these two periods are opposite. The

LSC curve is relatively flat when the average of mesh

stiffness is 2.0 9 108 N/m. Therefore, the average of

mesh stiffness also has ideal values, which makes the

dynamic load sharing performance optimal. The

values of mesh stiffness greater or less than the ideal

values are not conducive to the performance of

dynamic load sharing. One of the ideal values in this

example is about 2.0 9 108 N/m.

In Fig. 24 the LSC changes markedly as the mesh

stiffness phase differs. In the period of 0.0275 s to

0.0276 s, the peak of LSC is 1.90 when the tooth

number is odd. However, the peak of LSC is 1.40 when

the tooth number is even. The difference of the peaks

of LSC in the two cases is 26.3%. During the period

from 0.0277 s to 0.0278 s, the peak of LSC is 1.42 for

the case of odd tooth number, and the peak of LSC is

2.0 for the case of even tooth number. Thus, the phase

difference to a great degree affect the performance of

dynamic load sharing. Moreover, the pinion with odd

tooth number can achieve the better performance of

dynamic load sharing in CFGSTTS than that of even

tooth number, which explains why the tooth number of

the pinion in Table 1 is 23.

5 Conclusions

A LPM with 44 DOFs is proposed to explore the

torsional vibrations of input shafts, the meshing

vibrations, as well as the translational, torsional, and

bending vibrations of gears in CFGSTTS. The TE

formulation adopted in the dynamic model is modified

according to the characteristics of face gear drives.

Through analyzing the dynamic simulation results of

ADAMS, the accuracy of the proposed model is

identified to be acceptable.
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The natural characteristics of CFGSTTS such as

critical speeds and modal shapes are presented. The

rated speed 7600 rpm differs from all critical speeds,

and the modal shapes of the system mainly are

translation, bending, torsion, and translation-torsion

coupling.

The dynamic response and load sharing under a

rated condition is researched, in which the phe-

nomenon of tooth disengagement is observed in a

short period. The research show that the dynamic loads

between two input gears and that between two idler

gears are shared more even than that between two face

gears. The vibrations of input gears are more violent

than that of idler gears. The vibration of tail gear in the

engagement with upper face gear is more moderate

than that with lower face gear, while other pinions is

the opposite. In addition, the speed-sweep response is

studied and compared with the critical speeds, and

resonances would occur at partial critical speeds.

The factors including the torsional stiffness of input

shafts, the time-varying mesh stiffness, and the gear

backlash affect the performance of dynamic load

sharing in CFGSTTS. Through utilizing the verified

dynamic model to investigate these effects, the

following conclusions are drawn. (i) The backlash of

the gear pairs of the input gears has a tremendous

effect on the system. In a certain range, the gear

backlash should be controlled as small as possible,

which is beneficial to the dynamic load sharing. (ii)

Both the torsional stiffness of input shafts and the

time-varying mesh stiffness of gear pairs have optimal

values, which can achieve the advantageous perfor-

mance of dynamic load sharing, while the larger or

smaller stiffness values need to be avoided. (iii) The

phase of mesh stiffness also has a significant influence

on dynamic load sharing, and the phase difference of

mesh stiffness between different gear pairs is favor-

able to dynamic load sharing.
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