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Abstract The inter-shaft bearings are important

supporting parts between higher and lower pressure

rotors in dual-rotor systems, it is essential to analyze

their temperatures during operation. This paper con-

centrates on the effect of the dynamics of the system

on the temperatures of bearings, namely, the dynamic

load is coupled with thermal behaviours. The dynamic

load of the inter-shaft bearing is obtained by solving

the dynamic equations of the system numerically. The

friction heat generations (FHGs) under the dynamic

load are obtained by Palmgren’s empirical formula,

based on which, the unsteady-state heat balance

equations under the dynamic load are proposed

considering the viscosity-temperature relationship of

the lubricant. The steady-state and unsteady-state

temperatures analysis of the inter-shaft bearing are

carried out afterwards. The results show that the

temperature of the inter-shaft bearing and the total

FHG increase sharply and form two peaks in the

‘‘resonance zone’’ of the dual-rotor system, and

gradually increase in the ‘‘non-resonance zone’’ of

the system. The steady-state temperature of lower

rotation speed in the ‘‘resonance zone’’ may be much

higher than that of higher rotation speed in the ‘‘non-

resonance zone’’. The load FHG plays a leading role in

the ‘‘resonance zone’’, while the viscosity FHG plays a

leading role in the ‘‘non-resonance zone’’.

Keywords Dynamic load � Inter-shaft bearing �
Dual-rotor � Friction heat generation � Heat transfer

Nomenclature

Mt Total friction torque

Mb Load friction torque

M Viscosity friction torque

Qt Total FHG

Qb Load FHG

Q Viscosity FHG

QL FHG taken by the lubricant

Qr FHG distributed to rollers

Qi FHG distributed to the inner ring

Qo FHG distributed to the outer ring

fb Factor depended on bearing type and load

f Factor depended on bearing type and

lubrication method

dL The inner diameter of the LP rotor

d Nominal bore

di Diameter of the inner ring

Dm Pitch diameter

do Diameter of the outer ring

D Nominal outer diameter

dH The outside diameter of HP outer

dr Diameter of the roller

ar Length of the roller
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B Width of the bearing

mr Mass of rollers

mi Mass of the inner ring

mo Mass of the outer ring

mLP Mass of the part of LP rotor near the inner ring

mHP Mass of the part of HP rotor near the outer ring

h Convective heat transfer coefficient

V Line speed

Vi Line speed of the inner ring

Vo Line speed of the outer ring

ksteel Thermal conductivity of steel

csteel Specific heat capacity of steel

asteel Thermal diffusivity of steel

TL The temperature of the lubricant

Tr Temperature of rollers

Ti The temperature of the inner ring

To The temperature of the outer ring

TLP The temperature of the LP rotor part near the

inner ring

THP The temperature of the HP rotor part near the

outer ring

T? The temperature of the ambient

Rri Thermal resistance between rollers and the

inner ring

Rro Thermal resistance between rollers and the

outer ring

RLr Thermal resistance between the lubricant and

rollers

RLi Thermal resistance between the lubricant and

the inner ring

RLo Thermal resistance between the lubricant and

the outer ring

Ri Thermal resistance between the inner ring and

the LP rotor

Ro Thermal resistance between the outer ring and

the HP rotor

RLP Thermal resistance between the LP rotor and

the ambient

RHP Thermal resistance between the HP rotor and

the ambient

x1 Vertical displacement of the LP rotor

y1 Horizontal displacement of the LP rotor

x2 Vertical displacement of the HP rotor

y2 Horizontal displacement of the HP rotor

hx The rotational angle of the LP rotor around the

x-axis

hy The rotational angle of the LP rotor around the

y-axis

ux The rotational angle of the HP rotor around the

x-axis

uy The rotational angle of the HP rotor around the

y-axis

xi Vertical displacement of the inner ring

yi Horizontal displacement of the inner ring

xo Vertical displacement of the outer ring

yo Horizontal displacement of the outer ring

m Mass of rotor

Jp Polar moment of inertia

Jd Diameter moment of inertia

e Unbalance of rotor

k Stiffness coefficient of linear support

c Damping coefficient of linear support

m Kinematic viscosity of the lubricant

Fx Inter-shaft bearing’s force along the vertical

direction

a Thermal diffusivity

Fy Inter-shaft bearing’s force along the horizontal

direction

A Area

dj Virtual displacement

Nu Nusselt number

hk Angular position

Re Reynolds number

dk The relative deformation between the kth roller

and rings

Pr Prandtl number

2d0 Radial clearance

Ta Taylor number

l Length of rotors

Bi Biot number

ri The radius of the inner ring

Pe* Modified Peclet number

ro The radius of the outer ring

x1 LP rotor’s rotation speed

nb Average pressed roller number

x2 HP rotor’s rotation speed

Nb Roller number

xC Cage’s rotation speed

Kb Stiffness of the bearing

k Rotation speed ratio

Fb Dynamic load
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1 Introduction

The inter-shaft bearings [1] play a crucial role in dual-

rotor systems of the high-speed rotating machine,

including generator, aircraft engine and electric motor.

The radial cylindrical roller bearings are usually used

as the inter-shaft bearings to optimize the structure and

reduce the vibration of the dual-rotor system. Different

from other bearings only for support, both outer and

inner rings are rotating with higher pressure (HP) and

lower pressure (LP) rotors at high speed, the thermal

behaviours are more prominent. The friction heat

generation and convergence will make the tempera-

ture rise, seriously, the scuffing [2] and biting may

occur if at a very high temperature. Hence, the inter-

shaft bearings’ thermal behaviours affected by

dynamic properties of systems urgently need further

investigations.

The thermal behaviours of rolling bearings have

been studied by many researchers in the past decades.

In 1945, an empirical formula about the friction heat

generations of rolling bearings was pioneered by

Palmgren [3] through a large number of experiments.

Burton et al. [4] built a theoretical model for thermal

failure in the case of dry or lightly-lubricated angular

contact ball bearings to study the steady-state thermal

behaviour rather than the transient behaviour. Sud

et al. [5] studied the thermal behaviour of the angular

contact ball bearings and thrust ball bearings under the

preload experimentally. Harris [6] applied the basic

laws of heat conduction and heat convection to the

rolling bearing by lumped parameter method and

predicted the steady-state temperatures of the rolling

bearing main components, such as the inner ring, outer

ring and rollers. Winer et al. [7] developed an

analytical model of a tapered roller bearing and

housing system, and calculated typical thermal resis-

tances among the rotor parts. DeMul et al. [8, 9]

presented a five-degree-of-freedom (5DOF) bearing

model to analyze the load–deflection relationship in a

matrix method. Based on which, Jorgensen and Shin

[10] considered the thermal expansion to predict

spindle/bearing performance at high speed and found

the steady-state temperature distribution from a quasi-

three-dimensional heat transfer model. Stein and Tu

[11] utilized Palmgren’s empirical formula to estimate

the friction torque and carried out a comprehensive

thermal analysis of the angular contact ball bearing.

Kim and Lee [12] investigated the thermal and

dynamic behaviours of a rotor-bearing system con-

sidering tolerance, cooling conditions and thermal

deformation. Sun et al. [13] offered an approach,

named as modal truncation augmentation method, to

simulate the blade loss considering the thermal

expansion, to achieve this, they built the heat transfer

network and listed the thermal resistances. Jiang and

Mao [14] set up an experiment rig to comparative

study a high-speed hybrid ceramic and steel ball

bearings with oil-air lubrication. Ma et al. [15]

established a mathematical model to accurately

calculate the FHGs of spherical roller bearings based

on the local analysis approach. Takabi and Khonsari

[16] proposed a complex heat transfer network of the

bearing assembly to study the unsteady-state temper-

ature of a deep-groove ball bearing in an oil-bath

lubrication system, and verified the validity through

experimental tests. Ai et al. [17] established the

thermal network model for the double-row tapered

roller bearing according to the generalized Ohm’s law,

and developed a static model to obtain force distribu-

tion and motion parameters of the roller bearing. Than

and Huang [18] combined the static model with the

finite element method as a unified method to predict

nonlinear thermal behaviours of high-speed spindle

bearings, and found that the temperature field of the

spindle-bearing system was in good agreement with

the experiment. Gao et al. [19] established a kine-

matic-Hertzian-thermo-hydro-dynamic (KH-THD)

model to study the mechanism of the skid, over-

skidding and negative-skidding phenomena, and

found that there is a great temperature gradient inside

the bearing. In all of the above works, they all focused

on the supporting bearings rather than the inter-shaft

bearings. It is essential to do some investigations on

thermal behaviours of inter-shaft bearings because of

their unique application.

Many researchers have studied the dynamics of a

dual-rotor system with the inter-shaft bearing by far.

Hibner [20] predicted the vibratory response of a two-

shaft aircraft engine, with the aid of a unique transfer-

matrix method, he illustrated the basic concepts of

multi-shaft critical speeds and nonlinear viscous-

damped response. Gupta et al. [21] built a dual-rotor

test rig to investigate the dynamic properties of the

dual-rotor system by simulating the two spool aircraft

engine dynamically. A 2DOF simple but realistic

model of the non-symmetric co-axial co-rotating or

counter-rotating rotors was presented by Ferraris et al.
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[22] to study the critical speeds and the dynamic

responses caused by the unbalance through hand

calculations. Guskov et al. [23] studied the unbalanced

responses of a dual-rotor system, which is consisted of

one LP shaft, one HP shaft and an inter-shaft bearing

between them. In the research of Sun et al. [24], the

MHB-AFT (Multi-Harmonic Balance combined with

the Alternating Frequency/Time domain) method is

applied to compute the steady-state dynamic response

of an 8DOF dual-rotor system caused by the rub-

impact, but the inter-shaft bearing is simplified into a

linear spring. Based on which, Gao et al. [25]

considered the inter-shaft bearing’s nonlinear factors,

such as the Hertzian contact and the clearance, and

proposed a force model considering the local defect on

outer and inner rings to investigate the dynamic

behaviours of the simple 8DOF system. Unfortu-

nately, in the above literature about the dual-rotor

system, most of the inter-shaft bearings are simplified

linearly, or even without considering the thermal

effect of bearings.

This paper aims to investigate the effect of the

dynamics of the dual-rotor system on the temperature

of the inter-shaft bearing. Instead of the static load

commonly used in previous literature, the dynamic

load is employed to establish the unsteady-state heat

balance equations of the inter-shaft bearing. More-

over, the dynamic load is able to mirror the dynamic

properties of the system. Thus, the dynamics of the

system is coupled with the heat transfer of the bearing.

Furthermore, the viscosity-temperature relationship of

the lubricant is considered in this model. Results show

that the bearing’s temperatures form two ‘‘temperature

peak’’ in the ‘‘resonance zone’’ of the system, which

indicates the dynamic properties of the system make

an important impact on the bearing’s temperatures.

2 Unsteady-state heat transfer model

under the dynamic load

2.1 Dynamic load of the inter-shaft bearing

The structural diagram of a simple dual-rotor and an

inter-shaft bearing system is shown in Fig. 1 [24, 25].

The LP and HP rotors are coupled by a radial

cylindrical roller bearing, whose outer and inner rings

whirl with HP and LP rotors. Where x1 is the LP

rotor’s rotation speed while x2 is the HP rotor’s

rotation speed. The rotation speed ratio k ¼ x2

x1
is

constant during operation, where k[ 1 for co-rotating

while k\� 1 for counter-rotating. Assume that the

LP and HP rotors rotate at constant rotation speeds and

the rotation speed ratio is constant, the DOFs of the

rotational angles of LP and HP rotors around the z-axis

can be ignored. Therefore, the simple dual-rotor

system has 8DOFs, which are the vertical and

horizontal displacements of LP and HP rotors x1, y1,

x2, y2, and the rotational angles of LP and HP rotors

around the vertical and horizontal axes hx, hy, ux, uy.

The structural diagram of a simple dual-rotor and

an inter-shaft bearing system is shown in Fig. 1. The

second kind of Lagrange’s equation is applied to

establish the dynamic equations of the system. Both

LP and HP rotors are assumed as rigid rotors, the

energies of the system [24–26] are:

The kinetic energy of the system is

T ¼ 1

2
m1 _x2

1 þ _y2
1

� �
þ 1

2
Jd1

_h2
x þ _h2

y

� �

þ 1

2
Jp1

x2
1 � 2x1hx _hy

� �
þ 1

2
m2 _x2

2 þ _y2
2

� �

þ 1

2
Jd2

_u2
x þ _u2

y

� �
þ 1

2
Jp2

x2
2 � 2x2ux _uy

� �
;

ð1aÞ

where m1, m2 are the mass of the LP and HP rotor; Jp1,

Jp2 are the polar moment of inertia of the LP and HP

rotor; Jd1, Jd2 are diameter moment of inertia of the LP

and HP rotor.

The potential energy of the dual-rotor system is

V ¼ 1

2
k1 x1 � hyl1

� �2þ y1 þ hxl1ð Þ2
h i

þ 1

2
k2 x1 þ hyl2

� �2þ y1 � hxl2ð Þ2
h i

þ 1

2
k3 x2 � uyl3

� �2þ y2 � uxl3ð Þ2
h i

þ m1gx1

þ m2gx2;

ð1bÞ

where ki (i = 1, 2, 3) are stiffness of linear supports.

The dissipation energy of the dual-rotor system is

D ¼ 1

2
c1 _x1 � _hyl1

� �2

þ _y1 þ _hxl1
� �2

� �

þ 1

2
c2 _x1 þ _hyl2

� �2

þ _y1 � _hxl2
� �2

� �

þ 1

2
c3 _x2 � _uyl3

� �2þ _y2 þ _uxl3ð Þ2
h i

; ð1cÞ

where ci (i = 1, 2, 3) are damping of linear supports.
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The virtual work of the dual-rotor system is

dW ¼m1x
2
1e1 cos x1tð Þdx1 þ m1x

2
1e1 sin x1tð Þdy1

þ m2x
2
2e2 cos x2tð Þdx2 þ m2x

2
2e2 sin x2tð Þdy2

� Fx dx1 þ dhy l2 � l5ð Þ � dx2 þ duyl4
� �� 	

� Fy dy1 � dhx l2 � l5ð Þ � dy2 � duxl4ð Þf g;
ð1dÞ

where e1, e2 are unbalances of the LP rotor and the HP

rotor; dx1, dy1, dx2, dy2, dhx, dhy, dux, duy are virtual

displacements; Fx, Fy are the forces of the inter-shaft

bearing along the vertical direction and horizontal

direction.

Substitute Eqs. (1a–d) into the second kind

Lagrange’s equation, the dynamic equations of the

dual-rotor system are obtained as:

m1 €x1 þ c1 _x1 � _hyl1
� �

þ c2 _x1 þ _hyl2
� �

þ k1 x1 � hyl1
� �

þ k2 x1 þ hyl2
� �

¼ m1x
2
1e1 cos x1tð Þ � Fx � m1g; ð2aÞ

m1 €y1 þ c1 _y1 þ _hxl1
� �

þ c2 _y1 � _hxl2
� �

þ k1 y1 þ hxl1ð Þ þ k2 y1 � hxl2ð Þ
¼ m1x

2
1e1 sin x1tð Þ � Fy; ð2bÞ

Jd1
€hx þ x1Jp1

_hy þ c1l1 _y1 þ _hxl1
� �

� c2l2 _y1 � _hxl2
� �

þ k1l1 y1 þ hxl1ð Þ � k2l2 y1 � hxl2ð Þ
¼ Fy l2 � l5ð Þ;

ð2cÞ

Jd1
€hy � x1Jp1

_hx � c1l1 _x1 � _hyl1
� �

þ c2l2 _x1 þ _hyl2
� �

� k1l1 x1 � hyl1
� �

þ k2l2 x1 þ hyl2
� �

¼ �Fx l2 � l5ð Þ;
ð2dÞ

m2 €x2 þ c3 _x2 � _uyl3
� �

þ k3 x2 � uyl3
� �

¼ m2x
2
2e2 cos x2tð Þ þ Fx � m2g; ð2eÞ

m2 €y2 þ c3 _y2 þ _uxl3ð Þ þ k3 y2 þ uxl3ð Þ
¼ m2x

2
2e2 sin x2tð Þ þ Fy; ð2fÞ

Jd2
€ux þ x2Jp2

_uy þ c3l3 _y2 þ _uxl3ð Þ þ k3l3 y2 þ uxl3ð Þ
¼ �Fyl4;

ð2gÞ

Jd2
€uy � x2Jp2

_ux � c3l3 _x2 � _uyl3
� �

� k3l3 x2 � uyl3
� �

¼ Fxl4;

ð2hÞ

Equations (2a–h) in the matrix form is

M €X þ C _X þ KX ¼ F; ð3Þ

where the variable vector X ¼ x1 y1 hx½
hyx2y2uxuy�T; M, C, K, are the mass matrix, the

damping matrix, the stiffness matrix; P is the external

force vector.

The inter-shaft bearing is the nonlinear factors of

the dynamic equations, such as the fractional expo-

nential of Hertzian contact and the clearance. Figure 2

displays the inter-shaft bearing’s kinetic diagram.

The angular position of the kth roller at any time t is

expressed as

Fig. 1 Structural diagram of a simple dual-rotor and an inter-shaft bearing system
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hk ¼
2p
Nb

k � 1ð Þ þ xct k ¼ 1; 2; � � � ; Nbð Þ ; ð4Þ

where xc ¼ x1riþx2ro

riþro
represents the cage’s rotation

speed, where ri, ro represents the radiuses of the inner

ring and the outer ring.

The relative deformation between kth roller and

rings is

dk ¼ xi � xoð Þ cos hk þ yi � yoð Þ sin hk
� d0 k ¼ 1; 2; � � � ; Nbð Þ;

¼ x1 þ hy l2 � l5ð Þ

 �

� x2 þ uyl4
� �� 	

cos hk

þ y1 � hx l2 � l5ð Þ½ � � y2 � uxl4ð Þf g sin hk � d0;

ð5Þ

where 2d0 is the radial clearance of the bearing; xi, yi,

xo, yo are vertical displacement and horizontal dis-

placement of the inner and outer rings.

The forces of the inter-shaft bearing [26] are

Fx

Fy

� �
¼ Kb

XNb

k¼1

d10=9
k H dkð Þ cos hk

sin hk

� �
; ð6Þ

where H �ð Þ ¼ 1 �[ 0ð Þ
0 � � 0ð Þ

�
denotes the step function,

Kb represents the stiffness and Nb represents the roller

number of bearing.

The RMS, namely, root mean square [27, 28], is

applied to compute the dynamic load of the bearing.

The RMS can reflect the energy of the dynamic load,

thus, RMS is more proper to compute the dynamic

load than the P-P (peak-peak) value. The dynamic load

can be expressed as

Fb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R T

0
Fx tð Þ � Fx

� �2þ Fy tð Þ � Fy

� �2
� �

dt

T

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

Fx ið Þ � Fx

� �2þ Fy ið Þ � Fy

� �2
� �

N

vuuut
; ð7Þ

where T denotes the period of forces; N denotes the

discretization points number; Fx, Fy are the averages

of forces.

This research takes the NU1020 bearing for exam-

ple to investigate the thermal behaviours of the inter-

shaft bearing, and Table 1 lists the parameters of the

NU1020 bearing.

The dynamic parameters of the system are dis-

played below:

m1 ¼ 97:37 kg; Jp1 ¼ 3:6907 kg �m2; Jd1 ¼
1:8454 kg � m2;m2 ¼ 108:30 kg; Jp2 ¼ 4:0119 kg �
m2; Jd2 ¼ 2:0060 kg� m2; k1 ¼ k2 ¼ k3 ¼ 6 �
107N=m; c1 ¼ c2 ¼ c3 ¼ 655 N � /m; l1 ¼ 0:9188

m; l2 ¼ 1:1122 m; l3 ¼ 0:5120 m; l4 ¼
0:6243 m; l5 ¼ 0:0995 m; k ¼ 1:2; e1 ¼ 3 lm; e2 ¼
2 lm:

Fig. 2 The inter-shaft bearing’s kinetic diagram

Table 1 Parameters of the radial cylindrical roller bearing

NU1020

Parameters Values

Mass of rollers mr 0.4748 kg

Mass of inner ring mi 0.3912 kg

Mass of outer ring mo 0.6250 kg

Nominal bore d 100 mm

Diameter of inner ring di 113 mm

Pitch diameter Dm 125 mm

Diameter of outer ring do 137 mm

Nominal outer diameter D 150 mm

Width B 24 mm

Roller diameter dr 12 mm

Roller length ar 14 mm

Roller number Nb 24

Radial clearance 2d0 10 lm

Stiffness Kb 108 N/m10/9
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2.2 2.2 FHG under the dynamic load.

An empirical formula, presented by Palmgren [3], is

utilized to compute the inter-shaft bearing’s friction

torques. The total friction torque Mt (N•mm) is

consisted of two portions, one is the friction torque

due to load Mb and the other is the friction torque due

to viscosity Mm, as

Mt ¼ Mb þMv; ð8aÞ

Comparing with the static load [18] commonly used

in previous literature, the dynamic load Fb is able to

mirror the dynamic properties of the system, which

enables the dynamic load more proper to depict the

inter-shaft bearing’s practical load especially in the

‘‘resonance zone’’ of the system. Therefore, the

dynamic load is applied to compute the friction torque

due to load as

Mb ¼ fbFbDm; ð8bÞ

where fb is a factor depended on bearing type and load,

fb ¼ 0:0002� 0:0004 for the radial cylindrical roller

bearings with cages [6]; Dm is the pitch diameter.

The friction torque due to viscosity is

Mv ¼ 10�7fv m � Dnð Þ2=3D3
m m � Dn� 2000

160 � 10�7fvD
3
m m � Dn\2000

�
; ð8cÞ

where fm is a factor depended on bearing type and

lubrication method, for radial cylindrical roller bear-

ings with cages, fm ¼ 0:6� 1 for grease, fm ¼ 1:5� 2:8

for oil mist, and fm ¼ 2:2� 4 for oil bath [6]; m is the

kinematic viscosity of the lubricant (mm2/s), which is

a function of the temperature; Dn ¼ 60
2p x2 � x1j j ¼

60
2p k� 1j jx1 is the difference of rotation speeds (r/

min), which is much more complex than the single

rotor system.

The total FHG (W) under the dynamic load is

Qt ¼ Qb þ Qv; ð9aÞ

the load FHG under the dynamic load is

Qb ¼ 10�3 x2 � x1j jMb ¼ 10�3 k� 1j jx1Mb; ð9bÞ

the viscosity FHG is

Qm ¼ 10�3 x2 � x1j jMm ¼ 10�3 k� 1j jx1Mm; ð9cÞ

The viscosity of the lubricant is regarded as a

function of temperature because the temperature

makes an important impact on the viscosity. The

viscosity-temperature relationship of the lubricant

should be considered for the viscosity FHG. The

experimental data of the kinematic viscosity at

different temperatures [18] are shown in Table 2.

The Reynolds’ model of viscosity-temperature

relationship [29] is

m ¼ m0e
�c T�T0ð Þ; ð10Þ

where c is the viscosity-temperature coefficient, c ¼
0:018� 0:036 	C�1 for mineral oil; T0, m0 are the

initial temperature and the initial kinematic viscosity.

The Reynolds’ model is applied to fit the experi-

mental data [18] in Table 2, the fitting curve is shown

in Fig. 3. The viscosity-temperature coefficient is

c ¼ 0:0256 	C�1, which indicates the Reynolds’

model is appropriate for the viscosity-temperature

relationship of the lubricant. Moreover, the kinematic

viscosity decreases greatly as the temperature rises,

which further confirms the importance of the viscos-

ity-temperature relationship.

Fig. 3 The viscosity-temperature relationship of the lubricant

Table 2 The experimental data of the kinematic viscosity at

different temperatures [18]

Temperature TL (�C) 30 40 50 60 70 80

Kinematic viscosity m (mm2/s) 15 10 7.8 5.9 5 4
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2.3 Unsteady-state heat transfer model

under the dynamic load

The material of bearings is bearing steel GCr15, thus,

Biot numbers of the outer ring, the inner ring and

cylindrical rollers, are small enough (Bi\0:1). The

lumped parameter method, i.e. lumped heat capacity

method [30], can be used for the heat transfer

modelling for the bearing. The structure size and the

heat transfer network of the inter-shaft bearing are

shown in Fig. 4, where dL, d, di, Dm, do, D, dH are the

diameters; B, dr, ar are the width, the diameter of the

roller, the length of the roller; Tr, Ti, To, TLP, THP, TL,

T? are the temperatures; Rri, Rro, Ri, Ro are the heat

conduction thermal resistances; RLr, RLi, RLo, RLP, RHP

are the heat convection thermal resistances.

Assume that the temperature of the lubricant is

TL ¼ TrþTiþTo

3
[11], and an average partition coefficient

[11] is applied as follows:

Qt ¼ Qr þ Qi þ Qo; ð11aÞ

Qr ¼ 0:5Qt; ð11bÞ

Qi ¼ 0:25Qt; ð11cÞ

Qo ¼ 0:25Qt; ð11dÞ

where Qr is the FHG distributed to rollers, Qi is the

FHG distributed to the inner ring and Qo is the FHG

distributed to the outer ring.

According to the generalized Ohm’s law [17], the

unsteady-state heat balance equations are derived as

Ti � Tr
Rri

þ To � Tr
Rro

þ TL � Tr
RLr

þ Qr ¼ mrcsteel
oTr
ot

;

ð12aÞ

Tr � Ti
Rri

þ TLP � Ti
Ri

þ TL � Ti
RLi

þ Qi ¼ micsteel
oTi
ot

;

ð12bÞ

Tr � To
Rro

þ THP � To
Ro

þ TL � To
RLo

þ Qo ¼ mocsteel
oTo
ot

;

ð12cÞ

Ti � TLP
Ri

þ T1 � TLP
RLP

¼ mLPcsteel
oTLP
ot

; ð12dÞ

To � THP
Ro

þ T1 � THP
RHP

¼ mHPcsteel
oTHP
ot

; ð12eÞ

where t is time; csteel is the specific heat capacity of

steel; mr, mi, mo are the mass of rollers, the inner ring,

the outer ring; mLP ¼ p
4
qsteel d2 � d2

L

� �
B is the mass of

the part of LP rotor contact the inner ring, where qsteel

is the density of the steel; mHP ¼ p
4
qsteel d2

H � D2
� �

B is

the mass of the part of HP rotor contact the outer ring;

the thermal resistance between the inner ring and the

LP rotor Ri ¼ ln di=dLð Þ
2pksteelB

, the thermal resistance between

the outer ring and the HP rotor Ro ¼ ln dH=doð Þ
2pksteelB

; the

thermal resistance between rollers and the inner ring

Rri ¼ Rone
ri

nb
, the thermal resistance between rollers and

the outer ring Rro ¼ Rone
ro

nb
, herein nb is the average

pressed roller number [31], Rone ¼ 1:13
ksteel

ffiffiffiffiffiffiffiffiffiffi
Ar�Pe


p is the

Fig. 4 Inter-shaft bearing’s structure size and heat transfer network. a Structure size. b Heat transfer network
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thermal resistance between one roller and the corre-

sponding ring, Ar is the area of the interface between

corresponding ring and roller, Pe* is the modified

Peclet number [32].

The thermal resistance of heat convection can be

derived by the Nusselt number Nu because of

Rm ¼
1

Amh
¼ 1

Am
� L

k � Nu ; ð13Þ

where Am is the area of heat convection; h is the

convective heat transfer coefficient; k is the thermal

conductivity of the fluid; L is the characteristic length.

The heat convection thermal resistances RLr, RLi, RLo,

RLP, RHP can be calculated according to Eq. (13).

(1) The thermal resistance between the lubricant and

the rollers RLr.F and [33] offered a better correla-

tion, instead of the McAdams correlation, to

Fig. 5 Amplitude frequency curve of the dual-rotor system. a The LP rotor. b The HP rotor

Fig. 6 Dynamic responses analysis for x1 = 683 rad/s in A. a The vertical displacement history. b The horizontal displacement

history. c The orbit of LP rotor. d The number of pressed rollers. e Spectrum diagram. f Poincaré diagram
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represent the experimental data for the forced

convection from a cylinder to the liquid in cross-

flow, as

Nu ¼ 0:35 þ 0:34 Re0:5 þ 0:15 Re0:58
� �

Pr
0:3
; ð14Þ

where Re ¼ VL
m is the Reynolds number of the liquid;

Pr ¼ m
a is the Prandtl number, herein a is the thermal

diffusivity. The correlation is valid for

10�1\Re\105.

(2) The thermal resistance between the lubricant and

the inner ring (the outer ring) RLi (RLo) Gazley [34]

Fig. 7 Dynamic responses analysis for x1 = 821 rad/s in B. a The vertical displacement history. b The horizontal displacement

history. c The orbit of LP rotor. d The number of pressed rollers. e Spectrum diagram. f Poincaré diagram

Fig. 8 Inter-shaft bearing’s forces for x1 = 683 rad/s in A. a Vertical direction. b Horizontal direction

Fig. 9 Inter-shaft bearing’s forces for x1 = 821 rad/s in B. a Vertical direction. b Horizontal direction

123

2700 Meccanica (2021) 56:2691–2706



and Bjorklund [35] studied the heat convection of

two rotating concentric cylinders, which were

separated by the mixture of grease-air. The inner

race and the outer race can be seen as two rotating

concentric cylinders separated by the lubricant, the

correlation is

Nu ¼
2 Ta\41

0:167 Ta0:69 Pr0:4 41� Ta\100

0:401 Ta0:5 Pr0:4 100\Ta

8
<

:
; ð15Þ

where Ta ¼ Re
ffiffiffiffi
dio

r

q
is the Taylor number, in which

dio ¼ do�di

2
is the distance from the outer ring to the

inner ring.

(3) The thermal resistance between the LP (HP)

rotor and the ambient RLP (RHP) Yang [36] studied

the heat convection between rotors and the ambient

are forced convection due to the rotation of shafts,

and offered the correlation as

Nu ¼
0:00308 Re þ 4:432 Re\7300

Re0:37 7300�Re\9600

30:5 Re�0:0042 9600\Re

8
<

:
;

ð16Þ

3 Results and discussions

3.1 Dynamic load

Dynamic responses of Eqs. (2a–h) and Eq. (6) can be

easily obtained by fourth order Runge–Kutta method.

The initial state for x1 ¼ 500rad/s is

X _X

 �

¼ 0 0½ �, while for subsequent rota-

tion speed, the initial state is the final state of the

previous rotation speed. The calculation time is given

as 10 s, which is long enough for the system to reach

steady-state responses. The time step is given as

10–3 s, which is small enough to achieve accurate

results. The errors are set as\ 10–6. The RMS of the

horizontal and vertical displacements in a period is

utilized to represent the vibration amplitude of the

numerical results. The amplitude frequency curves of

the LP rotor and the HP rotor are shown in Fig. 5.

Comparing Fig. 5a and Fig. 5b, it can be discov-

ered that the two amplitude frequency curves are

basically the same as each other, while the amplitude

of the HP rotor is slightly greater than that of the LP

rotor. Moreover, the amplitude increases so sharply in

regions A and B that two peaks are formed here, while

the amplitude is very small in other regions C, D and

E. Thus, regions A and B are ‘‘resonance zone’’ and

other regions C, D and E are ‘‘non-resonance zone’’.

In order to analyze the mechanism of ‘‘resonance

zone’’ A and B in detail, Fig. 6 and Fig. 7 are dynamic

responses analysis for x1 = 683 rad/s in A and

x1 = 821 rad/s in B, including the vertical displace-

ment history, the horizontal displacement history, the

orbit diagram of the LP rotor, the pressed roller

number, the spectrum diagram of the LP rotor’s

horizontal vibration signal and the Poincaré diagram.

Herein, fL, fH are the unbalance frequencies of LP and

HP rotors.

Fig. 10 The dynamic load of the inter-shaft bearing against the

rotation speed

Fig. 11 Steady-state temperature of the rollers, the inner ring

and the outer ring against the LP rotor’s rotation speed
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For Fig. 6, the rotation speed x1 = 683 rad/s is

located in the ‘‘resonance zone’’ A, fH is the dominant

frequency of the dynamic responses, fL is very small.

The vertical signal and the horizontal signal seem like

beat vibration, the orbit of the LP rotor looks almost

circular and there is only one point in the Poincaré

diagram. The number of pressed rollers is time-

varying from 9 to 11. Thus, the ‘‘resonance zone’’ A is

induced by the HP rotor’s unbalance.

For Fig. 7, the rotation speed x1 = 821 rad/s is

located in the ‘‘resonance zone’’ B, fL is the dominant

frequency of the dynamic responses, fH is very small.

The vertical signal and the horizontal signal seem like

beat vibration, the orbit of the LP rotor looks almost

circular and there is only one point in the Poincaré

diagram. The number of pressed rollers is time-

varying between 10 and 11. Thus, the ‘‘resonance

zone’’ B is induced by the LP rotor’s unbalance.

Figures 8 and 9 are the inter-shaft bearing’s forces

of for x1 = 683 rad/s in A and for x1 = 821 rad/s in

B. It can be seen that the vertical and horizontal forces

are time-varying just like sine curves. Therefore, it is

very difficult to substitute the forces into Eq. (8b) to

compute Mb.

Once the dynamic equations Eqs. (2a–h) are

solved, the inter-shaft bearing’s forces along the

vertical direction and horizontal direction are also

attained at the same time. Based on Eq. (7), the

dynamic load can be attained accordingly. Figure 10

displays the dynamic load varies with the LP rotor’s

rotation speed.

Fig. 12 Temperature evolutions of rollers, inner ring and outer ring. a For x1 = 600 rad/s in C. b For x1 = 683 rad/s in A. c For

x1 = 750 rad/s in D. d For x1 = 821 rad/s in B. e For x1 = 900 rad/s in E

Fig. 13 FHGs against the LP rotor’s rotation speed
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In Fig. 10, the dynamic load increases so sharply in

the ‘‘resonance zone’’ A and B that two peaks are

formed here, while the dynamic load is very small in

the ‘‘non-resonance zone’’ C, D and E. Comparing

Figs. 5 and 10, the dynamic load curve are basically

the same with the amplitude frequency curves.

All in all, the dynamic load is able to mirror the

dynamic properties of the dual-rotor system. Compar-

ing with the static load commonly used in previous

literature, the dynamic load is more proper to depict

the practical load of the inter-shaft bearing especially

in the ‘‘resonance zone’’ of the system because it

contains the dynamic properties of the system. Com-

paring with the time-varying forces of the bearing, the

dynamic load is not time-varying but constant for any

rotation speed, which enables it easier to compute the

load FHG.

3.2 Thermal analysis

The unsteady-state heat balance equations Eq. (12)

also can be solved by the Runge–Kutta method. The

initial temperature is equal to the ambient temperature

T1 ¼ 20 oC; the calculation time is 10000 s, which is

long enough for the inter-shaft bearing to reach steady-

state temperatures; the time step is 10 s; the errors

are\ 10–6. The kinematic viscosity of the lubricant is

changing as Fig. 3 during the temperature evolution.

Figure 11 displays the steady-state temperature of

rollers, inner ring and outer ring vary with the LP

rotor’s rotation speed.

Fig. 14 Steady-state temperature and FHGs against the LP rotor’s rotation speed at different ambient temperature. a Steady-state

temperature of rollers. b Total FHG. c Load FHG. d Viscosity FHG
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In Fig. 11, it can be discovered that the rollers’

temperature Tr is highest and the outer ring’s temper-

ature To is lowest. To is lower than the inner ring’s

temperature Ti because the heat dissipation of the outer

ring is stronger than that of the inner ring. Moreover,

the variation for Tr, Ti and To with the rotation speed

are the same with each other. In regions A and B, they

all increase so sharply that two ‘‘temperature peak’’

are formed here. In regions C, D and E, they all

increase gradually. Comparing Fig. 11 with Fig. 10, it

can be discovered that A and B are exactly the

‘‘resonance zone’’ A and B of the dual-rotor system,

while C, D and E are exactly the ‘‘non-resonance

zone’’ C, D and E of the dual-rotor system.

In order to analyze the unsteady-state temperatures

of rollers, the inner ring and outer ring in ‘‘resonance

zone’’ and ‘‘non-resonance zone’’, Fig. 12 displays the

temperature evolutions of the rollers, the inner ring

and the outer ring for five different rotation speeds in

‘‘resonance zone’’ A, B and ‘‘non-resonance zone’’ C,

D, E. Herein, T steady represents the ideal steady-state

temperature, 0.99 Tsteady is taken as the boundary

between the unsteady-state heat transfer and the

steady-state heat transfer.

In Fig. 12, there is Tr[ Ti[ To during the entire

evolution. Initially, the rate of temperature rise is the

highest, and it decreases over time. Finally, the rate of

temperature rise decreases to zero, which means that

the temperature reaches a steady-state temperature and

no longer changes. The temperature rises quickly from

the ambient temperature to 0.8 T steady, but when the

temperature further rises to 0.99 Tsteady, the time

consumed will increase sharply. Comparing the rota-

tion speeds and the temperature in ‘‘resonance zone’’

A, B and ‘‘non-resonance zone’’ C, D, E, there is

xC\xA\xD\xB\xE and

TC\TD\TE\TA\TB. As the rotation speed

increases, the temperature does not simply increase

monotonically. It indicates the dynamic properties of

the dual-rotor system make an important impact on the

temperature of the inter-shaft bearing.

In short, the dynamic behaviours of the dual-rotor

system are coupled with the thermal behaviours of the

inter-shaft bearing. In the ‘‘resonance zone’’ of the

system, the temperature of bearing increases so

sharply that two ‘‘temperature peak’’ are formed just

like ‘‘resonance peak’’. In the ‘‘non-resonance zone’’

of the system, the temperature increases gradually.

3.3 FHG analysis

The effect of the rotation speed on the FHGs of the

inter-shaft bearing is discussed in this section. The root

cause of the temperature rise or fall is the accumula-

tion or dispersion of heat. In order to find out the

reason why the formation of temperature peaks in the

‘‘resonance zone’’ A and B, the FHG analysis is

essential. Figure 13 displays the total FHG, the load

FHG and the viscosity FHG vary with the LP rotor’s

rotation speed.

In Fig. 13, it can be discovered that the load FHG

Qb increases so sharply in ‘‘resonance zone’’ A and B

that two peaks are formed here because the system

resonates in A and B and the dynamic load is very

large here; Qb is very small in the ‘‘non-resonance

zone’’ C, D and E. The load FHG is basically the same

as the dynamic load. The viscosity FHG Qm decreases

so obviously in A and B that two valleys are formed

here, because the temperature is higher and the

lubricant viscosity is lower here; Qm increases grad-

ually in C, D and E. Therefore, the total FHG Qt

increases so sharply in ‘‘resonance zone’’ A and B that

two peaks are formed here, while increases gradually

in C, D and E.

It is worth noting that the total FHG shows the same

behaviours with the inter-shaft bearing’s tempera-

tures. In the ‘‘resonance zone’’ A and B, the load FHG

plays a leading role because the dynamic load

increases rapidly here. In the ‘‘non-resonance zone’’

C, D and E, the viscosity FHG plays a leading role

because the dynamic load is very small here. In the

‘‘resonance zone’’ A and B, the load FHG forms two

peaks while the viscosity FHG forms two valleys.

3.4 Influence of the ambient temperature

This section discussed the temperature and the FHGs

affected by the ambient temperature, which are

T1 ¼ 0 oC, T1 ¼ 10 oC, T1 ¼ 20 oC and

T1 ¼ 30 oC, respectively. Figure 14 displays the

comparison of the steady-state temperature of rollers,

the total FHG, the load FHG and the viscosity FHG at

different ambient temperature. In Fig. 14a, it can be

seen that as T1 increases, Tr in both ‘‘resonance zone’’

and ‘‘non-resonance zone’’ increases gradually, it

looks like the curve moves upward. In Fig. 14b, as T1
increases, Qt in both ‘‘resonance zone’’ and ‘‘non-

resonance zone’’ decreases gradually, it looks like the
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curve moves downward. In Fig. 14c, it can be

discovered that T1 does not affect the Qb. In Fig. 14d,

as T1 increases, Q decreases gradually, it looks like

the curve moves downward.

In a word, the ambient temperature has an opposite

effect on the temperature and the total FHG. As the

ambient temperature increase, the temperature-rota-

tion speed curve moves upward, while the total FHG-

rotation speed curve moves downward. The ambient

temperature has little effect on the load FHG but

makes an important impact on the viscosity FHG

because the viscosity-temperature relationship of the

lubricant is considered.

4 Conclusion

In this research, FHGs under the inter-shaft bearing’s

dynamic load have been obtained by Palmgren’s

empirical formula, subsequently, the unsteady-state

heat balance equations under the dynamic load have

been presented considering the viscosity-temperature

relationship of the lubricant. Afterwards, the dynamic

load analysis, the temperature analysis, the FHG

analysis and the influence of the ambient temperature

have been accomplished. Some new discovers are

shown below:

(1) The dynamic load of the inter-shaft bearing is

able to mirror the dynamic properties of the

dual-rotor system. It is more proper for the

dynamic load to depict the practical load of the

inter-shaft bearing especially in the ‘‘resonance

zone’’ of the system, rather than the static load

commonly used in the previous literature.

(2) The dynamic behaviours of the dual-rotor

system are coupled with the thermal behaviours

of the inter-shaft bearing. In the ‘‘resonance

zone’’ of the system, the temperature increases

so sharply that two ‘‘temperature peak’’ are

formed just like ‘‘resonance peak’’. In the ‘‘non-

resonance zone’’ of the system, the temperature

increases gradually.

(3) The total FHG shows the same behaviours with

the inter-shaft bearing’s temperatures. In the

‘‘resonance zone’’ of the system, the load FHG

plays a leading role because the dynamic load

increases rapidly here. In the ‘‘non-resonance

zone’’ of the system, the viscosity FHG plays a

leading role because the dynamic load is very

small here.

(4) The ambient temperature has an opposite effect

on the temperature and the total FHG. As the

ambient temperature increase, the temperature-

rotation speed curve moves upward, while the

total FHG-rotation speed curve moves

downward.

The future study will focus on the verification of the

unsteady-state heat balance equations under the inter-

shaft bearing’s dynamic load by experiment.
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