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Abstract Momentum transfer from a semi-circular

porous cylinder attached to a rectangular channel wall

has been investigated for the numerous values of

germane parameters as Reynolds number

ð0:01�Re� 40Þ; Darcy number

ð10�6 �Da� 10�1Þ; blockage ratio

ð0:1667� b� 1:5Þ and porosity ð0:1� �� 0:9Þ: The
porous media flow has been numerically modeled by

implementing the Darcy-Brinkman-Forchheimer

model. The combined influences of all the aforemen-

tioned parameters on the flow field are visualized by

streamlines and vorticity profiles. The detailed

insights of the flow field are provided by representing

the pressure coefficient distribution and the values of

the drag coefficient. The obtained results depict that

the porosity influences flow characteristics at the high

values of Darcy number. The pressure coefficient

represents an inverse relationship with b. The drag

coefficient increases by increasing b for all governing

parameters. Furthermore, the drag coefficient shows a

decreasing behavior for Da� 10�3 whereas it shows

an involute dependency for 10�6 �Da� 10�4:

Overall, the complex influences of Re;Da; b; and �

on the flow field have been observed.

Keywords Newtonian fluid � semi-circular porous

cylinder � Darcy number � Porosity � Drag coefficient

Nomenclature

CD drag coefficient (dimensionless), CD ¼ 4FD

qU2
1D

CP pressure coefficient (dimensionless),

CP ¼ 2ðps�p1Þ
qU2

1

D diameter of the porous cylinder (m)

Da Darcy number (dimensionless), Da ¼ j
D2

F Forchheimer inertial coefficient

(dimensionless),F ¼ 1:75
ffiffiffiffiffiffi

150
p 1

�3=2

FD total drag force (N/m)

H height of the channel (m)

Lin inlet length (m)

Lout outlet length (m)

N total triangular elements in the flow domain

(dimensionless)

np total triangular elements on the edge of the

porous cylinder (dimensionless)

P pressure (dimensionless), P ¼ p
qU2

1

p pressure (Pa)

p1 far away pressure (Pa)

ps local surface pressure (Pa)

Re Reynolds number (dimensionless), Re ¼ qU1D
lf

U, V velocity components (dimensionless),

U ¼ u
U1

;V ¼ v
U1
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u, v velocity components (m/s)

U1 far away velocity (m/s)

X, Y coordinates (dimensionless), X ¼ x
D ; Y ¼ y

D

x, y coordinates (m)

Greek symbols

b blockage ratio of the channel (dimensionless),

b ¼ D
H

d grid spacing in the proximity of the permeable

cylinder

� porosity (measure of void space in porous

medium)

j permeability of the porous cylinder (m2)

le effective viscosity ðkgm�1s�1Þ
lf fluid viscosity ðkgm�1s�1Þ
q fluid density (kgm�3)

1 Introduction

Fluid flow over and through the porous media has

encountered great importance in the diverse fields of

science and engineering. The porous media (such as

rocks, paper, sponge, wood, beach sand, human lung,

bones, etc.) is described as a composition of solid

material with interconnected voids (pores) through

which the fluid can flow [36]. Porous materials are

adapted for various industrial, biomedical/bioengi-

neering applications such as food processing, storage

of grains, spread of underground pollutants, filtration

and sedimentation, geological and geothermal sys-

tems, groundwater/oil flow, drug delivery systems,

transport of biological and brain tissues, medical

imaging, drug delivery, and many more

[24, 27, 32, 38, 43, 48, 50, 53]. The broad range of

porous media applications always fascinates the

researchers to explore the underlying physics. Specif-

ically, the use of porous cylinders/obstacles/blocks of

various cross-sections (circular, square, rectangular,

triangular, etc.) in heat exchangers [11], heat pipes

[39], and solar collectors [5] is getting popularity for

improving their performance and new applications. In

addition to this, semi-circular porous obstacles play an

important role in biomechanics applications as these

kinds of obstacles appear in blood flow through

stenosed arteries where stenoses or cholesterol clogs

behave like semi-circular porous obstacles [6, 20–22].

These stenoses create hindrance to the blood flow from

the heart to the other parts of the body and it may lead

to various cardiovascular diseases such as heart

attacks and strokes etc. Additionally, the semi-circular

porous cylinders are being used in the cooling

applications of electronic devices, CPUs, and server

rooms, etc. Nowadays, some novel designs of heat

exchangers are also using semi-circular porous obsta-

cles specifically for low Reynolds number applica-

tions. Internal fouling of the large pipelines due to the

vegetation may be considered as semi-circular porous

obstacles. Therefore, by keeping in mind the vast and

preceding applications of porous cylinders (semi-

circular), we aimed to investigate the fluid flow past a

semi-circular permeable cylinder attached to the

bottom channel wall. Before discussing our problem

at length, we have reviewed the relevant available

literature to the best of our knowledge.

The fluid flow within porous media is initially

approximated by Darcy’s law [36] which reveals the

linear dependency between the flow rate and pressure

gradient. Further developments in the flow through

porous media lead to the formation of Forchheimer

[1, 41] and Brinkman equations [17, 33]. The Forch-

heimer equation is applicable to high flow velocity

inside porous media whereas the Brinkman equation

considers the boundary effects because these effects

are not acknowledged in Darcy’s law. Many research-

ers have been studied the transport mechanism of fluid

flow inside or outside the porous media [3, 40, 46].

Besides this, a group of studies are also dedicated to

explore the flow characteristics over porous cylindri-

cal obstacles of various cross-sections including

circular [8, 14, 45, 55, 56] and non-circular sections

[13, 23, 26, 42, 51, 54]. Further, these studied can be

partitioned into the unconfined [8, 13, 14, 51, 54–56]

and confined [23, 26, 42, 45] flow domain. In this

context, the flow through a porous cylinder (circular)

has been examined by Bhattacharyya et. al. [8]. They

observed that the drag coefficient reduces with the

enhancement in Re and it rises with the decrease inDa.

In another study, Yu et. al. investigated the wake

structure at the rear part of the porous cylinder

(circular) [55] and porous sphere [56]. They concluded

that the recirculation size decays with the rise in Da

and the recirculating wakes initially appear within the

porous media for some values of Da. Recently,

Ebrahimi et. al. [14] explored the fluid flow charac-

teristics of an oscillating permeable circular cylinder

and found that the oscillating cylinder leads to the
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increment in drag coefficient in comparison to the

stationary cylinder. The aforementioned studies are

concerned about the unconfined flow domain.

Although in most of the realistic applications e.g.

chemical filters, heat exchangers, and solar collectors,

the fluid flow is highly influenced by the channel wall.

Within this framework, Shahsavari et. al. [45] exam-

ined the impact of confinement ratio on the flow

characteristics for the case of the circular porous

cylinder and concluded that the drag force is increased

by enlarging the confinement of the channel.

Apart from the permeable circular cylinders, sev-

eral numerical studies have been performed for the

flow field around the non-circular porous cylinders

(square, rectangular, triangular, etc.)

[13, 23, 26, 42, 51, 54] in an unconfined/confined

flow domain. In this direction, the behavior of the

recirculating zones at the rear part of the porous

cylinder (square) was investigated by Yu et. al. [54]

for 10�6 �Da� 10�1 and 1�Re� 50: They observed

that at low Darcy number ðDa ¼ 10�6Þ; wake behav-
ior seems like a solid cylinder but at high value of

Darcy number ðDa ¼ 10�1Þ; all the recirculating

wakes disappear. Then, a pair of detached wakes has

been noticed for Da ¼ 7� 10�3 and Re ¼ 21: The

length of the detached wakes increases as Re increases

from 21 to 30 and after that, it continuously decreases

and finally disappears at Re ¼ 42: In the continuation,

Dhinakaran et. al. [13] examined the flow attributes

past a square permeable cylinder and identified that the

wake length and drag coefficient are enhanced by

diminishing Darcy number. Valipour et. al. [51]

altered the orientation of the square permeable cylin-

der and showed the decrement in the pressure coef-

ficient with the increment in Darcy number. The flow

field over multiple rectangular porous blocks attached

to the channel wall has been explored by Huang et. al.

[26] and they observed that the recirculation zones are

contracted as Da rises with a significant increase in

pressure drop. In another study, Rong et. al. [42]

inspected the flow characteristics across a porous

enveloped square obstacle located in a channel and

observed the complex influence of governing param-

eters. Their results suggested that for Da[ 10�4; drag

coefficient has decreased with the increment in Da but

it has increased with the increment in �.

In addition to the above-mentioned literature,

various studies have been performed related to the

fluid flow from an impermeable semi-circular cylinder

confined in a channel [18–22, 29]. Kiya and Arie [29]

studied the viscous flow over the semi-circular and

semi-elliptical obstacles attached to a plane wall for

0:1�Re� 100: They observed the vortices both at the

front and rear part of the obstacle and investigated the

influence of Re on drag and pressure coefficient. In a

partially blocked channel (by cylinders or obstacles),

the blockage ratio is an important parameter which is

the ratio of channel width blocked by the obstacle. In

this direction, Griffith et. al. [19] investigated the wake

behavior and stability of the flow in a two-dimensional

channel partially blocked by a semi-circular obstacle

by varying the values of Reynolds number

ð25�Re� 300Þ and blockage ratio. The blockage

ratio has been varied from 0.05 to 0.9 by adjusting the

radius of the obstacle. Further, Griffith et. al. extended

their work by exploring the axisymmetric steady [20]

and pulsatile [21] fluid flow through a circular tube

constricted by semi-circular bumps as an idealization

of stenosed arteries. In addition to semi-circular

obstacles, Griffith et. al. [22] numerically investigated

the flow through an axisymmetric sinuous stenoses for

1�Re� 400: There are numerous studies

[30, 31, 47, 52] which examine the fluid flow from a

semi-circular solid cylinder placed in between the

channel.

An inspection of the aforementioned resources

suggests that the shape of the permeable cylinder

clearly influences the flow attributes. Additionally,

most of the above-mentioned numerical studies are

related to the fluid flow over circular and rectangular

porous cylinders followed by the other shapes.

Surprisingly, the fluid flow across the confined semi-

circular porous cylinder is missing from the literature.

Therefore, the current study is focused on the fluid

flow through a semi-circular permeable cylinder

attached to the bottom channel wall. The porosity ð�Þ
and permeability ðjÞ are the main characteristics of the

porous medium where the former represents the void

space in the porous media and the latter defines the

interconnectedness of the voids. The Darcy number is

defined as the dimensionless permeability to represent

the governing flow through the porous cylinder and the

Reynolds number is the governing parameter for the

flow outside the porous cylinder. These parameters

have been non-dimensionalized by using the diameter

of the semi-circular obstacle (D) and the free stream

velocity ðU1Þ. In addition to the above parameters,
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blockage ratio ðbÞ is also used in the current study as

the ratio of diameter (D) of the semi-circular cylinder

to the channel height (H). Usually, the researchers

define the blockage ratio as the ratio of the height of

the obstacle to the channel height. But, in our case, we

have used the diameter of the porous cylinder as a

length scale and therefore the value of b is sometimes

larger than unity. The present study intends to find the

non-trivial effects of fluid flow across semi-circular

porous cylinder by varying Reynolds number

ð0:01�Re� 40Þ, Darcy number

ð10�6 �Da� 10�1Þ; blockage ratio of channel

ð0:1667� b� 1:5Þ and porosity ð0:1� �� 0:9Þ. The
range of the Reynolds number in the present study is

chosen by considering the applications related to the

flow in oil reservoirs and aquifers, water seepage in

walls and river banks, and marine related applications

to study the sinking porous aggregates [2, 25, 28].

There are numerous implementations of the consid-

ered range of the Darcy number ð10�6 �Da� 10�1Þ
such as blood clots, wire cramps, copper powder (hot

compacted), cigarette, hair left , highly fractured

rocks, oil reservoir rocks, beach sand, and cloth etc.

[9, 36, 57–59] . The streamlines contours and vorticity

contours are determined for the governing parameters.

Also, the prominent output parameters as pressure

coefficient and drag coefficient are computed.

2 Problem description andmathematical modeling

The two-dimensional flow of Newtonian and incom-

pressible fluid over a confined porous semi-circular

cylinder is investigated. The fluid enters into the

channel with a uniform inlet velocity ðU1Þ; as

indicated in Fig. 1(a). The semi-circular porous

cylinder (of diameter D) has been affixed to the base

wall of the rectangular channel of height H, at the

distance Lin from the inlet and Lout from the outlet. The

following assumptions have been employed for the

simplification of the considered problem:

– The fluid flow is steady and laminar.

– The physicochemical fluid properties (density and

viscosity) are constant.

– The porous media is homogeneous and isotropic.

– The porous configuration having uniform perme-

ability ðjÞ and porosity ð�Þ.

– The viscosity of fluid inside porous cylinder ðleÞ
and flow viscosity outside the porous cylinder ðlf Þ
are equal.

The uniform inlet velocity ðU1Þ and the cylinder

diameter (D) have been used as the velocity and length

scales for the non-dimensionlization of velocity and

distances, respectively. q denotes the density of the

fluid. The scaling variable qU2
1 has been taken for the

non-dimensionalization of pressure (p) and P denotes

the dimensionless pressure. The porosity ð�Þ of the

cylinder is determined as the volume fraction of void

space in the porous cylinder [4] and defined as

� ¼
0\�\1; inside the porous cylinder,

1; outside the porous cylinder

�

U ¼ ðU;VÞ is the dimensionless velocity vector where

U and V are the velocity components in the X and Y

direction, respectively. A single domain-approach [7]

has been implemented to govern the flow field in the

channel, i.e., a single set of Eqs. (1)–(3) is used to

supervise the flow both inside and outside the porous

cylinder. Therefore, U denotes the fluid velocity

outside the porous cylinder and the Darcy velocity

(superficial velocity) inside the cylinder [36]. The

dimensionless parameters used in the present study are

the blockage ratio ðbÞ, Reynolds number (Re), and the

Darcy number (Da). The blockage ratio of the channel

is defined as b ¼ D
H and varied from 0:1667ð8:34%Þ to

1:5ð75%Þ by adjusting the height of the channel. The

Reynolds number (Re) in the current study is deter-

mined as

ReðReynolds numberÞ ¼ qU1D

lf

where lf is the dynamic viscosity of the fluid. The

diameter (D) of the cylinder has been used as the

length scale for the Reynolds number. The Darcy

number (Da) is the dimensionless permeability ðjÞ of
the porous cylinder and it is non-dimensionalized by

D, and defined as

DaðDarcy numberÞ ¼ j
D2

:

In the fluid region (outside porous cylinder),Da!1.

The fluid flow in the channel is supervised by

Darcy-Brinkman-Forchheimer model [12] to incorpo-

rate the inertial and viscous effects in porous media.

The governing dimensionless equations are provided

as follows:
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Continuity equation

oU

oX
þ oV

oY
¼ 0 ð1Þ

Momentum equations

1

�2

�

U
oU

oX
þ V

oU

oY

�

¼� oP

oX
þ le
�lf Re

�

o2U

oX2
þ o2U

oY2

�

� 1

ReDa
U � F

ffiffiffiffiffiffi

Da
p jU!jU

ð2Þ

1

�2

�

U
oV

oX
þ V

oV

oY

�

¼� oP

oY
þ le
�lf Re

�

o2V

oX2
þ o2V

oY2

�

� 1

ReDa
V � F

ffiffiffiffiffiffi

Da
p jU!jV

ð3Þ

where, jU!j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ V2
p

and F ¼ 1:75
ffiffiffiffiffiffi

150
p 1

�3=2
is the

Forchheimer inertial coefficient [15, 49]. The fluid

viscosity inside ðleÞ and outside ðlf Þ of the porous

cylinder are assumed to be equal. Finally, for the

completion of our problem, the subsequent dimen-

sionless boundary conditions have been undertaken:

– At the inlet: the uniform velocity inlet profile is

applied as U ¼ 1 and V ¼ 0:

– On the top and bottom wall: no slip boundary

condition is implemented as U ¼ 0 and V ¼ 0:

– At the outlet: zero relative pressure is used at the

outlet boundary i.e., P ¼ 0.

– At the porous-fluid interface: pressure and velocity

continuity is implemented at interface [7, 8, 34].

The solution of the Eqs. (1)–(3) characterizes the flow

field with regards to the velocity components U, V,

and pressure, P. Further, these quantities have been

post processed to obtain the significant engineering

parameters such as pressure coefficient ðCPÞ and drag

coefficient ðCDÞ:
Drag coefficient ðCDÞ: The dimensionless drag

force employed by the fluid on the permeable cylinder

is referred as the drag coefficient and it is computed by

using the succeeding formula:

CD ¼ 4FD

qU2
1D

where FD is the total drag force (per unit length of the

cylinder) exerted by the fluid on the semi-circular

cylinder. It has been calculated by integrating the total

stress in the x� direction [16] over the curved surface

of the semi-circular porous cylinder.

Pressure coefficient ðCPÞ: The non-dimensional-

ized pressure difference in the form of pressure

coefficient is defined as:

CP ¼ 2ðps � p1Þ
qU2

1
:

Here, ps and p1 denote the local surface pressure and

reference pressure, respectively.

Fig. 1 (a) Schematic

representation of the

confined fluid flow across a

porous semi-circular

cylinder (b) Grid structure
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3 Methodology

The obtained governing mathematical equations

bounded with the imposed boundary conditions are

being solved by using COMSOL Multiphysics (FEM

based commercial software). The non-uniform trian-

gular elements are used to discretize the flow domain,

as indicated in Fig. 1(b). The parallel direct linear

solver (PARDISO) has been used for solving the

resulting system of non-linear equations.

The domain size and grid structure of the problem

strongly affects the authenticity and reliability of the

numerical findings. Therefore, it is important to make

the provident selection of these parameters.

3.1 Domain independence test

The domain independence test has been performed at

extreme values of Re, Da, � and b; as shown in

Table 1. The inlet length ðLinÞ has been optimized by

varying Lin as 20H, 30H, 40H and by fixing Lout ¼
50H: A detailed inspection of the results suggests that

the change in the values of CD by varying Lin is

negligible ð\0:1%Þ: Therefore, it is safe to choose

Lin ¼ 30H among the values of Lin for all values of the

governing parameters. Subsequently, the outlet length

ðLoutÞ is optimized by varying Lout as 30H, 40H and

50H. While optimizing Lout; we have taken the

optimized value of Lin: The relative error in the values

of CD is found to be less than 0:01%: Hence, in the

present study, Lin ¼ Lout ¼ 30H has been considered

for all the numerical computations.

3.2 Grid independence test

After optimizing the domain size, we move further for

the grid optimization, as shown in Table 2. An

adequately fine grid is intended in the proximity of a

porous semi-circular cylinder for resolving the steep

velocity and pressure gradients. For this purpose, we

have done the grid independence study for three

distinct grids namely G1, G2 and G3 by varying the

element size ðd=DÞ and number of elements ðnpÞ in the
proximity of the porous cylinder. Again, the drag

coefficient has been computed at uttermost values of

the considered parameters and a negligible difference

(\1%) has been observed in CD: Therefore, the grid

G1 is adequate for the present study. Furthermore,

convergence criterion of 10�6 has been used in this

study [44].

Table 1 Domain

optimization
b Re Da � Inlet length optimization Outlet length optimization

Lin=H CD Lout=H CD

0.1667 0.01 10�6 0.1 20 849.55 30 849.48

30 849.71 40 849.88

40 849.19 50 849.40

40 10�1 0.9 20 0.18555 30 0.18538

30 0.18538 40 0.18539

40 0.18533 50 0.18537

0.5 0.01 10�6 0.1 20 3665.4 30 3665.2

30 3665.6 40 3663.8

40 3665.4 50 3664.2

40 10�1 0.9 20 0.64884 30 0.64884

30 0.64850 40 0.64846

40 0.64888 50 0.64852

1.5 0.01 10�6 0.1 20 173962 30 173965

30 173968 40 173958

40 173966 50 173967

40 10�1 0.9 20 2.2494 30 2.2494

30 2.2496 40 2.2495

40 2.2494 50 2.2495
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4 Results and discussion

The proposed study explores the fluid flow character-

istics for the flow across a semi-circular porous

cylinder attached to the bottom channel wall. The

obtained numerical results are analyzed for the chosen

range of parameters as Reynolds number

(0:01�Re� 40), Darcy number (10�6 �Da� 10�1),

blockage ratio ð0:1667� b� 1:5Þ; and porosity

(0:1� �� 0:9). The streamline and vorticity profiles

are plotted to show the flow field (Figs. 3, 4, 5, 6, 7 and

8). The engineering parameters such as pressure

coefficient ðCPÞ and drag coefficient ðCDÞ are calcu-

lated to describe their functional dependence on

Re;Da; � and b:

4.1 Validation of results

Before discussing the new findings for the flow across

a semi-circular porous cylinder, it is important to

validate the numerical approach used here. For this

purpose, we have reproduced the numerical results of

Dhinakaran et. al. [13] for the flow over a square

porous cylinder at Da ¼ 10�4 for different values of

Re and presented in Fig. 2. The reproduced results

show a good agreement with Dhinakaran et. al. [13], as

seen in Fig. 2. Hence the adopted methodology is

trustworthy for further investigation.

Table 2 Grid optimization b Re Da � Grid d=D np N CD

0.1667 0.01 10�6 0.1 G1 0.01963 80 1422014 849.48

G2 0.01309 120 2180337 853.44

G3 0.00982 160 2933206 856.02

40 10�1 0.9 G1 0.01963 80 1422014 0.18538

G2 0.01309 120 2180337 0.18578

G3 0.00982 160 2933206 0.18599

0.5 0.01 10�6 0.1 G1 0.01963 80 387957 3665.2

G2 0.01309 120 683498 3682.6

G3 0.00982 160 939189 3693.4

40 10�1 0.9 G1 0.01963 80 387957 0.64884

G2 0.01309 120 683498 0.65114

G3 0.00982 160 939189 0.65238

1.5 0.01 10�6 0.1 G1 0.01963 80 101935 173965

G2 0.01309 120 175385 174972

G3 0.00982 160 252585 175475

40 10�1 0.9 G1 0.01963 80 101935 2.2494

G2 0.01309 120 175385 2.268

G3 0.00982 160 252585 2.2767

Reynolds number, Re

D
ra

g 
co

ef
fic

ie
nt

, C
D

0 10 20 30 40
1

2

3

4

5

6

Dhinakaran et. al.  (2011), Da = 10-4

Present Study, Da = 10-4

45

Fig. 2 Comparison of drag coefficient with the literature [13] at

Da ¼ 10�4 for different values of Re.
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4.2 Streamlines contours

The streamline contours in the proximity of a confined

semi-circular porous cylinder are represented in

Figs. 3, 4 and 5 at various combinations of governing

parameters (b; �;Re;Da). For the comparison purpose,

a similar length scale has been used for all the

streamline profiles. Figure 3 represents the streamline

profiles for b ¼ 0:1667ð8:35%Þ by varying �; Re and

Da. This figure is divided into three sections based on

porosity ð� ¼ 0:1; 0:5; 0:9Þ: The streamline profiles of

the first section show that at Da ¼ 10�6; streamlines

do not pass across the porous cylinder for any value of

Re and follow the fluid/porous interface. Thus, the
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Fig. 3 Streamlines contours

at b ¼ 0:1667
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porous cylinder acts as the solid cylinder at the above

conditions and similar results are reported in the

literature [55]. Additionally, the recirculation zones

have been seen at the front and rear part of the cylinder

for Da ¼ 10�6 and Re ¼ 0:01: These recirculation

zones may appear due to the interplay between the no-

slip boundary condition and the curvature of the

porous cylinder. As per Moffatt’s analysis, these

eddies may appear as the angle of the intersection of

the cylinder and the channel wall is less than the

critical angle ð146:3�Þ: In our case, the angle of

intersection is 90�; and hence, there are two sets of

Da = 10-6 Da = 10-1Da = 10-3

R
e 

= 
1

R
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eddies at the front and rear part of the cylinder for low

Reynolds number [35, 37]. As we increase Re from

0.01 to 40, by keeping other parameters constant, the

decrease in the front recirculation zone has been

observed and the rear recirculation zone increases with

the increase in Re at other constant parameters. It can

happen due to the domination of viscous forces to

inertial forces and the influence of body geometry

(semi-circular porous cylinder). Further increasing the

value of Da from 10�6 to 10�3; the streamlines start

penetrating the porous cylinder with ease. It has

adhered that as the permeability increases, the flow
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through the porous cylinder increases and this may be

the reason for the disappearance of front recirculation

zones. The detachment of the recirculation zone has

been observed at Re ¼ 20 and this similar kind of

behavior is reported by Yu et. al. [55, 56]. As Re is

further increased to 40, the detached wake is shifted

towards the cylinder. Furthermore, at Da ¼ 10�1; the

more fluid is passing through the porous cylinder as

permeability is increased. Here, the flow field behaves

like a rectangular channel flow without any obstacle

(porous cylinder). In the second section ð� ¼ 0:5Þ of
the Fig. 3, the streamline profiles are almost similar to

� ¼ 0:1 except for Da ¼ 10�3 and Re ¼ 20; 40: The

rear recirculation zones start to penetrate partially into

the porous cylinder and the flow separation starts

within the cylinder itself. It may be due to the

additional influence of porosity and permeability at

higher values of Re. Further, the size of the recircu-

lation zone is increased as Re increases from 20 to 40.

Subsequently, in the third section ð� ¼ 0:9Þ of Fig. 3,
similar flow behavior is observed except for Da ¼
10�3 and Re ¼ 0:01; 1:At these conditions, increase in

the value of porosity leads to the formation of front and

rear recirculation zones similar to Da ¼ 10�6:

Figure 4 represents the streamline profiles for b ¼
0:5ð25%Þ by varying �;Re and Da. Similar to Fig. 3,

the front recirculation zones are observed at Da ¼
10�6 for all values of � and Re. But the size of front

recirculation zones seems to be smaller than Fig. 3.We

already know that the formation of recirculation zones

suppresses due to the increase in blockage ratio.

Hence, this phenomenon affects the rear recirculation

zone and it shows some complex behavior because of

the multiple governing parameters. Specifically, at

Da ¼ 10�6; the size of the recirculation zone

decreases for Re ¼ 0:01; 1 and increases for Re ¼
20; 40; as compared to b ¼ 0:1667: Furthermore, the

right shift of the recirculation zone is observed at

Da ¼ 10�3 and � ¼ 0:5; 0:9 due to the influence of the

blockage ratio. Subsequently, Fig. 5 exhibits the

streamline contours for b ¼ 1:5ð75%Þ and it can be

observed that all the recirculation zones vanish except

for Da ¼ 10�6 and Re ¼ 20; 40: This happens due to

the high value of the blockage ratio. Additionally, it is

seen that the porosity effect is negligible for b ¼ 1:5:

By comparing Figs. 3, 4 and 5, it is observed that the

porous cylinder acts as a solid cylinder at the lowest

value of Da for all the values of other parameters

ðRe; �; bÞ. The front recirculation zone appearing at

Da ¼ 10�6; shrinks as b is increased from 0.1667 to

0.5 and it vanishes at b ¼ 1:5: Moreover, the rear

recirculation zone shows a complex behavior with the

increment in blockage ratio. As b is increased from

0.1667 to 0.5, the rear recirculation zone is decreased

for Re ¼ 0:01; 0:1 and increased for Re ¼ 20; 40:

Further, for b ¼ 1:5; the size of rear recirculation

zones is reduced as compared to b ¼ 0:5 and 0.1667.

The porosity has a considerable impact on the flow

properties for b ¼ 0:1667 and 0.5 whereas its effect is

almost insignificant for b ¼ 1:5:

4.3 Vorticity contours

Figures 6, 7 and 8 represent the vorticity contours in

the proximity of semi-circular porous cylinder by

varying the values of b; �;Re and Da. In Fig. 6

vorticity contours are shown for b ¼ 0:1667 at various

combinations of other governing parameters. In the

first section ð� ¼ 0:1Þ of this figure, at Da ¼ 10�6; the

vorticity contours are failed to diffuse inside the

porous cylinder at each value of Reynolds number. It

happens because of the solid behavior of permeable

cylinder at low Darcy number ðDa ¼ 10�6Þ. It is also
observed that three vorticity zones are appearing at the

top, front, and rear part of the cylinder. The presence

of recirculation zones can be noticed in the streamline

profiles (Fig. 3) corresponding to the front and rear

vorticity zones. The highmagnitude vorticity occurs in

the top vorticity zone as compared to the other two

zones. It is also observed that the top vorticity zone

increases and shifts towards the front of the cylinder as

Re increases. Due to the shifting of the top zone, the

front zone has been reduced with the augmentation in

Re. Simultaneously, the size of the rear vorticity zone

increases with Re and leads to the rise in the size of the

rear recirculation zone as seen in corresponding

123

Meccanica (2021) 56:2219–2241 2229



123

2230 Meccanica (2021) 56:2219–2241



streamline profiles (Fig. 3). Furthermore, by increas-

ing the value of Da from 10�6 to 10�3; the vorticity

contours start to diffuse inside the porous cylinder for

all the values of Re. The top vorticity zone elongates

and shifts towards the rear portion of the cylinder as

the value of Re is enhanced. On the other hand, the

front and rear vorticity zones penetrate inside the

permeable cylinder as a consequence of the raised

permeability of the cylinder. Further at Da ¼ 10�1;

the diffusion of vorticity contours inside the cylinder is

more than the previous cases ðDa ¼ 10�6; 10�3Þ:
Additionally, the decrement in the size of vorticity

zones has been observed. For this reason, the recircu-

lation zones appearing at the front and rear part of the

cylinder vanish in the corresponding streamline pro-

files. Moreover, two additional vorticity zones appear

at the front and rear part of the cylinder and this may be

due to the result of the complex interplay among the

considered parameters. In the second section ð� ¼ 0:5Þ
of the Fig. 6, for Da ¼ 10�6, the behavior of vorticity

contours is almost similar to � ¼ 0:1: But the effect of

porosity can be easily seen for Da ¼ 10�3; 10�1: At

Da ¼ 10�3; in addition to the front and rear vorticity

zones, the top vorticity zone also starts to diffuse

inside the porous cylinder and this may be due to the

increased value of porosity. Similarly, the penetration

of recirculation zones is also noticed in corresponding

streamline profiles (Fig. 3). Further at Da ¼ 10�1; the

size of all the vorticity zones has decreased as

comparative to � ¼ 0:1: This may lead to the more

straight streamline contours for � ¼ 0:5 than � ¼ 0:1:

In the third section ð� ¼ 0:9Þ of the Fig. 6, a distinct

behavior of vorticity contours has been observed at

Da ¼ 10�1: Here the size of all the vorticity zones has

been further decreased as compared to � ¼ 0:5:Hence,

the corresponding streamline contours are more

straight in Fig. 3.

Figure 7 represents the vorticity contours for b ¼
0:5 for various combinations of �;Re andDa. Here, the

size of all the vorticity zones has been decreased and

the magnitude of maximum vorticity has been

increased for all the values of �;Re; and Da as

compared to b ¼ 0:1667. The increase in the vorticity

magnitude is due to the increase in blockage ratio.

Moreover, the trend of vorticity contours concerning

�;Re; and Da is similar to b ¼ 0:1667:

Subsequently in Fig. 8 vorticity contours are shown

for b ¼ 1:5. This figure has been plotted at 200%

zoom due to the relatively small vorticity zones as

compared to Figs. 6 and 7. In the first section of Fig. 8,

for Da ¼ 10�6 and Re ¼ 0:01; an additional vorticity

zone is observed near the top channel wall due to the

high blockage ratio. Moreover, at this blockage ratio,

the channel wall is sufficiently close to the semi-

circular porous cylinder and therefore the passage for

the fluid flow outside the porous cylinder is very

narrow which leads to high velocity in this narrow

zone. Due to this reason, the maximum vorticity is

observed at the top channel wall. Additionally, by

increasing the value of Re from 0.01 to 40, the size of

this vorticity zone increases. Furthermore, at Da ¼
10�3; the fluid starts to penetrate inside the cylinder

and therefore the fluid flow in the narrow zone has

been reduced. As a result, the velocity in the narrow

zone reduces which leads to the reduction in vorticity

magnitude at the top channel wall. The size of the top

vorticity zone increases with the rise in Re similar to

Da ¼ 10�6: By further increasing the value of Da

from 10�3 to 10�1; the vorticity magnitude on the top

channel wall again decreases as the fluid flow in the

narrow zone has been comparatively decreased. A

bFig. 6 Vorticity contours at b ¼ 0:1667
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distinct behavior of vorticity contours has been

observed for � ¼ 0:5 and Da ¼ 10�1: Here all the

vorticity zones appearing at the surface of the porous

cylinder almost vanish and vorticity contours are more

smooth as compared to b ¼ 0:1667 and b ¼ 0:5: By

further increasing the value of � from 0.5 to 0.9 for the

same Darcy number, these vorticity contours become

more straight. The remaining trend of vorticity

contours with �;Re and Da is similar to the previous

blockage ratios ðb ¼ 0:1667; 0:5Þ.
By comparing Figs. 6, 7 and 8, it is observed that at

Da ¼ 10�6; the size of all the vorticity zones

decreases as b increases from 0.1667 to 1.5 at constant

value of � and Re. Additionally, the top vorticity zone

at the surface of the porous cylinder bends towards the

bottom channel wall with the increment in b: More-

over, the magnitude of maximum vorticity appearing

at the surface of the porous cylinder has increased with

the increment in b: At Da ¼ 10�3; the behavior of

vorticity contours with blockage ratio is similar to

Da ¼ 10�6: Further at Da ¼ 10�1 and � ¼ 0:5; the

size of all the vorticity zones appearing at the surface

of the porous cylinder decreases as b is increased from

0.1667 to 0.5. By further increasing the value of

blockage ratio to 1.5, these zones almost vanish due to

the high blockage ratio. As we increase the value of

porosity to 0.9 at the same Darcy number ðDa ¼
10�1Þ; the front vorticity zone vanishes as b increases

from 0.1667 to 0.5. At the highest value of blockage

ratio ðb ¼ 1:5Þ; all the vorticity zones disappear and

the vorticity contours are almost straight.

4.4 Pressure coefficient ðCPÞ

Figures 9, 10 and 11 represent the variation in CP on

the curved surface of the porous cylinder by varying

the values of b;Re;Da and �: The x� axis of these

figures represents the curved length of the semi-

circular cylinder. In Fig. 9, pressure coefficient is

plotted for b ¼ 0:1667: Here, at Re ¼ 0:01; the

pressure coefficient attains the maximum value

between the points A and B, and the minimum value

between the points B and C for Da ¼ 10�6 and Da ¼
10�3 at � ¼ 0:1. Further, for Da ¼ 10�1 and � ¼ 0:1;

the lowest and highest values of CP are obtained at the

points A and C, respectively. Moreover, a complex

trend of CP ðfor Re ¼ 0:01; � ¼ 0:1ÞwithDa has been
observed such as the value of pressure coefficient is

decreasing with the increase in Da (for constant �) at

the front part of the cylinder whereas the reverse trend

has been observed for the rear part of the cylinder. It

may happen due to the increment in Da which leads to

the increased penetration of the fluid inside the

permeable cylinder and hence pressure distribution

at the front of the cylinder decreases. On the other

hand, due to the interplay between the flow inside and

outside of the porous cylinder, CP has increased with

Da at the rear part of the cylinder. Furthermore, the

influence of porosity is more prominent at Da ¼ 10�1

rather than the other values of Da. At Da ¼ 10�1; CP

increases with � in the proximity of the point A but it

decreases with � near the point C. As we move away

from these points, CP shows an inverse relationship

with porosity at the front portion of the cylinder and it

shows the direct relationship with porosity at the

rearward portion of the cylinder.

Further, by increasing the value of Re from 0.01 to

1, a similar trend of CP has been observed. Although

the values of pressure coefficient have been increased

as compared to Re ¼ 0:01 at constant values ofDa and

�: It is noticed that all these pressure coefficient curves

are converging at some point near B (between A and

B). By increasing the value of Re from 1 to 40, these

converging points are segregated based upon Da and

move towards the point A. Moreover, the values of the

pressure coefficient are increasing with the increase in

Re at constant values of Da and �: It happens because

the inertial forces become dominant by increasing the

value of Re, which results in the increment of pressure

bFig. 7 Vorticity contours at b ¼ 0:5
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coefficient. Furthermore, a similar trend ofCP withDa

and � has been observed for Re ¼ 20; 40:

In Fig. 10, CP is plotted for increased value of b ¼
0:5 and it is observed that CP has decreased with the

increase in b: The respective trend of CP with Re, Da

and � remains similar to Fig. 9. Similarly, Fig 11

represents the pressure coefficient for b ¼ 1:5 and it

depicts that the pressure coefficient has been further

decreased as compared to b ¼ 0:5 at constant values

of other parameters (Re, Da and �Þ. In Fig. 11, for

Re ¼ 0:01; as we move over the edge of the porous

cylinder starting from A, initially CP has almost

negligible variation with Da and �: But after that CP

decreases with the decrement in Da at constant value

of �: Additionally, CP increases as the value of �

increases at Da ¼ 10�3; 10�1: By further enhancing

Re from 0.01 to 40, CP shows a direct relationship

with Re. Whereas, the similar trend of pressure

coefficient with Da and � is observed for Re ¼ 0:01

to Re ¼ 40.

Overall, from the Figs. 9, 10 and 11, it is observed

that CP shows an inverse relationship with b for all the

values of Da, Re, and �: Additionally, the trend of CP

over the edge of the porous cylinder remains similar at

b ¼ 0:1667; 0:5: But for b ¼ 1:5; a distinct trend has

been observed for all the values of Re.

4.5 Drag coefficient ðCDÞ

The drag coefficient ðCDÞ has been plotted in Fig. 12 at
various combinations of �;Re;Da and b: Here, the
drag coefficient shows the classical inverse relation-

ship with Re for the constant value of Darcy number,

blockage ratio, and porosity [10] and it can be

visualized from Fig. 12. In Fig. 12(a), drag coefficient

has been represented for � ¼ 0:1 by varying Re, Da

and b: It has been noticed that CD decreases with the

increment in Da. It happens as the value of Da

increases, the permeability of the porous cylinder

increases and it allows more fluid to penetrate the

permeable cylinder. Due to the increased flow through

the cylinder, it experiences less drag. Additionally, it

is noticed that CD has been increased by increasing the

blockage ratio at any value of Re. This can be

explained as b increases, the distance of the channel

wall from the cylinder decreases, and therefore porous

cylinder experiences more drag force from the

incoming flow. Further, for b ¼ 1:5; there is a

significant rise in CD with decreasing Da. But, this

variation is seen to be less prominent for b ¼ 0:5 and

0.1667.

Subsequently, Fig. 12(b) shows the variation in CD

for � ¼ 0:5:Here, it has observed that the values of CD

almost coincides at Da ¼ 10�6 and Da ¼ 10�3 for

b ¼ 0:5; 0:1667: The remaining trend of CD with

Re, Da and � is similar to Fig. 12(a). Further, in

Fig. 12(c) ð� ¼ 0:9), a distinct trend is observed at

Da ¼ 10�6; 10�3 and b ¼ 0:5; 0:1667 as CD increases

with the increase inDa. It may happen due to complex

influence of b;Da and highest value of porosity ð� ¼
0:9Þ:Overall, it can be noticed from the Fig. 12 that the

effect of porosity is prominent for b ¼ 0:5 and b ¼
0:1667 at Da ¼ 10�6; 10�3 rather than other govern-

ing parameters.

5 Conclusions

The present paper intends to observe the influences of

Re; b;Da; and � for the flow across a semi-circular

porous cylinder attached to a channel wall. The

streamlines profiles, vorticity profiles, pressure coef-

ficient ðCPÞ, and drag coefficient ðCDÞ have been

represented for the chosen range of governing param-

eters. The interaction of the governing parameters

shows an entangle behavior on the flow properties.

The porous cylinder imitates a solid cylinder at the

lowest value of Da i.e. Da ¼ 10�6 irrespective of the

values of other governing parameters. Further

enhancement in Da induces a rise in the permeability

of the porous cylinder and therefore, more amount of

fluid travels through the permeable cylinder. Whereas

at Da ¼ 10�1; the flow field looks like a channel flow

without any obstacle. The impact of � on the flow field

is negligible at Da ¼ 10�6 and this influence is

intensifying with Da. Furthermore, the diffusion of

vorticity contours inside the cylinder has been

observed with an incrementation of Da and �. Subse-

quently, a complex influence of b has been observed

on the flow patterns. The magnitude of maximum

vorticity magnifies and the size of the vorticity zones

diminishes with the enhancement in b. The Darcy

number exhibits a complex impact on the pressure

bFig. 8 Vorticity contours at b ¼ 1:5
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Fig. 9 Variation of pressure coefficient ðCPÞ on the curved surface at b ¼ 0:1667 with Re, Da and � : (a)Re=0.01 (b)Re=1 (c) Re=20
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coefficient distribution and the values of the drag

coefficient. The influence of porosity on the pressure

coefficient becomes prominent with the augmentation

in Darcy number. Additionally, CP declines and CD

rises with the increment in the blockage ratio.
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