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Abstract The responses of a simple harmonically

excited dry friction oscillator are analysed in the case

when the coefficients of static and kinetic coefficients

of friction are different. One- and two-parameter

bifurcation curves are determined at suitable parame-

ters by continuation method and the largest Lyapunov

exponents of the obtained solutions are estimated. It is

shown that chaotic solutions can occur in broad

parameter domains—even at realistic friction param-

eters—that are tightly enclosed by well-defined two-

parameter bifurcation curves. The performed analysis

also reveals that chaotic trajectories are bifurcating

from special asymmetric solutions. To check the

robustness of the qualitative results, characteristic

bifurcation branches of two slightly modified oscilla-

tors are also determined: one with a higher harmonic in

the excitation, and another one where Coulomb

friction is exchanged by a corresponding LuGre

friction model. The qualitative agreement of the

diagrams supports the validity of the results.

Keywords Continuation method �Continuation core
(COCO) � Lyapunov exponent � LuGre model

1 Introduction

The effects of dry friction on the relative motion of

contacting bodies are difficult to predict. On the one

hand, the underlying physical mechanisms are very

complex. On the other hand, various mathematical

difficulties can appear during the analysis of frictional

systems, that require special tools to solve [1].

Moreover, friction models applied to characterize the

contact of rigid bodies can lead to indeterminate or

self-inconsistent solutions [2, 3].

To understand the dynamics of frictional systems,

two typical settings were often studied in the literature:

oscillators on a moving belt [4–9] and harmonically

forced oscillators [10–15]. In the present contribution,

special responses of a harmonically excited block-

spring system (see Fig. 1) are analysed.
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This model is often examined in theoretical contri-

butions (see e.g., [1, 16–18]), but there are several

engineering applications, too—from wiper blades and

cotton picking machines to ocean wave energy

converters [19–21] where it can serve as a proper

description of the dynamics.

The dimensionless equation of motion assumes the

form

€xþ x ¼ cosðXtÞ � S f ð _xÞ; ð1Þ

where t ¼ s
ffiffiffiffiffiffiffiffiffi

k=m
p

, x ¼ zk=F0,
_ðÞ denotes d/dt, and

X ¼ x0

ffiffiffiffiffiffiffiffiffi

m=k
p

. The kinetic friction is characterized by

S ¼ lmg=F0, while the static friction parameter is

denoted by S0 ¼ l0mg=F0 [ S.

Coordinate x is measured from the untensioned

state of the spring and the friction characteristic is

described by the function

f ð _xÞ ¼
1 if _x[ 0

½�l0=l; l0=l� if _x ¼ 0

�1 if _x\0

8

>

<

>

:

; ð2Þ

where l and l0 denote the kinetic and static coefficient
of friction, respectively, and l0=l ¼ S0=S.

Den Hartog [10], one of the pioneers in the field of

the theory of vibrations, obtained the exact, non-

sticking solution of the steady state motion of this

oscillator, assuming that the solutions are symmetric.

Shaw [11] made a big leap towards the understanding

of frictional systems by considering different static

and kinetic coefficients of friction and complementing

Den Hartog’s work with a linear stability analysis.

Pratt and Williams [12] and Hong and Liu [13, 14]

extended the aforementioned studies by the numerical

examination of solutions which have multiple sticking

segments during a period. Natsiavas [15] and Deim-

ling [22] discussed the stability of solutions—the latter

study is based on the theory of differential inclusions

(set-valued differential equations). The combined

effects of different friction coefficients and viscous

damping were discussed in [23], where the stability

properties of various solution types were determined

with the corresponding bifurcation diagrams, as well.

Our study provides an extension of these results by a

more detailed study and identification of bifurcations

and the examination of chaotic responses. Systems

with Coulomb friction belong to the class of piecewise

smooth systems that are usually analysed based on the

Filippov theory [1, 18]. However, the extension of

Filippov’s method to the case of different static and

dynamic friction coefficients is not straightforward.

This is why special methods are necessary for the

analysis of this case, as it was shown in [24], where the

so-called Switch Model was introduced for this

purpose. In the present contribution, we use a properly

modified variant of the Switch Model.

Several authors reported the appearance of numer-

ically found asymmetric solutions (with different

maximal displacements in the positive and negative

directions), e.g., [11, 23, 24], especially at negative

values of the viscous damping factor. The conditions

of symmetric, non-sticking solutions at pure dry

friction damping were derived in [25]. These results

led to the analytical formulation of a family of

asymmetric responses [26] at subharmonic reso-

nances, where the ratio of the excitation frequency

and the natural frequency is X ¼ 1=2, 1/4, 1/6,.... The

possibility of chaotic responses in general frictional

systems was examined in [27], based on the ideas laid

down in [28]. It was pointed out in [29] that the non-

reversible nature of dry friction can lead to chaotic

vibrations.

Regarding system (1), it was shown in [30] that the

parameter domain of asymmetric periodic solutions

opens up if the static and dynamic coefficients of

friction are different and the occurrence of chaotic and

transient chaotic behaviour was pointed out at X ¼
1=2 and S0=SJ8. Such a big ratio between the

coefficients of friction is rather extreme in models of

physical systems, thus, this finding seemed to be

irrelevant. However, the recently published experi-

ments of Marino and Cicirello [31] showed that the

theoretically predicted asymmetric solutions can be

detected in reality. Moreover, certain data sets could

be interpreted as transient chaotic responses. These

results motivated the present study.

Fig. 1 Harmonically excited frictional oscillator. F0 denotes

the forcing amplitude, x0 is the angular frequency of excitation,

while m and k are the mass and spring stiffness, respectively.

The displacement coordinate is z and s denotes the real, physical
time
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Our goal is the extension of the bifurcation analysis

reported in [30] and the determination of the connec-

tion between asymmetric and chaotic solutions. It is

worth to note that in real physical systems the friction

parameters vary stochastically during motion due to

various mechanical and physical interactions. Thus, a

potential sensible and up-to-date technique to the

analysis of these systems is the application of statis-

tical tools [32, 33]. We opted another approach: to

check the robustness of the qualitative results obtained

for the harmonically excited dry-friction oscillator,

characteristic bifurcation curves of two slightly mod-

ified oscillators were also determined. One of the

oscillators exhibits a higher harmonic in the excita-

tion, while Coulomb friction is exchanged by a

corresponding LuGre friction model [34] in the other

one. The obtained diagrams show good qualitative

agreement with the corresponding diagrams of the

original model. The LuGre model is more realistic

than the Coulomb model (e.g., it can describe the so-

called pre-sliding phenomenon) and it is often used in

high-precision control applications [35]. Notably,

changes in the friction force were found to follow

the changes in relative velocity with some delay,

especially in case of lubricated interfaces [36]. As a

consequence of this frictional lag or frictional mem-

ory, the friction force is larger for increasing velocities

than for decreasing ones. The LuGre model exhibits

this type of hysteresis in the friction force-velocity

relationship, but it is worth to mention that modified

versions of the model can incorporate more refined

lag/memory effects, too [37].

The present study is based on the reformulation of

the system’s description in Sect. 2 for the application

of the continuation method. One and two-parameter

bifurcation curves are determined in Sects. 3 and 4,

respectively, supplemented by the estimation of the

largest Lyapunov exponent in broad parameter

domains. Section 5 deals with the bifurcation analysis

of the aforementioned, slightly modified oscillators.

Finally, Sect. 6 is devoted to the discussion of the

results.

2 Reformulation of the problem

In order to reveal the bifurcations leading to the

emerge of asymmetric solutions among the symmetric

ones, the continuation method [38] was applied. The

continuation method is capable of the quick, reliable

calculation of bifurcation diagrams. One of the most

widely used continuation software is AUTO [39].

Unfortunately, AUTO is not able to deal with non-

smooth systems. However, a recently implemented

Matlab toolbox COCO (COntinuation COre, [40])

provides the possibility for the analysis of these kinds

of systems, too.

To be able to analyse a piecewise smooth system

with COCO, one must have an initial guess about the

solution’s structure. It means that the temporal order

of the subsequent smooth segments in the periodic

solution must be known, together with the switching

conditions—formulated as zeros of smooth functions.

Physically, the oscillator can be in one of the following

three states: sliding with positive speed, sliding with

negative speed or sticking, as it is formulated in

Eqs. (1) and (2). Mechanically, Eq. (2) is interpreted as

follows: if the velocity is non-zero (i.e., the body

slips), the kinetic friction force always opposes the

velocity. Thus, different differential equations

describe the motion at positive and negative velocities.

This is why the zero-velocity subset of the phase-space

is called switching manifold.

The switching conditions between the sticking and

sliding cases are given by an equation and a non-

smooth inequality:

_x � v ¼ 0 and jx� cosðXtÞj\S0: ð3Þ

Thus, the reformulation of these conditions as zeros of

smooth functions is not a trivial task. To examine

similar systems, Leine and Nijmeijer use a special

method in their book [24], by introducing the concept

of the so-called Switch Model to be able to deal

velocity-related and force-related switches separately.

Table 1 The introduced phase-space domains

Notation Condition 1 Cond. 2

xþvþ x[ cosðXtÞ þ S0 v[ 0

x0vþ cosðXtÞ � S0\x\ cosðXtÞ þ S0

x�vþ x\ cosðXtÞ � S0

xþv� x[ cosðXtÞ þ S0 v\0

x0v� cosðXtÞ � S0\x\ cosðXtÞ þ S0

x�v� x\ cosðXtÞ � S0

x0v0 cosðXtÞ � S0\x\ cosðXtÞ þ S0 v ¼ 0
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To solve this problem, we used a similar approach:

we partitioned the three-dimensional (x, v, t) phase-

space into domains in such a way that the sign change

of a smooth function (indicating that a solution

segment crosses a boundary) uniquely determines

the type of the solution in the next segment. Taking

this requirement into account the phase-space was

divided into 7 domains—6 different sliding states and

a sticking state—according to the values of v and

x. The corresponding domains are given in Table 1 and

illustrated in Fig. 2.

The domains are separated by three switching

surfaces that are also depicted in Fig. 2. Two of them

separate the states with respect to the displacement x—

these are the stick-slip boundaries Fþ and F�,

respectively. The third switching surface is the v ¼ 0

plane. Thus, the corresponding event functions can be

formulated as

• Fþ : cosðXtÞ þ S0 � x ¼ 0,

• F� : cosðXtÞ � S0 � x ¼ 0,

• v ¼ 0.

If the actual state of the system is known, the

triggering of an event function unambigously indi-

cates the next state that the system enters. For

example, if the oscillator’s state is xþvþ (see Table 1),

two possible events are possible:

• Fþ ¼) x0vþ,

• v ¼ 0 ¼) xþv�.

There are three possible switches from the state x0vþ:

• Fþ ¼) xþvþ,

• v ¼ 0 ¼) x0v0 (sticking),

• F� ¼) x�vþ.

The remaining four sliding cases (x�vþ, xþv�, x0v�,
x�v�) can be analysed similarly. If the oscillator is in

the sticking state x0v0, the collision with the boundary

F� means that the resultant of forces acting on the

block becomes positive. Thus, the next state will be

x�vþ. Similarly, crossing Fþ leads to xþv�:

• Fþ ¼) xþv�,

• F� ¼) x�vþ.

These two switches can happen only if the static

coefficient of friction S0 is greater than the kinetic one.

In the opposite case, sliding in the opposite direction

occurs. This possibility will be excluded from the

analysis due to its non-physical nature.

Once the states and event functions are properly

defined, the bifurcations of the oscillator can be

explored by COCO. However, this process is not

straightforward, since besides the conventional bifur-

cations (e.g., period-doubling), several other so-called

discontinuity-induced or non-smooth bifurcations

(e.g., grazing-sliding, crossing-sliding, switching-slid-

ing or adding-sliding) can occur. These bifurcations

are accompanied by the change of the type and order

of segments (the signature of the solution) during a

period. Thus, one has to make an educated guess about

the possible order of states after each non-smooth

bifurcation. Besides the bifurcations, other events can

also take place that are related to the order of switches

among the possible states shown in Table 1, but do not

correspond to physically meaningful changes in the

periodic solutions. For example, segments can appear

or disappear when a sliding solution curve touches one

of the stick-slip boundary surfaces Fþ or F�. This

event is denoted by T in Fig. 4. The disappearance of

segments could be predicted by monitoring the

durations of solution segments. To detect the appear-

ance of new segments inside an existing one, the

validity of solutions had to be checked during each

run. Our experiences show that bifurcations often lead

to a completely different solution signature. While the

local qualitative change of the trajectory can be known

in these cases as well, the signature of the whole

periodic orbit is required for the continuation, that is

often difficult or practically impossible to predict. The
Fig. 2 Illustration of 6 sliding states and the sticking state,

according to the values of x, v and t
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treatment of these cases needs well-thought

intervention.

For the initiation of the calculation, the analysis by

COCO was accompanied by the solution of the initial

value problem, i.e., numerical simulation. Clearly,

only stable solutions can be found with this approach,

but once a solution type is found by COCO, it can be

continued even after the loss of stability. Besides the

calculation of the numerical solution, several files

must be initialized for COCO—these are also done

automatically by our Matlab code. In addition to that,

utility functions were implemented for the proper

continuation from a previously obtained solution

point, with the possibility to change the signature of

the solution.

As it will be shown, four different periodic solution

types can be detected in large domains of the

examined parameter space. Each of these typical

periods consists of 6 segments, thus, the number of

segments will be denoted only if it is different from 6.

The four typical solutions will be denoted by 2s, 0s, 2a

and 1a, where 2, 1 or 0 shows the number of sticking

segments in a period, while s or a tells whether the

solution is symmetric or asymmetric.

The bifurcation points or curves will be denoted

accordingly. For instance, SN1a and PD1a denote the

saddle-node and period-doubling bifurcation of a 1-

stick asymmetric solution, respectively. Sliding bifur-

cations lead to the change of the number of sticking

segments. In these cases only the symmetry property

will be shown as CSs, SSa or ASa.

Since the symmetry plays an important role in the

classification of solutions, the measure of asymmetry

was introduced as follows:

W ¼ maxðxÞ þminðxÞ
maxðxÞ �minðxÞ

�

�

�

�

�

�

�

�

: ð4Þ

This quantity was also monitored during each contin-

uation run.

3 One-parameter bifurcation analysis

3.1 Bifurcation parameter: S

To reveal the source of the asymmetric solutions, the

dimensionless kinetic coefficient of friction S was

chosen to be the first bifurcation parameter, while the

other parameters were fixed at X ¼ 0:5 and S0 ¼ 0:4,

just as in [30]. An initial solution guess was generated

by numerical simulation at these parameters in

Matlab—see Fig. 3.

The following solution types were detected:

• The initial guess is symmetric and has the follow-

ing structure at S ¼ 0:4:

– x0vþ ! x0v0 (stick) ! xþv� ! x0v� ! x0v0

(stick) ! x�vþ

This solution (denoted by 2s in Fig. 4) loses

stability via a saddle-node (SN2s) bifurcation at

S � 0:33358.

• Below this parameter, the initialization process

found only a pair of stable solutions (denoted by

1a). These solutions are asymmetric with one

sticking segment per period. One of them has the

following structure:

– xþvþ ! xþv� ! x0v� ! x0v0 (stick) ! x�vþ

! x0vþ

Certainly, the mirror image of this solution also

exists at the same parameters. Both solutions lose

stability via a period doubling (PD1a) bifurcation at

S � 0:068.

• The emerging pair of double-periodic solutions

(denoted by 2a,14seg) consist of 14 segments. One

of them has the following structure:

Fig. 3 The initial solution (thick line) generated by numerical

simulation as the solution of an initial value problem. The

subsequent segments are printed in different colours
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– xþvþ ! xþv� ! x0v� ! x�v� ! x0v� ! x0v0

(stick) ! x�vþ ! x0vþ ! xþvþ ! xþv� !
x0v� ! x0v0 (stick) ! x�vþ ! x0vþ

There are two sticking segments, both at x[ 0.

Thus, this solution is asymmetric. Consequently,

its mirror image exists, too. The solution’s struc-

ture breaks down at S � 0:05578, where the 11th

solution segment (x0v�) just touches the stick-slip
boundary F�. This event—denoted by T in the

figures—is related to the change of the order and

number of segments.

• Nevertheless, no stable periodic solution was

found in the range S ¼ ½0:043479; 0:055787� by
COCO. Interestingly, the numerical initial problem

solver detected a seemingly periodic solution, but

it turned out to be unstable according to COCO.

This experience indicates that the found solution is

only slightly unstable, such that the stabilizing

effect of the numerical algorithm could overcome

its instability. Since no attracting periodic solution

was found, the existence of multi-periodic solu-

tions or chaos is expected in this parameter

domain.

• In the range S ¼ ½0:035620; 0:043479�, an asym-

metric solution (1a,9seg) with one stick per period

was detected. This solution emerges at S ¼
0:043479 via a switching sliding (SSa) bifurcation.

It can be divided into 9 segments:

– xþvþ ! xþv� ! x0v� ! x�v� ! x�vþ !
x0vþ ! x0v0 (stick) ! x�vþ ! x0vþ

This solution could not be continued past the value

S ¼ 0:035620 due to the divergence of the numer-

ical method (see point N in Fig. 4). No stable pe-

riodic solution was found at even smaller values of

S—here the occurrence of a chaotic domain is

expected, again. The more detailed analysis of the

parameter domains S ¼ ½0; 0:035620� and S ¼
½0:043479; 0:055787� is postponed to Sect. 4.

3.2 Bifurcation parameter: X

3.2.1 S0 ¼ 0:4

As the previous calculation showed, asymmetric

solutions (denoted by 1a in the figures) appeared at

S � 0:33358 at the discontinuity of the bifurcation

diagrams. In the present section, we search for the

origin of these asymmetric solutions. For this purpose,

continuation was initiated in the vicinity of their

appearance, at S ¼ 0:32 and S0 ¼ 0:4, varying the

Fig. 4 Bifurcation diagrams I. X ¼ 0:5, S0 ¼ 0:4. Maximal

displacement (top), positions of stops (middle) and asymmetry

W (bottom) versus parameter S. Green symbols denote stable,

red symbols denote unstable solution branches
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excitation frequency X near 0.5. The results are

depicted in Fig. 5.

• The continuation is initiated at X ¼ 0:5 with the

numerically detected solution type

– x0vþ ! xþvþ ! xþv� ! x0v� ! x0v0 (stick)

! x�vþ.
This asymmetric solution (1a) is stable in the range

X 2 ½0:49182; 0:54191�. At the lower end, a new

solution (2a) with two sticking segments appears

via a degenerate crossing-sliding (CSa) bifurcation,

when the second segment (xþvþ) disappears as the
trajectory touches the v ¼ 0 plane and the Fþ
boundary simultaneously. This bifurcation is

asymmetric since no such event occurs at F�.

The stability of solution 1a is lost via a saddle-

node/fold (SN1a) bifurcation at X ¼ 0:54191.

Finally, another crossing-sliding bifurcation (CSs)

takes place at X ¼ 0:53529, where the solution

becomes symmetric and both sticking segments

touch the v ¼ 0 plane and the Fþ or F� boundary

simultaneously.

• Solution 2a, that is born at X ¼ 0:49182 via

crossing-sliding, has the following structure:

– x0vþ ! x0v0 (stick) ! xþv� ! x0v� ! x0v0

(stick) ! x�vþ

This solution branch undergoes a saddle-node

(SN2s) bifurcation at X ¼ 0:48874. Here the solu-

tion is just symmetric, thus, this bifurcation is the

crossing point between two coexisting asymmetric

solutions that are each other’s mirror images.

• A symmetric solution (2s) also appears at the

frequency X ¼ 0:48874 with the same segment

structure as the asymmetric solution 2a. Solution

2s is stable belowX ¼ 0:48874, but unstable in the

domain X 2 ½0:48874; 0:53529�
• At X ¼ 0:53529, both sticking segments become

sliding ones via crossing-sliding (CSs) and the

symmetric, non-sticking stable solution 0s appears

with the structure

– x0vþ ! xþvþ ! xþv� ! x0v� ! x�v� !
x�vþ.

This is the same parameter where the the

asymmetric solution 1a branches out.

According to these results, the abrupt appearance of

asymmetric solutions is related to the fold bifurcation

(SN1a) of solution 1a that emerges from the symmetric

solution via a crossing-sliding bifurcation CSs. At the

critical parameter, where the symmetric non-sticking

solution disappears, the trajectory just touches the

stick-slip boundaries on both the positive and the

Fig. 5 Bifurcation diagrams II. S ¼ 0:32, S0 ¼ 0:4. Maximal

displacement (top), positions of stops (middle) and asymmetry

of solutions versus parameter X
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negative side. However, the appearing symmetric

sticking solution is unstable, while a pair of asym-

metric sticking solutions appears.

The bifurcation structure depicted in Fig. 5 remains

qualitatively unchanged at larger values of the kinetic

friction parameter S, but the domain of asymmetric

solutions shrinks and disappears at S � 0:38. How-

ever, significant changes occur if S is decreased: the

connection between the solutions 1a and 2a breakes,

giving rise to multi-periodic and chaotic solutions (see

Fig. 6).

Similar bifurcation structures can be observed at

higher values (S0 ¼ 0:5; . . .0:9) of the static coeffi-

cient of friction as well, but the frequency domain of

asymmetric solutions extends towards higher values of

X.
However, the reduction of parameter S0 leads to the

separation of the domains of the asymmetric solutions

1a and 2a, as it is shown in Fig. 7 for S0 ¼ 0:3 and

S ¼ 0:22. If S becomes larger, the two loops shrink and

disappear at S ¼ S0 ¼ 0:3.

If the static coefficient of friction is reduced further

(S0 ¼ 0:2) , the loop in the diagram corresponding to

solution 1a persists at X ¼ 0:5, but solution 2a

disappears. Still, multi-periodic or chaotic responses

can be detected in the interval X 2 ð0:18; 0:38Þ.

4 Two-parameter bifurcation analysis and search

for chaos

As it was mentioned earlier, the occurrence of multi-

periodic or chaotic solutions is expected in certain

parameter domains. To localize these domains, two-

parameter bifurcation analysis was performed on the

S� X parameter plane at various values of the static

friction parameter S0.

Certain bifurcation curves could be continued

automatically by COCO, but it did not work in all

the cases due to convergence problems. These latter

curves were contructed by several one-parameter runs.

The results are shown in Figs. 8, 9, 10 and 11.

In addition to the bifurcation analysis with COCO,

the largest Lyapunov exponents of solutions were also

estimated on grids of size 100 � 100 to 150 � 150 on

Fig. 6 Asymmetry of solutions versus parameterX at S ¼ 0:22,
S0 ¼ 0:4. Multi-periodic and chaotic solutions exist between

CSa and PD2a

Fig. 7 S ¼ 0:22, S0 ¼ 0:3. Asymmetry of solutions versus

parameter X

Fig. 8 Two-parameter bifurcation diagram at S0 ¼ 0:3
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the depictedX� S parameter planes. During each run,

the evolution of two nearby orbits was traced and the

variation of their phase-space distance d was

monitored in time steps Dt. In the most simple case,

the largest Lyapunov exponent can be estimated as

k ¼ 1

N

X

N

i¼1

1

Dt
ln
jdiþ1j
jdij

. ð5Þ

However, in case of the examined frictional system, it

may happen that one or the other solution is just in a

sticking phase at t ¼ ðiþ 1ÞDt for some index i. In this

case, a later time instant t ¼ ðiþ jÞDt was chosen such
that both solutions slide, and the distance diþj was

taken into account considering 1
jDt ln

jdiþjj
jdij in the sum.

This approach provides adequate results, as it was

pointed out in [41]. Moreover, a similar procedure was

already tested on the same system in [30] and the

results agreed well with the Lyapunov exponents

calculated by a more specific method, published in

[42].

The initial conditions ðx0; v0Þ for the two solutions

were ð1þ 0:9S0; 0Þ and ð1þ 0:9S0 þ 10�12; 0Þ,
respectively. The value of Lyapunov exponent was

estimated in each step at most until 600 exitation

periods. The simulation finished earlier if the distance

d reduced below 10�18 or the relative error between

subsequently calculated estimations dropped below

10�3. Since we are interested in chaotic responses,

only parameter domains with positive Lyapunov

exponents are shown in Figs. 8, 9, 10 and 11.

5 Check of the results with modified models

The oscillator model examined in the previous

sections is quite simple, so its validity is limited if

the dynamic behaviour of engineering structures with

frictional contact is to be analysed. Thus, before

drawing conclusions, two similar but more complex

models are also examined, to check how sensitive the

obtained results are to small changes of the model.

5.1 Two-frequency excitation in the Coulomb

model

In realistic scenarios, the periodic excitation signals

are not pure sinusoidal, but contain higher harmonics,

too. In order to describe the effect of harmonics by a

single parameter, we restrict ourselves to the case

€xþ x ¼ cosðXtÞ þ h cosð3XtÞ � S f ð _xÞ; ð6Þ

Fig. 9 Two-parameter bifurcation diagram at S0 ¼ 0:4

Fig. 10 Two-parameter bifurcation diagram at S0 ¼ 0:5

Fig. 11 Two-parameter bifurcation diagram at S0 ¼ 0:8
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where parameter h characterizes the amplitude of the

higher harmonic. The remaining notations are the

same as in the case of Eq. (1), and the phase-space can

be partitioned similarly, exchanging cosðXtÞ by

cosðXtÞ þ h cosð3XtÞ in Table 1.

As Fig. 12 illustrates, positive and negative values

of parameter h lead to sharper peaks or more rounded

peaks in the excitation signals, respectively.

Extensive numerical experiments showed that the

main qualitative features of the bifurcation diagrams

remain unchanged at reasonably small values of the

higher-frequency perturbation h. For example, the

dependence of asymmetry W on the dynamic friction

parameter S is depicted in Fig. 13 for X ¼ 0:5 and

h ¼ 0:05. Comparing this diagramwith Fig. 4, one can

check that the same bifurcations could be detected as

in the case of the pure harmonic excitation.

Certainly, the additional excitation term leads to

quantitative changes in the bifurcation structure. As

Fig. 14 illustrates, both the crossing-sliding and the

period-doubling bifurcations tend to appear at smaller

values of the kinetic friction coefficient S atX ¼ 0:5 if

the amplitude of the additional term h is increased.

Consequently, the parameter domain of asymmetric

solutions is extended at negative values of h.

The main structure of the two-parameter bifurca-

tion diagrams is also preserved at small absolute

values of parameter h, as it is shown in Fig. 15

(h ¼ 0:05) and Fig. 16 (h ¼ �0:05). However, com-

paring these diagrams with Fig. 9 that depicts the

scenario at h ¼ 0, one can observe that the domain of

positive Lyapunov exponents is extended towards

higher values of the excitation frequency X as a result

of the additional, higher-frequency excitation term.

It is worth to note here that certain domains with

positive Lyapunov exponent appear in areas where

one or more stable asymmetric solution types exist.

Since the existence of an asymmetric solution means

that the mirror image of that solution exists, too, this

result implies that the detected irregular solutions are

chaotic transients.

A remarkable difference between the cases h ¼
0:05 and h ¼ �0:05 is that the parameter domain of

coexisting solutions 1a and 0s is significantly larger in

the latter case (see the area between the bifurcation

curves SN1a and CSs in the figures). Moreover, the CSa
crossing-sliding bifurcation curve, where 1-stick

solutions turn to 2-stick asymmetric ones, shrinks to

a small closed curve at h ¼ �0:05, with a stable (solid

line in Fig. 16) and an unstable (dashed) branch. 2-

stick asymmetric (2a) solutions branch out from the 2-

stick symmetric one along the bifurcation curve SN2s.

Fig. 12 Shape of excitation functions at h ¼ �0:1: Hþ ¼
cosðtÞ þ 0:1 cosð3tÞ and H� ¼ cosðtÞ � 0:1 cosð3tÞ

Fig. 13 Asymmetry vs. kinetic friction parameter S at X ¼ 0:5,
S0 ¼ 0:4 and h ¼ 0:05 (cf. Fig. 4)

Fig. 14 Crossing-sliding and period-doubling bifurcation

curves at S0 ¼ 0:4 and X ¼ 0:5
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Note, that at h ¼ 0:05 these asymmetric solutions

appear above the SN2s curve, as well, due to fold

bifurcations.

Perhaps the most important effect of the additional

forcing term is that the relative position of curves SN2s,

SN1a and CSs vary such that the cases h[ 0 and h\0

correspond to higher and lower static friction coeffi-

cients S0 at h ¼ 0, respectively (compare Figs. 15 and

16 with Figs. 10 and 8).

5.2 LuGre friction model

Certain experimentally observed phenomena like pre-

sliding, rate-dependence and hysteresis of force w.r.t.

velocity cannot be described by the Coulombmodel. To

capture these characteristics of friction, the so-called

rate and state friction models incorporate at least one

internal state variable that varies dynamically in time.

The friction force depends both on this state variable and

on the relative velocity of contacting surfaces. One of

the most popular rate and state models is the LuGre

model [34] that has been applied to a wide variety of

systems, including high-precision applications [35].

Moreover, this model often serves as a starting point to

develop more advanced friction models.

By exchanging the Coulomb model with the LuGre

model in Eq. (1), one obtains the following set of

equations:

_x ¼ v;

_v ¼ �xþ cosðXtÞ � Ff ;

_z ¼ v� r0
jvj
gðvÞ z;

ð7Þ

where z is the internal variable and

gðvÞ ¼ Sþ ðS0 � SÞe�jv=vSja ; ð8Þ

Ff ¼ r0zþ r1 _zþ cv: ð9Þ

It can be shown that in case of steady-state sliding (i.e.,

when _z ¼ 0), the friction force can be given as

Ff ¼ gðvÞsgnðvÞ þ cv. Consequently, parameters S

and S0 correspond to the kinetic and static coefficients

of friction in the Coulombmodel. Still, the comparison

of systems (1) and (7) is certainly not straightforward

due to the additional parameters of the LuGre model.

In order to obtain an acceptable level of similarity

between these systems, a small Stribeck velocity vS
and a large internal stiffness r0 is required. After some

numerical experiments, we used a ¼ 1 and vS ¼ 0:05

to ensure the quick transition between the kinetic and

static friction parameters. Since viscous damping was

neglected in the previous sections, we chose c ¼ 0.

The stiffness and damping associated to the internal

variable were set to r0 ¼ 1000 and r1 ¼ 0,

respectively.

Our goal was to reconstruct some of the character-

istic bifurcation diagrams of the Coulomb friction

model. The application of the continuation method at

X ¼ 0:5 and S0 ¼ 0:4 led to the results depicted in

Fig. 17.

Comparing this diagram with the corresponding

figures belonging to the Coulomb-friction oscillators

(see Figs. 4 and 13), one can see that the scenario is

basically the same in all the three cases: the symmetric

solution loses stability at a certain value of S, giving rise

Fig. 15 Two-parameter bifurcation diagram at S0 ¼ 0:4 and

h ¼ 0:05

Fig. 16 Two-parameter bifurcation diagram at S0 ¼ 0:4 and

h ¼ �0:05
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to asymmetric solutions. The previously found discon-

tinuity between the branches of the symmetric and

asymmetric solutions is replaced by ameandering curve

in case of the LuGre model. Unfortunately, the numer-

ical treatment of this stiff system is rather difficult, this is

why the identification of the branch point and the further

continuation of branches was not successful.

Another series of continuation runs resulted in

Fig. 18.

Just as before, the structure of the bifurcation

diagram is similar to the corresponding figure (Fig. 5)

obtained by the analysis of the Coulomb friction

oscillator: the symmetric solution is exchanged by an

asymmetric one in an interval near X ¼ 0:5. Now the

asymmetrical branch became even more tortuous and

additional loops appeared in the domain

X 2 ð0:44; 0:47Þ. As a consequence, the numerical

algorithm was unable to find the links between the

depicted solution branches, hindering the construction

of two-parameter diagrams. Note that the similar

pattern in Fig. 5 is formed via non-smooth bifurcations

that certainly could not occur in this case.

The calculation of the Lyapunov exponent revealed

positive values at very small kinetic friction param-

eters S—in partial agreement with the previous results.

However, the calculated exponents were scattered

seemingly randomly close to zero in large domains.

The relative inaccuracy of the numerical method stems

from the fact that while we were able to use analytical

formulas between stops in case of the Coulomb

friction oscillators, the numerical simulation of the

LuGre model required the application of a stiff

differential equation solver. The unavoidable numer-

ical damping led to the disappearance of weakly

chaotic solutions.

6 Conclusions

Themaingoalofthepresentcontributionwastoestablish

the connection between asymmetric and chaotic solu-

tions of simple dry-friction oscillators: one of them is

excited purely harmonically, while an additional exci-

tation term h cosð3XtÞ appears in the other case. In

order to find the typical solution types, broad param-

eter domains were explored by continuation method.

To facilitate the application of the method, the phase-

spaces of the examined systems were divided into

seven domains that are separated by three switching

surfaces such that the crossing of a switching surface

unambiguously determines the state of the solution in

the next segment. This reformulation of the problem

makes easier to treat the case of different static and

kinetic coefficients of friction. The application of the

continuation method was supplemented by the deter-

mination of the Lyapunov exponent.

The results show that chaotic solutions are typically

enclosed by the bifurcation curves SN2s (where the 2-

stick symmetric solution loses stability, giving rise to

2-stick asymmetric solutions) and SN1a (where the 1-

stick asymmetric solution loses stability). Thus, the

chaotic responses are bifurcating from asymmetric

solutions, as it was expected in [30]. Since asymmetric

solutions were detected at X ¼ 0:5 for the case S ¼ S0
and h ¼ 0, it was assumed in [30] that this is the

Fig. 18 Asymmetry in the LuGre system’s solutions at S0 ¼
0:4 and S ¼ 0:32

Fig. 17 Asymmetry in the LuGre system’s solutions at S0 ¼
0:4 and X ¼ 0:5
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parameter where it is worth to search for chaotic

solutions. However, our results clearly show that the

choice X ¼ 0:5 was rather unlucky and more pro-

nounced chaotic regimes can be found at lower values

of the frequency X, or at nonzero values of h.

It is remarkable that positive Lyapunov exponents

were found in certain parameter domains where

stable asymmetric solutions exist. The explanation of

this fact is that each asymmetric cycle has a counter-

part with opposite displacements and different basin of

attraction. Thus, certain solutions can exhibit chaotic

transients in the neighbourhood of the corresponding

basin boundary. As the parameters are changed, the

asymmetry-related transient chaotic solutions may

turn to chaotic ones.

According to the results, quite simple connections

can be found between the friction coefficients and the

location of the chaotic domain:

• Irrespectively of the static coefficient, the domain

of asymmetric solutions—and the enclosed chaotic

domain—typically shrinks if the kinetic coefficient

of friction S is increased.

• The increase of the static coefficient of friction

implies that the domain of atypical solutions is

extended towards larger frequencies.

It can also be seen in the figures that S\0:2 is needed

for chaotic responses, at almost all values of the static

friction parameter S0. However, a narrow parameter

regime was found at S0 ¼ 0:3 and h ¼ 0 where the

Lyapunov exponent is positive even at S � 0:265. The

corresponding ratio S0=S � 1:13 is quite realistic,

thus, the occurrence of chaotic responses cannot be

excluded in similar models of real mechanical sys-

tems. It is worth to note here that the case S0 ¼ 0:3

seems to be an exception, since the further reduction of

S0 does not lead to the increase of the chaotic domain

at h ¼ 0: only small islands of positive Lyapunov

exponents were detected at S0 ¼ 0:2.

Because the considered Coulomb friction model is

rather simple, a third oscillatormodel was also analysed

where the friction force was calculated according to the

LuGre model. Two characteristic bifurcation diagrams

of the harmonically excited Coulomb friction oscillator

were qualitiatively reproduced with this model, as well.

This result confirms our opinion that the traces of certain

theoretically derived solution types can be observed in

real systems of contacting bodies as well, as it was

shown by the experiments in [31]. Since quite simple

qualitative rules could be established between the

frequency domain of irregular solutions and the coef-

ficients of friction, these rules may be applicable to real

mechanical systems, too.
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