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Abstract For a nonlinear beam under broadband

excitations, the multimodal nonlinear resonance phe-

nomena will be induced. To suppress the multimodal

nonlinear resonances, the multiple time-delayed vibra-

tion absorbers (TDVAs) are introduced. The optimal

time-delayed parameters of the TDVAs are deter-

mined by the proposed multimodal equal-peak prin-

ciple consisting of three design criteria. In the

proposed three criteria, the stability criterion ensures

the stability of the equilibrium state for the system; the

extremes equal criterion figures out the time-delayed

parameters to realize the equal resonance peaks

around each concerned mode; the minimum peak

criterion can obtain the optimal time-delayed param-

eters for the minimum resonance peaks. The results

show that the TDVAs designed by the proposed

multimodal equal-peak principle consisting of three

criteria could simultaneously suppress the resonance

peaks of the beam around multiple modes to the equal

and minimum values. Besides, the equal resonance

peaks are much lower than the absorbers without time-

delayed feedback under the same mass constraint. The

proposed TDVAs and the multimodal equal-peak

principle have wide application prospects in suppress-

ing the multimodal vibrations for nonlinear continu-

ous systems with broad frequency band and large

amplitudes excitation in the fields of civil engineering

and aerospace.

Keywords Nonlinear beam � Multimodal vibration

suppression � Multimodal equal-peak principle �
Multiple time-delayed vibration absorbers

1 Introduction

As a basic and efficient loading-bearing component,

the elastic beam is widely used in many engineering

applications, such as bridges and robotic arms [1, 2],

etc. For elastic beams with light-damping property,

multimodal resonances will be induced under broad-

band excitations [3, 4]. The wind tunnel tests and

recorded field data for some long-span bridges around

the world showed that the vortex vibration of bridges

may occur in multiple modes [5–9]. Besides, some

nonlinear phenomena induced by large-amplitude

excitations, such as multiple steady-state, bifurcation

and chaos, would reduce the service life and even lead

to the failure for structures in engineering. Thus, an

effective vibration suppression principle to suppress

the multimodal resonances for nonlinear beams is

worth investigating.
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In vibration suppression field, the dynamic vibra-

tion absorbers were applied to suppress the vibration

of the primary system. The first linear undamped

absorber was invented to suppress the resonance of a

ship in 1909 [10]. It discovered that when the natural

frequencies of the primary system and undamped

absorber were equal, the resonance of the primary

system could be suppressed to zero. However, two

new resonance peaks with high values, which were

close to the anti-resonance response, were introduced

in the coupled system. Thus, the vibration suppression

effect of linear undamped absorbers deteriorated

rapidly for external excitations with frequency distur-

bance. To achieve broadband vibration suppression

effects, Ormondroyd and Den Hartog introduced the

damper in the linear tuned vibration absorber (LTVA)

and proposed the ‘‘fixed-points theory’’ for its param-

eter optimization [11, 12]. The results showed that

frequency response curves (FRCs) of the primary

system passed through two fixed points for various

damping coefficients of the LTVA. This characteristic

could be applied to simplify the H? optimization of

the stiffness and damping coefficients for LTVA. Then

many researchers were devoted to extend the fixed-

points theory to different configurations or working

conditions [13–17]. By attaching a LTVA designed by

the fixed-points theory, the maximum response of the

FRC for a single DOF linear primary system was

minimized. In conclusion, the fixed-points theory was

applied to suppress the single modal vibration of linear

systems.

For nonlinear primary systems attached by a LTVA

designed by the fixed-points theory, the two resonance

peaks of the primary system were no longer minimum

and would diverge from each other with increasing

excitation amplitudes [18]. To tackle this challenge,

Kerschen and his co-workers proposed the so-called

equal-peak principle for the nonlinear tuned vibration

absorber (NLTVA) [18–20]. Based on the proposed

equal-peak principle, the restoring force function of

the NLTVA should possess the same nonlinear forms

and orders as the primary system. Sun et al. [21]

revised the nonlinear stiffness coefficients of the

NLTVA based on the equal-peak principle and

explored its advantage in eliminating undesirable

nonlinear phenomena. For nonlinear primary system

with the NLTVA designed by the equal-peak princi-

ple, two resonance peaks of the primary system were

approximatively suppressed to the equal and

minimum value. In summary, LTVA and NLTVA

could be applied to suppress the linear and nonlinear

vibrations for the single modal vibration suppression

problems.

For suppressing the multimodal vibrations of

multiple DOF (MDOF) primary system, multiple

absorbers could be applied by tuning each absorber

per mode to be controlled [22–25]. Zhu et al. [22]

studied the optimization problems of the multiple

linear tuned vibration absorbers (LTVAs) for sup-

pressing the multimodal vibrations of the linear plates.

The results showed the multimodal vibration can be

suppressed by using the optimized LTVAs. Raze and

Kerschen [23] obtained the optimal structural param-

eters of the LTVAs by adopting the norm-homotopy

optimization algorithm. It discovered that the multiple

linear resonances were suppressed to the equal and

minimum values in a broad frequency band that

contained multiple modes. For suppressing the mul-

tiple nonlinear resonances of MDOF nonlinear pri-

mary systems, the multiple nonlinear tuned vibration

absorbers (NLTVAs) were applied and the semi-

analytical formula of structural parameters for

NLTVAs was obtained by the equal-peak principle

[24]. The numerical results indicated that multiple

nonlinear resonance peaks of the primary system

could be suppressed to approximately equal values.

However, with the increase of force amplitude, a

detached resonance curve (DRC) appeared and then

merged with the main resonance curve (MRC). The

merging phenomena would lead to the failure of the

equal-peak property. In conclusion, most researchers

studied the realization of the equal-peak principle with

passive absorbers, but the limitations of passive

absorbers on realizing the equal-peak principle were

mainly in the following aspects. (i) The first is the

contradiction between the vibration suppression per-

formance (resonance peak values of the primary

system) and the mass ratio of the absorber. The results

of the equal-peak principle [15] showed that the

resonance peak of the primary system is the mono-

tonically decreasing function of the mass ratio of the

absorber, which indicated that the heavier absorber

should be installed to suppress the resonance peaks to

lower values. However, the absorber’s mass ratio

cannot be too heavy due to some constraints in

practical engineering fields. (ii) The second is the

contradiction between the designable requirements of

absorber stiffness and the reality that the optimal
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stiffness of the absorber is fixed [18, 26]. For example,

a larger stiffness value than the optimal value designed

by the equal-peak principle can improve the loading

capacity of the absorber, but it will reduce the

vibration suppression performance. (iii) The third is

the contradiction between non-adjustable property for

passive absorbers and variable external excitations.

For a nonlinear primary system, the resonance

frequency varied with the variation of excitation

amplitudes. However, the structural parameters of

passive absorbers are fixed and their vibration char-

acteristics cannot be tuned according to the variation

of external excitations. Thus, passive absorbers were

not appliable for some nonlinear primary systems

under variable frequency or amplitude excitations.

To tackle the aforementioned limitations of passive

absorbers, active absorbers were adopted. Among

various active absorbers, the time-delayed vibration

absorber (TDVA) has received extensive attentions

[27–37]. Compared with the traditional active absor-

bers, the TDVA has the following characteristics.

(i) Time delay is inevitable in active control loops. It

mainly comes from the process of limited transmission

speed, filtering, on-line calculation and applying

active force. Therefore, the mechanical model of the

active control system with time delay is more accurate

than that without time delay. (ii) The vibration control

effect of the passive absorber is mainly realized by

tuning the stiffness and damping properties. The

previous studies of TDVA [30, 31, 35, 37] showed

that time-delayed feedback can tune the equivalent

stiffness and damping properties of the absorber. Thus,

the physical meaning of TDVA is clear, the mechan-

ical mechanism is intuitive and interpretable. (iii) In

the time-delayed control loop, only part of the state

variable feedback signal is needed. Since no additional

state variable feedback signal is required, the noise

amplification due to the derivative and the numerical

error due to the integration can be avoided. (iv) The

choice of the feedback control signal is flexible. The

signal can be either displacement [35], velocity [38],

or acceleration [30], which depends on the type of

sensor, the convenience of signal measurement and the

specific configuration of vibration absorbers. There-

fore, TDVA has been widely applied in vibration

suppression fields.

Most previous researches of TDVA focused on the

frequency modulation mechanism for either linear

[30, 31, 35] or nonlinear primary systems [37]. With

proper time-delayed parameters determined by the

frequency modulation mechanism, the anti-frequency

of the time-delayed system can be tuned equally with

the excitation frequency and the response of the

primary system can be suppressed to zero. Since the

anti-frequency point was tunable with time-delayed

feedback, TDVA can realize the broad frequency band

vibration suppression effects. However, the suppress-

ing of resonance responses was not considered for the

frequency modulation mechanism. For the primary

system with the TDVA designed by the frequency

modulation mechanism, a small drift of excitation

frequency will lead to a rapid increase of response

magnitude. To handle this challenge, the TDVA is

explored to generalize the equal-peak principle to

single DOF nonlinear systems in our previous work

[39]. In the generalization process, a new vibration

suppression mechanism of TDVA is discovered,

called amplitude modulation mechanism. The results

showed that for nonlinear primary systems attached

with TDVA designed by the equal-peak principle, the

resonance peaks can be suppressed lower and the

effective force amplitude range is extended larger than

the passive LTVA and NLTVA. To sum up, with the

proposed equal-peak principle, TDVA could be

applied to suppress the single modal resonance

response [39] and it is desirable to study the gener-

alization of the proposed principle to suppress the

multimodal nonlinear resonances of nonlinear beams.

For nonlinear beams under broadband excitations,

nonlinear resonance phenomena will be induced

around multiple modes, so the multiple resonances

need to be simultaneously suppressed. Our previous

work [39] showed that single resonance of the primary

system was suppressed to two equal resonance peaks

with much lower values by a single TDVA based on

the equal-peak principle. Thus, multiple TDVAs are

applied and the equal-peak principle is extended to

suppress the multiple resonances for a nonlinear beam,

called multimodal equal-peak principle in this study.

The layout of this paper is arranged as follows. In

Sect. 2, the mechanical model of a nonlinear beam

attached by the TDVAs is given and the optimization

objective of the multimodal equal-peak principle is

formulated. The optimization procedure of the multi-

modal equal-peak principle is illustrated in Sect. 3 and

two case studies are given to verify the vibration

suppression performance for TDVAs. The conclusions

of the present study are summarized in Sect. 4.
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2 Mechanical model and optimization objective

2.1 Mechanical model

The primary system is a Euler–Bernoulli beam with

geometrical nonlinearity as Fig. 1a. The geometrical

nonlinearity follows the assumption of von Kármán

type strain–displacement relation [3]. For the light-

damped nonlinear beam subjected to excitations with

broad frequency band and large amplitude, nonlinear

resonances are easily induced around multiple modes.

To suppress the multimodal nonlinear resonances of

the beam to the minimum values, N absorbers are

attached as Fig. 1b. The mechanical model is shown in

Fig. 1.

As shown in Fig. 1a, the symbols E, I, q, A, c and l
are the Young’s modulus, area moment of inertia,

density, cross-sectional area, damping coefficients and

length of the beam, respectively. Fe ¼ f cos Xtð Þ is the
external excitation applied on the beam at the location

point sf , with excitation amplitude f and frequency X.
In Fig. 1b, the symbols mi, ki, ci and si denote the

mass, linear stiffness, damping coefficients and loca-

tion point of ith TDVA, which is attached to suppress

the resonance response around ith mode for the beam.

The feedback signal of ith TDVA is adopted as the

same form givi t � sið Þ, where gi and si are the control
gain and time delay for the ith absorber, respectively.

According to the theory of nonlinear Euler–Bernoulli

beam [3], the equations governing the transverse

displacements of the beam w s; tð Þ and the absorbers

vi tð Þ are written as

qA €w s; tð Þ þ c _w s; tð Þ þ EIw0000 s; tð Þ

� EA

2l
w00 s; tð Þ

Z l

0

w0 s; tð Þð Þ2ds

þ
XN
i¼1

mi €vi tð Þd s� sið Þ ¼ Fed s� sf
� �

;

mi €vi tð Þ þ ki vi tð Þ � w si; tð Þ½ � þ ci _vi tð Þ � _w si; tð Þ½ �
� givi t � sið Þ ¼ 0;

ð1Þ

where the nonlinear term� EA
2l w

00 R l
0
w0ð Þ2ds is induced

by the von Kármán type nonlinear strain–displace-

ment relation assumption, d s� sið Þ and d s� sf
� �

are

the Dirac delta functions representing the concentrated

force of the ith TDVA and the external excitation

applied on the beam. The over dot and the prime

denote the derivative with respect to time t and the

spatial coordinate s, respectively.

The dimensionless truncation equations are derived

by applying the Galerkin truncation and the dimen-

sionless process (See Appendix A for details)

€xpþ2fp _xpþk2pxpþ fnl;pþ
XN
i¼1

li €yi tð Þ/p sið Þ

¼ fp; p¼ 1;2; :::;P;

€yiþb2i yi�
XP
p¼1

/p sið Þxp

" #
þ2cibi _yi�

XP
p¼1

/p sið Þ _xp

" #

�k2i giyi t� sið Þ¼ 0; i¼ 1;2; :::;N;

ð2Þ

where xp, /p sð Þ are the pth dimensionless generalized

coordinate and linear mode shape of the beam, yi and

li are the dimensionless displacement and mass ratio

of ith TDVA, kp and fp are the pth modal dimension-

less frequency and damping ratio of the beam, bi and ci

Fig. 1 The schematic of a the Euler–Bernoulli beam with geometrical nonlinearity attached by TDVAs, b the ith TDVA

123

2432 Meccanica (2021) 56:2429–2449



are the dimensionless frequencies and damping ratio

of ith absorber. fnl;p and fp are the pth nonlinear

restoring force and the modal force of the beam, which

are written as

fnl;p ¼ � f 2EA

2lK3
1

XP
p1¼1

XP
p2¼1

XP
p3¼1

xp1xp2xp3

Z l

0

/00
p3

sð Þ/p sð Þ

Z l

0

/0
p1

sð Þ/0
p2

sð Þds

0
@

1
Ads; fp ¼ /p sf

� �
cos Xtð Þ:

ð3Þ

Equation (2) can be rewritten in a compact form

M €X þ C _X þ KX þ Fn þ Gs ¼ F; ð4Þ

where X ¼ x1; :::; xp; y1; :::; yN
� �T

is the displacement

vector; M, C and K are the coefficient matrices of the

mass, damping and stiffness, respectively; Fn is the

vector of the nonlinear restoring forces generated by

the nonlinear term of the beam. Gs is the vector of the

time-delayed feedback force. F is the external force

vector applied on the beam.

The objective of the multimodal equal-peak prin-

ciple in this study is to simultaneously suppress the

multiple resonance peaks of the frequency response

curve (FRC) for the nonlinear beam to equal and

minimum values. The resonance peaks are local

maximum points of FRC, thus the FRC should be

derived firstly. By applying the AveragingMethod, the

FRC of the beam at the location sc is obtained as (See

Appendix B for details)

a scð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XP
p¼1

Ap;1/p scð Þ
 !2

þ
XP
p¼1

Ap;2/p scð Þ
 !2

vuut ;

ð5Þ

where Ap;1, Ap;2, p = 1, 2,…, P, i = 1, 2,…, N are the

fundamental harmonic coefficients of the nonlinear

beam.

2.2 Optimization objective

In the subsequent analysis, the beam is assumed as

homogenous elastic with the mass density

q ¼ 7860 kg
�
m3, Young’s modulus E ¼ 210 GPa,

length l ¼ 1 m, cross-section area A ¼ 0:00103 m2,

the moment inertia I ¼ 1:71� 10�6 m4 [40] and the

damping ratio fp ¼ 0:1%. To have a common base for

the comparison, the total mass of the absorbers is

l ¼ 0:01, the force excitation is applied at sf ¼ 9l=10

and the FRC is computed at the location point

sc ¼ l=10.

2.2.1 LTVAs coupled to the linear beam

When subjected to small amplitude excitations, the

nonlinear beam degenerates to a linear one since its

nonlinearity is not activated. Besides, when the

excitation frequency is near ith natural frequency of

the beam, its vibration is dominated by the ith mode

and the effect of other modes can be neglected. First,

we apply a linear analysis to gain an insight into the

single modal vibration suppression performance for

the linear beam. The ith modal vibration of the linear

beam can be suppressed by the ith LTVA without

Fig. 2 FRCs of the linear beam with a single LTVA at different locations designed by the fixed-points theory targeted for the a first

mode, b second mode as P ¼ 2
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time-delayed feedback. Thus, Eq. (2) degenerates to a

two DOF system

€xi þ 2fi _xi þ k2i xi þ li €yi tð Þ/i xið Þ ¼ fi;

€yi þ b2i yi � /i sið Þxi½ � þ 2cibi _yi � /i sið Þ _xi½ � ¼ 0:

ð6Þ

Equation (6) has the same form as the equations of

motions for a single lumped mass primary system

controlled by an absorber [26]. Based on the ‘‘fixed-

points theory’’, the equivalent mass ratio, stiffness and

damping coefficients of ith LTVA are determined as

l̂i ¼ li/
2
i sið Þ;

bi ¼
2ki

1þ l̂i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 16þ 23l̂i þ 9l̂2i þ 2 2þ l̂ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3l̂i

p� �
3 64þ 80l̂i þ 27l̂2ið Þ

s
;

ci ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 9l̂i � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3l̂i

p
1þ l̂i

s
:

ð7Þ

By attaching a LTVA designed by Eq. (7), two

resonance peaks around the ith mode for the linear

beam are suppressed to the equal minimum value as

ai scð Þ ¼
/i sf
� �

/i scð Þ
�� ��K1

Ki

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ l̂i
l̂i

s
; ð8Þ

where Ki is the ith modal stiffness of the linear beam,

ai scð Þ is a monotonically decreasing function that

depends on l̂i. It indicates that for a fixed mass ratio of

the LTVA, to suppress the peak amplitude of the beam

around ith mode to its minimum value, the ith LTVA

should be assembled at the maximum point of ith

modal shape for the beam. Figure 2a, b show the FRCs

of the linear beam with a single LTVA at different

locations designed by Eq. (7) targeted for the first and

second mode.

From Fig. 2, it can be seen that for the fixed mass

ratio, the single LTVA located at the maximum of the

ith linear mode shape could suppress the resonance

peaks of the linear beam around ith mode to the equal

and minimum values approximately. Besides, due to

the damping and modal coupling effects of the beam,

the two peaks either around the first and second modes

are not strictly equal, but the vibration suppression

performance of the LTVA is almost not affected.

To extend the fixed-points theory to the multimodal

vibration suppression issue and suppress the peaks

around multiple modes to the equal and minimum

values, multiple LTVAs should be assembled. The

stiffness and damping coefficients of ith absorber,

which targets for the ith mode of the beam, can be

determined referring to Eq. (7) and their mass ratios

are determined according to

ai scð Þ = aiþ1 scð Þ; i ¼ 1; ::;N � 1

XN
i¼1

li ¼ l;
ð9Þ

where the first equation is applied to ensure the

multiple resonance peaks around each mode for the

beam are equal and the second equation means the

total mass ratio of the LTVAs is l. Equations (7) and
(9) form the generalized fixed-points theory of LTVAs

for multimodal suppression problems. The FRCs of

the linear beam with LTVAs designed by the gener-

alized fixed-points theory for suppressing the reso-

nances around two, three and four modes are shown in

Fig. 3a, b and c, respectively.

Figure 3 illustrates the generalized fixed-points

theory is applicable to suppress the multimodal

vibration of the linear beam. By attaching LTVAs

determined by Eqs. (7) and (9), the resonance peaks

around multiple modes could be suppressed to equal

and minimum values approximately. In the next

section, the multimodal vibration suppression perfor-

mance of LTVAs designed by the generalized fixed-

points theory are explored for the nonlinear beam.

2.2.2 LTVAs coupled to the nonlinear beam

In this section, the nonlinearity of the beam is

considered, the multimodal vibration suppression

performance of the LTVAs for the nonlinear beam is

investigated. Figure 4 shows the FRCs of the nonlin-

ear beam around the first two modes attached by two

LTVAs with increasing force amplitudes for P ¼ 2.

In Fig. 4a for f = 30 kN, the nonlinearity of the

beam is not apparent and its FRC is similar to the

linear beam in Fig. 3a. Then, with the increase of force

amplitude, the nonlinear phenomena of the beam

become more and more apparent. In Fig. 4b for f = 90

kN, the two peaks around the first and second modes

are slightly different. In Fig. 4c for f = 100 kN and

Fig. 4d for f = 150 kN, the two peaks around the

second and first modes are completely detuned and the

multiple steady-state phenomena occur, respectively.
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From the FRCs of the linear beam in Fig. 3 and the

FRCs of the nonlinear beam with increasing excitation

amplitudes in Fig. 4, the challenges of passive LTVAs

designed by the fixed-points theory are revealed as

follows. (i) As Eq. (8), the resonance peaks of the

linear beam depend on the mass ratio of the LTVAs

and a larger mass ratio will lead to lower peaks.

However, in practical engineering, the total absorbers’

mass cannot be too heavy. (ii) As Eq. (7), the values of

absorber’s stiffness and damping coefficients are

Fig. 3 FRCs of the linear beam with LTVAs designed by the

generalized fixed-points theory targeted for the a first twomodes

as P ¼ 2, b first three modes as P ¼ 3, c first four modes as

P ¼ 4. Red lines and black dashed lines are the FRCs with and

without LTVAs. The locations of the four LTVAs are s1 ¼ l=2,
s2 ¼ l=4, s3 ¼ l=6, s4 ¼ l=8, respectively

123

Meccanica (2021) 56:2429–2449 2435



single-valued functions of the absorber’s mass ratio.

Thus, they are not designable for given mass ratios and

assembly locations. For example, compared with the

optimal stiffness of the LTVA given in Eq. (7), a

higher stiffness may reduce the vibration suppression

performance and a lower stiffness may reduce the

loading capacity. (iii) For nonlinear primary systems

in this case, the resonance frequencies are dependent

on the excitation amplitudes and the primary system

presents a hardening behavior. However, Fig. 4 indi-

cates that the vibration characteristics of passive

LTVAs cannot be tuned with the variation of excita-

tion amplitudes. Thus, passive LTVAs with the

generalized fixed-points theory are not appliable to

suppress the multimodal nonlinear vibrations for the

nonlinear beam.

To handle the aforementioned limitations of the

passive LTVAs and suppress the multimodal nonlin-

ear resonances of the nonlinear beam, multiple time-

delayed vibration absorbers (TDVAs) are adopted and

the optimization objective of the multimodal equal-

peak principle is carried out. The objective is to

suppress the resonance peaks around the concerned

modes at the location sc of a nonlinear beam to the

equal and minimum values, which can be formulated

as

Find ps ¼ gi; sif gthat satisfies
Min a sc;p; ps;Xð Þk k1
! Min Max a sc; p; ps;X2i�1ð Þ; a sc;p; ps;X2ið Þ½ �f g
! a sc; p; ps;X2i�1ð Þ ¼ a sc;p; ps;X2ið Þ; i 2 W:

ð10Þ

In Eq. (10), a sc; p; ps;Xð Þ is the FRC of the beam at

the location sc, p ¼ bi; ci; ff g, i 2 W is the vector that

contains the structural parameters of the TDVAs and

force amplitudes, ps ¼ gi; sif g, i 2 W is the vector

that contains control gains and time delays of the

TDVAs, W are the set of modes around which the

resonance peaks are required to be suppressed, X2i�1

and X2i are the resonance frequencies around the ith

mode of the FRC. Due to the designable requirements

Fig. 4 FRCs of the nonlinear beam with LTVAs designed by

the generalized fixed-points theory with Eq. (7) and (9) targeted

for the first and second modes as P ¼ 2, the black and red lines

are the stable and unstable responses, respectively. a the two

peaks are almost equal for the first and second modes at f = 30

kN; b the two peaks are slightly different for the first and second

modes at f = 90 kN; c the two peaks are completely detuned for

the second mode at f = 100 kN; d the two peaks are completely

detuned for the first and second modes at f = 150 kN. The

locations of the two absorbers are s1 ¼ l=2, s2 ¼ l=4,
respectively
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of the structural parameters of TDVAs, p may be

different from the optimal parameters of LTVAs

designed by Eqs. (7 and 9), which is defined as

p0 ¼ b0i ; c
0
i ; f

	 

, i 2 W.

3 Multimodal equal-peak principle with TDVAs

for nonlinear beam

In this section, we carry out three criteria to realize the

goal of multimodal equal-peak principle as Eq. (10)

for the nonlinear beam, which simultaneously sup-

press the resonance peaks around multiple concerned

modes W to the equal and minimum values. First, the

stability criterion restricts the time-delayed parame-

ters ps to the region in which the equilibrium state of

the time-delayed system is stable. Then, the extremes

equal criterion is carried out to figure out the time-

delayed parameters ps with which two resonance

peaks around ith mode of the FRC are equal. Finally,

considering that different time-delayed parameters ps

lead to peaks with different values, the minimum peak

criterion is proposed to select the optimal ps with the

minimum resonance amplitudes.

The complete procedure, including the three crite-

ria, is presented in Appendix C in detail. To illustrate

the proposed procedure and the purpose of the three

criteria, the resonances around the first and second

modes are required to be suppressed in this section,

thus the concerned modes are W = 1; 2f g. For sim-

plicity, the first two modes of the beam are retained

and two TDVAs are attached to minimize the

resonances around the first two modes, thus P ¼ 2

and N ¼ 2. The matrix and vector of Eq. (4) for P ¼ 2

and N ¼ 2 are listed in Eqs. (26, 27, 28, 29, 30 and 31)

in Appendix A. The total mass ratio of the TDVAs is

l ¼ 0:01, the same as the LTVAs in Sect. 2 to have a

common base for the comparison. The optimal

structural parameters of LTVAs determined by

Eqs. (7 and 9) are p0 ¼ b01; b
0
2; c

0
1; c

0
2; f

	 

¼ 0:9813;f

3:9962; 0:0838; 0:019; 0� 105g. The structural

parameters of TDVAs are adopted as p ¼ b1; b2; c1;f
c2; fg ¼ 1:5b01; 1:5b

0
2; 0:3c

0
1; 0:3c

0
2; 0� 105

	 

.

3.1 Stability criterion

In the time-delayed loop, inappropriate time-delayed

parameters destabilize the system and induce the

bifurcation, thus the stability criterion should be

proposed to guarantee the stability of the equilibrium

state. The stability of the equilibrium state can be

determined by the sign of eigenvalues with the

degenerated linear system. The characteristic equation

of the linearized system of Eq. (4) is written as

det Ms2 þ Csþ K þ Gs psð Þ
� �

¼ 0; i 2 W; ð11Þ

where the expressions of the matrix are in Eqs. (26, 27,

28, 29, 30, 31 and 32) in Appendix A.

The eigenvalue of Eq. (11) has the form as

s ¼ aþ ixc, where a and xc are the real and

imaginary parts, respectively. The system is stable if

all the eigenvalues have negative real parts. Therefore,

time-delayed parameters ps ¼ gi; sif g, i 2 W satisfy

the following stability criterion

r1 ¼ psjMax a p; psð Þ½ �\0f g; i 2 W: ð12Þ

Eq. (12) gives the first parameter design criterion

for the multimodal equal-peak principle. Following

Eq. (12), the system is stable with structural param-

eters p and time-delayed parameters ps, otherwise, the

response of the system will diverge due to the

existence of real part eigenvalues.

3.2 Extremes equal criterion

Inspired by the fact that in the linear case shown in

Sect. 2.2.1, the two resonance peaks around ith mode

of the linear beam are equal and minimum with the

optimal LTVAs. Thus, the extremes equal criterion is

proposed firstly to figure out the time-delayed param-

eters ps that tune the two extreme points around ith

mode equally. The resonances are extreme points of

the FRC. According to the FRC of the beam a scð Þ as
Eq. (5) (see Appendix B for details), the frequencies of

the extreme points around ith mode can be figured out

with the first-order derivative of the FRC as

da scð Þ
dX

¼

PP
p¼1

Ap;1/p scð Þ dAp;1

dX
þ
PP
p¼1

Ap;2/p scð Þ dAp;2

dX

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PP
p¼1

Ap;1/p scð Þ
 !2

þ
PP
p¼1

Ap;2/p scð Þ
 !2

vuut
¼ 0; i 2 W;

ð13Þ

where
dAp;1

dX
and

dAp;2

dX
are computed by applying the
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implicit differentiation to Eq. (35). The condition that

the two extreme points around ith mode are equal can

be formulated as

C v2i�1;X2i�1; p; psð Þ ¼ 0; i 2 W;
C v2i;X2i; p; psð Þ ¼ 0; i 2 W;
da sc;p; ps;Xð Þ

dX

����
X¼X2i�1

¼ 0;
da sc; p; ps;Xð Þ

dX

����
X¼X2i

¼ 0; i 2 W;

a sc;p; ps;X2i�1ð Þ ¼ a sc; p; ps;X2ið Þ. i 2 W;

8>>>><
>>>>:

ð14Þ

In Eq. (14), C v;X; p; psð Þ is the amplitude modu-

lation equation (see Appendix B in detail). The first

and second equations obtain the harmonic response

coefficients v2i�1 and v2i at X2i�1 and X2i, respec-

tively. Combining the calculated v2i�1, v2i with

Eq. (5), the response amplitudes at X2i�1 and X2i are

obtained as a sc; p; ps;X2i�1ð Þ and a sc; p; ps;X2ið Þ.
The third and fourth equations ensure that

a sc; p; ps;X2i�1ð Þ and a sc; p; ps;X2ið Þ are two extreme

points around ith mode. The fifth equation guarantees

that the two extreme points have the same value.

Eq. (14) can be rewritten as a concise form

r2;a ¼ ps a sc;p; ps;X2i�1ð Þ ¼ a sc; p; ps;X2ið Þjf g \ r1; i 2 W:

ð15Þ

By applying Eq. (15) for ith mode, the obtained

time-delayed parameters can tune the two extreme

points equally around the ith mode. Figures 5 and 6

depict the time-delayed parameters obtained by

Eq. (15) and corresponding FRCs for the first and

second mode at f ¼ 200 kN, respectively.

The time-delayed parameters in Fig. 5a are

obtained by Eq. (15) for the first mode at

s2 ¼ 0:0079636. With the time-delayed parameters

shown in Fig. 5a, the 3D diagrams of FRCs are

depicted in Fig. 5b. The 3D diagrams in Fig. 5b

illustrate that in this case, the FRC consists of the main

resonance curve (MRC, defines as the lower branch of

FRC) and the detached resonance curves (DRCs,

defines as the upper branches of FRCs) around the first

and second modes. The DRCs are induced by the

system nonlinearity under large amplitude excitation.

From the 3D diagram of FRCs around the first mode

shown in Fig. 5b, it can be seen that with the variation

of time-delayed parameters from points Q1 to Q2, two

resonance peaks of the MRCs around the first mode

are equal. Additionally, the DRCs are getting closer to

the MRCs with the decrease of s1 and then the two

branches merge at Q2. From points Q2 to Q3, the two

branches separate from each other, thus the equal-peak

property is not realized for 0\s1\0:02. The 3D

diagram of FRCs around the second mode in Fig. 5b

shows that the equal-peak property is realized and the

peak values are almost unaffected by various s1
around the second mode.

To analyze the modulation effects of different ps on

resonance peaks around the first mode of the beam,

three sections of the 3D diagram are given in Fig. 5b

when time-delayed parameters are fixed on points Q1–

Q3. The three sections indicate that there are three

different cases around the first mode, defined as equal-

peak, critical and peak-minimum cases in this study.

The reason that the three different cases occurred are

Fig. 5 a The time-delayed parameters ps according to Eq. (15) for the first mode at f ¼ 200 kN, s2 ¼ 0:0079636, b 3D diagram of

FRCs with the time-delayed parameters in a and three sections at points Q1–Q3
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given as follows. Following Eq. (13), the extreme

points a sc; p; ps;X2i�1ð Þ, a sc; p; ps;X2ið Þ in frequency
domain are calculated by equating the first derivative

of the FRC to zero, thus they may either be the local

maximum point (peak) of MRC or the local minimum

point (minimum) of DRC with the condition

a sc; p; ps;X2i�1ð Þ ¼ a sc; p; ps;X2ið Þ. Referring to the

incremental-iteration procedure in Appendix C with

Eq. (15), there are three different cases depending on

whether a sc; p; ps;X2ið Þ is a maximum or a minimum

point. In the equal-peak case, a sc; p; ps;X2ið Þis the

second peak of the MRC; in the peak-minimum case,

a sc; p; ps;X2ið Þis the local minimum point of the

DRC; in the critical case, the minimum point of DRC

merges with the maximum point of MRC. Therefore,

the critical case is the boundary between the equal-

peak and peak-minimum cases.

In Fig. 6a, the time-delayed parameters are

obtained by Eq. (15) for the second mode at

s1 ¼ 0:151554 s, f ¼ 200 kN. The 3D diagram of

Fig. 7 The FRCs and the eigenvalues at a sc; p; ps;X2ið Þ for a point Q2, b point Q3, c point Q5, d point Q6

Fig. 6 a The time-delayed parameters ps according to Eq. (15) for the second mode at f ¼ 200 kN, s1 ¼ 0:151554 s, b 3D diagram of

FRCs with the time-delayed parameters in a and three sections at points Q4-Q6
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FRCs in Fig. 6b is obtained with the time-delayed

parameters shown in Fig. 6a. With the variation of

time-delayed parameters from points Q4 to Q6, the

equal-peak property is realized for the first mode as

0\s2\0:011 and the second mode as

0:0025\s2\0:011, while it is not realized for the

second mode as 0\s2\0:0025. Thus, three different

cases also exist for the second mode. Similar with the

cases defined for the first mode, Q4, Q5 and Q6 are the

equal-peak, critical and peak-minimum cases around

the second mode, respectively.

Then, the occurrence conditions of the three

different cases are analyzed. It discovered from the

previous work [39] that for different cases around the

ith mode, the second extreme point a sc; p; ps;X2ið Þ has
different stability conditions, which could be detected

by analyzing its eigenvalues. The characteristic equa-

tion of the extreme point a sc; p; ps;X2ið Þ is

det J a sc; p; ps;X2ið Þð Þ � kI½ � ¼ 0; i 2 W; ð16Þ

where J is the Jacobian matrix as Eq. (37), I is the

identity matrix and k is the eigenvalue of the extreme

points a sc; p; ps;X2ið Þ. Figure 7 shows the FRCs and

the corresponding eigenvalues of a sc; p; ps;X2ð Þ and
a sc; p; ps;X4ð Þ for points Q2, Q3 targeted for the first

mode and Q5, Q6 targeted for the second mode.

From the FRCs of three different cases and

eigenvalues of a sc; p;ps;X2ð Þ, a sc; p; ps;X4ð Þ, Fig. 7
shows that for the ith mode, the three different cases

relate to different sign of the maximum real part of

eigenvalues at the response a sc; p;ps;X2ið Þ. The

maximum real part of eigenvalue at a sc; p; ps;X2ið Þ
is negative, zero and positive for the equal-peak,

critical and peak-minimum case around the ith mode,

respectively. Thus, the conditions of three cases

around ith mode for nonlinear beams is given as

follows

Max Real eig J a sc; p; ps;X2ið Þð Þ½ �½ �f g
\0 equal-peak;
¼ 0 critical case;
[ 0 peak-minimum:

8<
:

ð17Þ

The previous works of equal-peak principle for

single modal vibration suppression [19, 24] show that

even though the DRC may be induced in nonlinear

region, its probability is mech less than MRC.

Additionally, Figs. 5 and 6 show that for the equal-

peak case, the resonance peak of MRC are lower than

that of critical and peak-minimum cases, thus time-

delayed parameters for the equal-peak case should be

selected to suppress the multiple resonances for the

nonlinear beam. Therefore, the extremes equal crite-

rion that figures out the equal-peak case is written by

combining Eqs. (15 and 17)

r2 ¼ r2;a ¼ ps a sc; p; ps;X2i�1ð Þ ¼ a sc; p; ps;X2ið Þjf g \ r1; i 2 W;

subjected to psjMax Real eig J a sc; p; ps;X2ið Þð Þ½ �½ �f g\0f g:

ð18Þ

The extremes equal criterion Eq. (18) is the second

criterion for realizing the multimodal equal-peak

principle of nonlinear beams. For degenerated linear

systems, the time-delayed parameters ps with first

equation in Eq. (18) always lead to the equal-peak case

since the DRCs are induced by systems nonlinearity

and do not exist in linear systems. However, for

nonlinear systems, the first equation in Eq. (18) is

insufficient due to the merging phenomena with DRCs

and MRCs. The second equation in Eq. (18) is a

Fig. 8 a Optimal control gains for the TDVAs with different force amplitude f, b optimal time delays for the TDVAs with different

force amplitude f
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supplementary condition proposed to distinguish the

equal-peak case for the nonlinear systems. Thus, by

the extremes equal criterion Eq. (18), the obtained the

time-delayed parameters always lead to equal-peak

case even for a nonlinear system.

3.3 The minimum peak criterion

In this section, the minimum peak criterion is carried

out to figure out the optimal time-delayed parameters

that can suppress the equal peaks around ith mode to

the minimum values, which is described as

r3 ¼ ps Min a sc; p;ps;X2i�1ð Þ ¼ a sc; p; ps;X2ið Þ½ �; ps 2 r2jf g; i 2 W:

ð19Þ

Eq. (19) is the third criterion for the multimodal

equal-peak principle that selects the optimal time-

delayed parameters from the equal-peak case deter-

mined by the extremes equal criterion Eq. (18). With

the minimum peak criterion Eq. (19), the optimal

Fig. 9 The FRCs for the nonlinear beam attached by the LTVAs (red dashed lines) and TDVAs (blue lines) at a f = 50 kN, b f = 100 kN

and c f = 150 kN. The locations of the two absorbers are s1 ¼ l=2, s2 ¼ l=4, respectively
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time-delayed parameters for the first and second

TDVA with various force amplitudes are shown in

Fig. 8 a and b.

From Fig. 8a, it can be seen that the optimal g1 and

g2 decrease with the increase of force amplitude f and

the value of g1 is less than that of g2 for fixed force

amplitude. Figure 8b shows that with the increase of

force amplitude, the optimal s1 increases and the

optimal s2 almost unchanged. By attaching two

TDVAs with the optimal time-delayed parameters

shown in Fig. 8a and b, the resonance peaks around

the first and second modes can be simultaneously

suppressed to the equal and minimum values. There-

fore, with the proposed three criteria, the multimodal

equal-peak principle for the nonlinear multimodal

vibration suppression problems is realized.

By applying the proposed multimodal equal-peak

principle with the three criteria, the optimal time-

delayed parameters of TDVAs are obtained with

increasing excitation amplitudes, as shown in Table 1.

With the first five modes retained (P ¼ 5), Fig. 9

depicts the FRCs of the nonlinear beam attached by the

TDVAs with time-delayed parameters shown in

Table 1 and the passive LTVAs designed by Eqs. (7

and 9).

As shown in Fig. 9a, b and c, the multimodal

vibration suppression effects of LTVAs and TDVAs

for the nonlinear beam are compared. For LTVAs at

f = 50 kN in Fig. 9a, the two peaks slightly diverge for

the first and second modes. With the increase of force

amplitude to f = 100 kN in Fig. 9b and f = 150 kN in

Fig. 9c, the resonance peaks around the second and the

first mode are completely detuned, respectively. Thus,

passive LTVAs are not applicable for nonlinear

multimodal vibration suppression with increasing

amplitudes. For TDVAs shown in Fig. 9a, b and c,

the optimal time-delayed parameters are determined

by the proposed principle with three criteria for

increasing force amplitude. The optimally designed

TDVAs can simultaneously suppress the multimodal

nonlinear resonances of the nonlinear beam to the

equal and minimum values. Thus, TDVAs and the

proposed multimodal equal-peak principle can be

applied to suppress the multimodal resonances for the

nonlinear beam.

3.4 Vibration suppression for three modes

of the nonlinear beam with three TDVAs

In the previous case study, even the peaks around the

first two modes are suppressed to the equal and

minimum values, the resonance peak around the third

mode is still very high since it is not affected by the

two TDVAs. To suppress the nonlinear resonance

around the third mode, the third absorber is introduced

and the concerned modes that need to be suppressed

are W = 1; 2; 3f g. The total mass of the three

absorbers remains unchanged as l ¼ 0:01. The ith

(i = 1, 2, 3) absorber is attached to suppress the

resonances around the ith (i = 1, 2, 3) mode. Based on

the generalized fixed-points theory for LTVAs as

Eqs. (7) and (9), their structural parameters are

obtained and listed in Table 2, thus p0 ¼ b01; b
0
2;

	
b03; c

0
1; c

0
2; c

0
3; fg¼ 0:9814; 3:9962; 8:9988; 0:08349;f

0:01895; 0:007092; 0 � 105


. For the TDVAs, the

structural parameters are no longer limited by the

design rule for LTVAs as Eqs. (7) and (9) since the

actively introduced time-delayed feedback can tune

the equivalent stiffness and damping properties of the

Table 1 Optimal time delays and the control gains of the two TDVAs for various force amplitudes determined with themini-

mum peak criterion Eq. (19)

,i ig τ
f (kN)

g1 g2 t1 t2

50 1.2007 1.2482 0.1457 0.00804

100 1.1888 1.2449 0.1457 0.00804

150 1.1700 1.2394 0.1486 0.00804
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absorbers. In this case, the mass ratio of each TDVA is

assumed the same as the LTVAs, while the stiffness

and damping coefficients are p ¼ b1; b2; b3;f
c1; c2; c3; fg ¼ 1:5b01; 1:5b

0
2; 1:5b

0
3; 0:45c

0
1; 0:45c

0
2;

	
0:45c03; 0 � 105g. By adopting the similar procedure

and the steps shown in Appendix C, the structural

parameters of TDVAs in this case are updated from the

values of p0 to p. The optimal time-delayed param-

eters of TDVAs for structural parameter coefficients p

are determined and shown in Table 3 for various

excitation amplitudes. With the first five modes

retained (P ¼ 5), Fig. 10 shows the FRCs of the

nonlinear beam attached by three TDVAs and three

LTVAs designed by Eqs. (7) and (9).

As shown in Fig. 10a, b and c, FRCs are given for

the nonlinear beam controlled by LTVAs with the

parameters in Table 2 and TDVAs with the optimal

time-delayed parameters in Table 3 for various force

amplitudes. For the LTVAs at f = 50 kN in Fig. 10a,

the two peaks are slightly different for the first three

modes. At f = 100 kN in Fig. 10b, the peaks around

the second and third modes are completely detuned. At

f = 150 kN in Fig. 10c, only one peak with high value

exists for the first, second and third modes. Thus, the

passive LTVAs cannot be applied to suppress the

multiple resonances for the nonlinear beam with

increasing force amplitude. While for TDVAs with

increasing force amplitude, the optimal time-delayed

parameters are determined by the proposed principle

with three criteria. As shown in Fig. 10a, b and c, the

optimally designed TDVAs simultaneously suppress

the multiple resonance peaks of the nonlinear beam to

the equal and minimum values for various force

amplitudes. Thus, the TDVAs are more beneficial for

realizing the multimodal equal-peak optimization

objective for suppressing the nonlinear multimodal

vibration of the nonlinear beam.

4 Conclusions

In this study, multiple TDVAs are applied to suppress

the multiple resonances of the nonlinear beam. The

optimal time-delayed parameters of the TDVAs are

obtained by the proposed multimodal equal-peak

principle with three criteria. First, with the stability

criterion, the time-delayed parameters are restricted in

the region in which the equilibrium is stable. Then, the

extremes equal criterion is proposed to ensure two

resonance peaks around each mode are equal. Next,

Table 2 Structural parameters of the LTVAs

LTVAs l01 l02 l03 c01 c02 c03 b01 b02 b03

Value 0.009454 0.000479 0.00006706 0.08349 0.01895 0.007092 0.9814 3.9962 8.9988

Table 3 Optimal time delays and the control gains of the three TDVAs for various force amplitudes determined by the

minimum peak criterion Eq. (19)

,i ig τ

f (kN)
g1 g2 g3 t1 t2 t3

50 1.20032 1.24769 1.24874 0.11356 0.006275 0.00105

100 1.18838 1.24433 1.24703 0.11445 0.006285 0.00105

150 1.16922 1.23880 1.24422 0.11625 0.006295 0.00104
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the minimum peak criterion is established to figure out

the optimal time-delayed parameters that suppress the

peaks around multiple modes to equal and minimum

values. Finally, two case studies for suppressing the

nonlinear resonances around two and three modes are

given. The results show that the optimally designed

TDVAs simultaneously suppress the multiple nonlin-

ear resonance peaks of the beam to the equal and

minimum values for increasing force amplitude.

Besides, compared with the passive LTVAs for the

same mass ratio, the resonance peaks of the beam with

TDVAs are suppressed to much lower levels and the

effective working band of the force amplitude is

extended to a broader range.

In summary, with the proposed multimodal equal-

peak principle, TDVAs can realize the beneficial

performance for multimodal vibration suppression of

the nonlinear beam. Thus, the proposed TDVAs and

Fig. 10 The FRCs for the nonlinear beam attached by the LTVAs (red dashed lines) and TDVAs (blue lines) at a f = 50 kN, b f = 100

kN and c f = 150 kN. The locations of the three absorbers are s1 ¼ l=2, s2 ¼ l=4, s3 ¼ l=6, respectively
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the multimodal equal-peak principle have remarkable

application prospects in nonlinear vibration suppres-

sion fields under excitations with broad frequency

band and large amplitude, such as the civil engineering

and aerospace.
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Appendix A

The Galerkin truncation is adopted to discretize the

partial differential equation Eq. (1), the deflection of

the beam can be represented by a finite sum as

w s; tð Þ �
XP
p¼1

/p sð Þqp tð Þ; ð20Þ

where P is the number of modes retained. qp tð Þ and
/p sð Þ are the pth generalized coordinate and mode

shape function. For hinged-hinged supported beam,

the mode shape function is given as follow

/p sð Þ ¼
ffiffiffi
2

p
sin

pps
l

� �
: ð21Þ

The mode shape function satisfies the orthogonality

conditions as

Z l

0

qA/p1 sð Þ/p2 sð Þds ¼
qAl; p1 ¼ p2;

0; p1 6¼ p2:

(
ð22Þ

Assuming the beam is subjected to the harmonic

concentrated excitation with amplitude f and fre-

quency X

Fe ¼ f cos Xtð Þ: ð23Þ

Substituting Eq. (20) into Eq. (1), multiplying both

sides by the mode function /p sð Þ, then integrating the

result along the length of the beam l, one can obtain

Pþ N Galerkin-reduced equations

Mp €qp þ Cp _qp þ Kpqp

�
Z l

0

EA

2l

Z l

0

XP
p¼1

/0
p sð Þqp

 !2

ds

2
4

3
5XP

p¼1

/00
p sð Þqp

8<
:

9=
;/p sð Þds

þ
XP
i¼1

mi €vi tð Þ/p sið Þ ¼ Fp; p ¼ 1; 2; :::;P;

mi €vi þ ki vi �
XP
p¼1

/p sið Þqp

" #
þ ci _vi �

XP
p¼1

/p sið Þ _qp

" #

� givi t � sið Þ ¼ 0; i ¼ 1; 2; :::;N;

ð24Þ

where the pth modal mass, damping, stiffness and

force are

Mp ¼
Z l

0

qA/2
p sð Þds;

Cp ¼
Z l

0

c/2
p sð Þds;

Kp ¼
Z l

0

EI /00
p sð Þ

h i2
ds ¼

Z l

0

EI/0000
p sð Þ/p sð Þds;

Fp ¼ f cos Xtð Þ/p sf
� �

:

ð25Þ

Introducing the dimensionless transform parame-

ters as.

�t ¼ �x1t ¼
ffiffiffiffiffi
K1

M1

q
t,�xp ¼ qpK1

f ,�yi ¼ viK1

f , �xp ¼
ffiffiffiffiffi
Kp

Mp

q
¼ffiffiffiffiffi

Kp

M1

q
,�gi ¼

ffiffiffiffi
ki
mi

q
, �fp ¼ Cp

2
ffiffiffiffiffiffiffiffi
M1K1

p , �ci ¼ ci
2
ffiffiffiffiffiffi
miki

p , �kp ¼ �xp

�x1
,

�bi ¼
�gi
�x1
,�li ¼ mi

M1
,�si ¼ x1si, �X ¼ X

x1
,�gi ¼ gi

�liKi
,

substituting the above dimensionless parameters

into Eq. (24), then dropping the bar of the dimension-

less symbols �t, �xp, �yi, �xp, �gi, �fp, �ci, �kp, �bi, �li, �si, �X and

�gi for convenience, we can derive Eq. (2).

For P ¼ 2, N ¼ 2 in the case from Sect. 3.1 to

Sect. 3.3, the matrix and vector of Eq. (4) are

M ¼

1 0 l1/1 s1ð Þ l2/1 s2ð Þ
0 1 l1/2 s1ð Þ l2/2 s2ð Þ
0 0 1 0

0 0 0 1

2
664

3
775; ð26Þ

C ¼

2f1 0 0 0

0 2f2 0 0

�2b1c1/1 s1ð Þ �2b1c1/2 s1ð Þ 2b1c1 0

�2b2c2/1 s2ð Þ �2b2c2/2 s2ð Þ 0 2b2c2

2
664

3
775;

ð27Þ
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K ¼
k21 0 0 0

0 k22 0 0

�b21/1 s1ð Þ �b21/2 s1ð Þ b21 0

�b22/1 s2ð Þ �b22/2 s2ð Þ 0 b22

2
664

3
775; ð28Þ

Fn ¼ fnl;1 fnl;2 0 0½ �T; ð29Þ

X ¼ x1 x2 y1 y2½ �T; ð30Þ

F ¼ /1 sf
� �

cos Xtð Þ /2 sf
� �

cos Xtð Þ 0 0
� �T

:

ð31Þ

The last matrix on the left side of Eq. (11) is

Gs psð Þ ¼

0 0 0 0

0 0 0 0

0 0 �g1k
2
1e

�ss1 0

0 0 0 �g2k
2
2e

�ss2

0
BB@

1
CCA:

ð32Þ

Appendix B

The Averaging Method is adopted to derive the

approximate steady-state harmonic response of

Eq. (2). The approximate solution is assumed as

xp ¼ Ap;1 cos Xtð Þ þ Ap;2 sin Xtð Þ
_xp ¼ �Ap;1X sin Xtð Þ þ Ap;2X cos Xtð Þ

(
; p ¼ 1; 2:::;P;

yi ¼ Bi;1 cos Xtð Þ þ Bi;2 sin Xtð Þ

_yi ¼ �Bi;1X sin Xtð Þ þ Bi;2X cos Xtð Þ

(
; i ¼ 1; 2:::;N;

ð33Þ

where Ap;1, Ap;2, Bi;1, Bi;2 are slow-varying functions

of t. Substituting Eq. (33)into Eq. (2), reducing the

trigonometric function and dropping the higher-order

harmonic terms, then equating the coefficients of sine

and cosine terms to zero, one can derive the amplitude

modulation equations

v0 ¼ C v;X; p;psð Þ; ð34Þ

where v ¼ Ap;1;Ap;2;Bi;1;Bi;2

	 
T
, ps ¼ gi; sif g,

p ¼ 1; 2:::;P, i ¼ 1; 2:::;N. The response of the sys-

tem can be obtained by solving the equation

C v;X; p; psð Þ ¼ 0: ð35Þ

The non-dimensional frequency response curve

(FRC) of the beam at the location point sc is

a scð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XP
p¼1

Ap;1/p scð Þ
 !2

þ
XP
p¼1

Ap;2/p scð Þ
 !2

vuut :

ð36Þ

The stability of the steady-state solution is deter-

mined by the corresponding eigenvalues of the

Jacobian matrix. The Jacobian matrix of Eq. (34) for

the response coefficients v, time-delayed parameters

ps ¼ gi; sif g; i ¼ 1; :::;N at the resonance frequencies

X is

J ¼ oC
ov

¼ J v;X; p; psð Þ: ð37Þ

Appendix C

Figure 11 shows the procedure of realizing the

multimodal equal-peak principle for nonlinear multi-

modal vibration suppression. In Fig. 11, p0 is struc-

tural parameters of LTVAs designed by the

generalized fixed-points theory as Eqs. (7)and (9), p

is structural parameters of TDVAs that may be

different from p0 due to some designable requirements

in practical, ps is the time-delayed parameters of the

TDVAs, R is the harmonic coefficients at all the

resonance frequencies, P is the modes retained for the

nonlinear beam and N is the number of the TDVAs

with N�P. By applying the procedure as Fig. 11, the

optimal ps with the minimum peaks around the

concerned modes are obtained for the structural

parameters of the TDVA p with increasing force

amplitudes f . The main steps of the procedure are

shown as follows:

Step 0: Start the optimization procedure.

Step 1: For f ¼ 0, the beam degenerates into a

linear one, the LTVAs with the structural parameters

determined by Eqs. (7)and (9), the initial time-delayed

parameters ps ¼ 0, can suppress the peaks for the first

two modes to the equal values (see Fig. 3a for details).

For the case from Sect. 3.1 to 3.3, the structural

parameters of the LTVAs are

p0 ¼ b01; b
0
2; c

0
1; c

0
2; f

	 

¼ 0:9813; 3:9962; 0:0838; 0:019; 0f g: ð38Þ

The vector in Eq. (38) are selected as the initial

structural parameters of TDVAs. The initial responses
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at all the resonance frequencies are determined by

analyzing the degenerated linear system, as

R ¼ v0
1;X

0
1; v0

2;X
0
2; v0

3;X
0
3; v0

4;X
0
4

	 

; ð39Þ

where v0
i , i ¼ 1; 2; 3; 4 is the vector of harmonic

coefficients at the resonance frequency

X0
i ,i ¼ 1; 2; 3; 4 for the degenerated linear system.

The values of the symbols in Eq. (39) are

X0
1 ¼ 0:942472;X0

2 ¼ 1:0399;X0
3 ¼ 3:95392;X0

4

¼ 4:04211;

ð40Þ

v0
1¼ 2:55104;3:63826;�0:0549022;0:000147676;�12:2292;33:4645;2:61703;3:85413f g;

v0
2¼ �1:84668;3:99843;�0:0558216;0:000204213;�19:0512;�22:2499;2:06857;4:28766f g;

v0
3¼ �0:0479816;0:0356316;�1:20162;�2:03108;0:0019377;�0:00640033;35:144;�68:9216f g;

v0
4¼ �0:04907;�0:0308489;1:09542;�2:00446;0:00620877;�0:000535353;39:8503;60:1105f g:

ð41Þ

In this case, the structural parameters of TDVAs are

Fig. 11 The incremental-iteration procedure of the multimodal equal-peak principle for multimodal vibration suppression
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p ¼ b1; b2; c1; c2; ff g
¼ 1:5b01; 1:5b

0
2; 0:3c

0
1; 0:3c

0
2; 0� 105

	 

: ð42Þ

The structural parameters of TDVA should be

updated from p0 to p in kt steps, each augmentation is

Dp ¼ p � p0ð Þ=kt. The elements b1, b2, c1, c2, f are

sequentially updated. It should be noted that every

update step of the parameters from p0 to p may lead to

the divergence of the two peaks around eachmode (see

Fig. 4 for details). The introduced time-delayed

parameters ps ¼ gi; sif g; i ¼ 1; :::;N are calculated

in Step 2 to retune the resonance peaks equally and

minimum.

Step 2: In the kth update process of structural

parameters, pk ¼ pk�1 þ Dp, where the subscript k

indicates the kth iteration. Update the optimal time-

delayed parameters ps, the responses at resonance

frequencies R for suppressing the peaks around all the

modes concerned as follows:

Step 2.1: Update ps for suppressing the peaks

around the ith mode.

Fix sj for j 6¼ i, update other parameters in ps by

Eq. (14), the resonance peaks around the first mode are

tuned equally by the extremes equal condition Eq. (18)

and suppressed to the minimum values by the mini-

mum peak condition Eq. (19). Meanwhile, the stability

of the equilibrium state should be ensured by the

stability condition Eq. (12). The optimal ps and

corresponding R are selected as the initial values for

suppressing the resonance peaks around the next

mode.

Step 2.2: Repeat Step 2.1 for other concerned

modes, update ps and R, then obtain the optimal ps for

suppressing the peaks around all modes concerned.

Step 3: At the end of kth loop, the structural

parameters of TDVAs pk, the force amplitudes f ,

corresponding optimal time-delayed parameters ps are

selected as the initial values of (k ? 1)th loop and then

repeat Step 2.

Step 4: End the loop if k ¼ kt and obtain the

structural parameters of TDVAs p, the optimal time-

delayed parameters ps, harmonic coefficients at all

resonance frequencies R with various force ampli-

tudes f .
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