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Abstract In this paper, the Riesz-Caputo fractional

derivative of variable order with fixed memory is

considered. The studied non-integer differential oper-

ator is approximated by means of modified basic rules

of numerical integration. The three proposed methods

are based on polynomial interpolation: piecewise

constant, piecewise linear, and piecewise quadratic

interpolation. The errors generated by the described

methods and the experimental rate of convergence are

reported. Finally, an application of the Riesz-Caputo

fractional derivative of space-dependent order in

continuum mechanics is depicted.

Keywords Riesz-Caputo derivative � variable
order � fractional continua � numerical solution

1 Introduction

In the last decades, fractional calculus has become a

powerful mathematical tool to model a lot of physical

processes. Because of the nature of fractional deriva-

tives (nonlocal operators), they are especially used in

describing nonlocal and multiscale phenomena. In this

regard, we refer the reader works on the following

topics: viscoelastic materials [6, 23, 28], heat conduc-

tion [24, 40, 54, 56], diffusion processes in complex

systems [12, 30, 32], nonlocal constitutive laws

[13, 19, 46], microscopic interaction forces [18, 25],

nonlocal stress-strain constitutive relations [3], non-

local beams [2, 8, 10, 41, 47]. A fairly broad overview

of various aspects of fractional calculus applications

can be found in the review paper by Failla and

Zingales [20].

Notwithstanding this branch of mathematics is not

new (the creation of fractional calculus dates back to

the birth of the classical theory of differential calculus

[27]) there are still remain a lot of problems that

require attention. In particular, the branch of fractional

calculus, that is devoted to differential equations

containing simultaneously both the left and right

fractional derivatives, is a research area where exists a

large number of an unsolved/unexplored issues

[15, 21, 29]. No exact solutions, for many of the

aforementioned equations, have been found till now.

For this reason, many researchers focus their attention

on approximate solutions of equations containing
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various types of combinations of fractional deriva-

tives. For this reason, many researchers focus their

attention on approximate solutions of equations con-

taining various types of combinations of fractional

derivatives [1, 7, 11, 14, 22, 53].

On the other hand, certain types of phenomena in

physics are better depicted when the order of the

fractional operator is variable (it depends on the spatial

or time variable) [26, 43]. Promising approaches have

been presented in papers where authors studied:

diffusion processes in an inhomogeneous and hetero-

geneous medium [16, 33, 44, 49–51, 55], control

theory [17, 34, 35], mechanics [4, 31, 36, 38, 39, 42].

More details of the available applications of a variable

order fractional calculus in the area of scientific and

engineering modelling are presented in the following

review papers: [37, 52].

In this paper we focus on the Riesz-Caputo fractional

operator of variable order with fixed memory and its

application in a strong form of the space-fractional

continuum (1D case), which is just a straightforward

extension of the results presented in [45]. Such approach

allows, when adopted to the mechanical applications,

for clear physical interpretation and moreover gives

smooth passage to classical approach as a limit case

[5, 48].Wepropose threemethods, based onpolynomial

interpolation, to approximation of the studied fractional

operator. All presented numerical sachems were imple-

mented in Python using library for real and complex

floating-point arithmetic with arbitrary precision (http://

mpmath.org/).

2 Approximation of the Riesz-Caputo fractional

derivative with variable order

Let us consider the following Riesz-Caputo fractional

derivative of variable order with a depending on space
variable

RC
x�‘D

aðxÞ
xþ‘ f ðxÞ ¼

1

2
ðCx�‘D

aðxÞ
x f ðxÞþ

ð�1ÞnCx D
aðxÞ
xþ‘ f ðxÞÞ

ð1Þ

Operators C
x�lD

aðxÞ
x and C

x D
aðxÞ
xþ‘ are well known frac-

tional Caputo derivatives, with fixed memory length ‘

and variable order aðxÞ[ 0, defined as

C
x�lD

aðxÞ
x f ðxÞ

¼ 1

Cðn� aðxÞÞ

Z x

x�l

ðx� sÞn�aðxÞ�1f ðnÞðsÞds
ð2Þ

C
x D

aðxÞ
xþ‘ f ðxÞ

¼ ð�1Þn

Cðn� aðxÞÞ

Z xþ‘

x

ðs� xÞn�aðxÞ�1f ðnÞðsÞds
ð3Þ

where n� 1\aðxÞ\n.

In following, based on our previous work [9] where

the numerical schemes for differential operators of

constant order a were developed, we elaborate the

algorithms for the Riesz-Caputo derivative of variable

order. For discretisation, we generate the grid of ðN þ
1Þ – equidistant nodes: x0\. . .\xi�m\xi�mþ1

\. . .\xi\. . .\xiþm�1\xiþm\. . .\xN where

xi ¼ x0 þ iDx, m ¼ ‘=Dx and Dx ¼ xN � x0ð Þ=N.
Moreover, we introduce the following notation:

f xið Þ ¼ fi, f
nð Þ xið Þ ¼ f

nð Þ
i , and a xið Þ ¼ ai.

2.1 Method I: Approximation based on piecewise

constant interpolation
RC
x�‘D

aðxÞ
xþ‘ f ðxÞ

���
x¼xi

� 1

2

Xi
k¼i�mþ1

f
nð Þ

k pi;k�1 þ
Xiþm�1

k¼i

f
nð Þ

k qi;k

 ! ð4Þ

where

pi;k ¼
Dxð Þn�ai

C n� ai þ 1ð Þ i� kð Þn�ai � i� k � 1ð Þn�ai½ �

ð5Þ

and

qi;k ¼
Dxð Þn�ai

C n� ai þ 1ð Þ k � iþ 1ð Þn�ai � k � ið Þn�ai½ �

ð6Þ

2.2 Method II: Approximation based on piecewise

linear interpolation
RC
x�‘D

aðxÞ
xþ‘ f ðxÞ

���
x¼xi

� 1

2

Xi
k¼i�m

f
nð Þ

k ri;k þ
Xiþm

k¼i

f
nð Þ

k si;k

 ! ð7Þ

where
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ri;k ¼
Dxð Þn�ai

C n� ai þ 2ð Þ

�
m� 1ð Þn�aiþ1 þ n� ai � mþ 1ð Þmn�ai for k ¼ i� m

i� k þ 1ð Þn�aiþ1 � 2 i� kð Þn�aiþ1 þ i� k � 1ð Þn�aiþ1
for k ¼ i� mþ 1. . .i� 1

1 for k ¼ i

8><
>:

ð8Þ

and

si;k ¼
Dxð Þn�ai

C n� ai þ 2ð Þ

�
m� 1ð Þn�aiþ1 þ n� ai � mþ 1ð Þmn�ai for k ¼ iþ m

k � iþ 1ð Þn�aiþ1 � 2 k � ið Þn�aiþ1 þ k � i� 1ð Þn�aiþ1
for k ¼ iþ 1. . .iþ m� 1

1 for k ¼ i

8><
>:

ð9Þ

2.3 Method III: Approximation based on piecewise

quadratic interpolation

RC
x�‘D

aðxÞ
xþ‘ f ðxÞ

���
x¼xi

� 1

2
Dxð Þn�ai

�

P1
k¼�1

f
nð Þ

iþkuk þ
Pi�1

k¼i�m

f
nð Þ

k wi;k þ
P1

k¼�1

f
nð Þ

i�kuk þ
Piþm

k¼iþ1

f
nð Þ

k vi;k for odd m

Pi
k¼i�m

f
nð Þ

k wi;k þ
Piþm

k¼i

f
nð Þ

k vi;k for even m

8>>><
>>>:

ð10Þ

where

wi;k ¼
mn�aiþ2 � ðm� 2Þn�aiþ2

Cðn� ai þ 3Þ � 3mn�aiþ1 þ ðm� 2Þn�aiþ1

2Cðn� ai þ 2Þ

þ mn�ai

Cðn� ai þ 1Þ
for k ¼ i� m

�2
ði� k þ 1Þn�aiþ2 � ði� k � 1Þn�aiþ2

Cðn� ai þ 3Þ

þ2
ði� k þ 1Þn�aiþ1 þ ði� k � 1Þn�aiþ1

Cðn� ai þ 2Þ
for odd k þ i� m

ði� k þ 2Þn�aiþ2 � ði� k � 2Þn�aiþ2

Cðn� ai þ 3Þ

� ði� k þ 2Þn�aiþ1 þ 6ði� kÞn�aiþ1 þ ði� k � 2Þn�aiþ1

2Cðn� ai þ 2Þ
for evenk þ i� mandk\i� 1

2n�aiþ2

Cðn� ai þ 3Þ �
2n�aiþ1

2Cðn� ai þ 2Þ for evenmandk ¼ i

3n�aiþ2 � 1

Cðn� ai þ 3Þ �
3n�aiþ1 þ 3

2Cðn� ai þ 2Þ �
1

Cðn� ai þ 1Þ for oddmandk ¼ i� 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

and
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vi;k ¼
mn�aiþ2 � ðm� 2Þn�aiþ2

Cðn� ai þ 3Þ � 3mn�aiþ1 þ ðm� 2Þn�aiþ1

2Cðn� ai þ 2Þ

þ mn�ai

Cðn� ai þ 1Þ
for k ¼ iþ m

�2
ðk � iþ 1Þn�aiþ2 � ðk � i� 1Þn�aiþ2

Cðn� ai þ 3Þ

þ2
ðk � iþ 1Þn�aiþ1 þ ðk � i� 1Þn�aiþ1

Cðn� ai þ 2Þ
for odd k þ iþ m

ðk � iþ 2Þn�aiþ2 � ðk � i� 2Þn�aiþ2

Cðn� ai þ 3Þ

� ðk � iþ 2Þn�aiþ1 þ 6ðk � iÞn�aiþ1 þ ðk � i� 2Þn�aiþ1

2Cðn� ai þ 2Þ
for evenk þ iþ mandk[ iþ 1

2n�aiþ2

Cðn� ai þ 3Þ �
2n�aiþ1

2Cðn� ai þ 2Þ for evenmandk ¼ i

3n�aiþ2 � 1

Cðn� ai þ 3Þ �
3n�aiþ1 þ 3

2Cðn� ai þ 2Þ �
1

Cðn� ai þ 1Þ for odd mandk ¼ iþ 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

with

Fig. 1 Approximations of the Riesz-Caputo derivative of functions x2, exp x, sin x and cos x for space-dependent order a xð Þ ¼ 1
2
þ x

2
and

a xð Þ ¼ 1� x
2
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u�1 ¼
2ðn� aiÞ2 þ 3ðn� aiÞ

2Cðn� ai þ 3Þ

u0 ¼
2þ 2ðn� aiÞ
Cðn� ai þ 3Þ

u1 ¼
�ðn� aiÞ

2Cðn� ai þ 3Þ

3 Numerical analysis: errors and experimental

rates of convergence

In this subsection, we report on a few numerical

examples for checking the accuracy of the presented

methods. Algebraic problems given by Eqs. (4), (7),

and (10) were built using original procedures devel-

oped by the authors in Python.

Figure 1 shows graphs of approximations of the

Riesz-Caputo derivative of functions x2, exp x, sin x,

and cos x for space-dependent orders a xð Þ ¼ 1
2
þ x

2
and

a xð Þ ¼ 1� x
2
. The calculations presented on the plots

have been performed for N ¼ 2000 and ‘ ¼ 0:2.

In Tables 1, 2, and 3 we present the absolute errors

of numerical calculations carried out using the

proposed methods (Method I, Method II, and Method

III) for the following functions:

– f xð Þ ¼ exp xð Þ and a xð Þ ¼ exp �xð Þ (Table 1),
– f xð Þ ¼ exp xð Þ and a xð Þ ¼ 1þx2

2
(Table 2),

– f xð Þ ¼ exp xð Þ and a xð Þ ¼ sin xð Þ þ 1 (Table 3).

The reported errors have been determined by compar-

ing numerical results with exact values (using series

representation of the Riesz-Caputo derivative [9]). We

take a particular value of the Riesz-Caputo operator

and compare it with a value received from the series at

the same specific point. In this case, for each node xi
the order of derivative has the form a xið Þ and is an

Table 1 Errors and

experimental rates of

convergence for the

approximation of the Riesz-

Caputo derivative of

function f xð Þ ¼ exp xð Þ for
variable order

a xð Þ ¼ exp �xð Þ

x Dx Method I Method II Method III

Error Rate Error Rate Error Rate

0.2 0.01 1.50965E-05 – 6.41933E-08 – 1.08056E-14 –

0.005 7.57269E-06 1.00 1.65880E-08 1.95 6.87771E-16 3.97

0.0025 3.79284E-06 1.00 4.26599E-09 1.96 4.36702E-17 3.98

0.00125 1.89813E-06 1.00 1.09273E-09 1.96 2.76712E-18 3.98

0.4 0.01 2.42990E-05 – 7.68809E-08 – 9.25228E-15 –

0.005 1.21786E-05 1.00 1.94861E-08 1.98 5.77257E-16 4.00

0.0025 6.09687E-06 1.00 4.92442E-09 1.98 3.60283E-17 4.00

0.00125 3.05037E-06 1.00 1.24163E-09 1.99 2.24927E-18 4.00

0.8 0.01 3.66332E-05 – 8.55870E-08 – 4.72786E-15 –

0.005 1.83466E-05 1.00 2.14589E-08 2.00 2.92187E-16 4.02

0.0025 9.18088E-06 1.00 5.37533E-09 2.00 1.81207E-17 4.01

0.00125 4.59236E-06 1.00 1.34564E-09 2.00 1.12653E-18 4.01

1.2 0.01 4.88466E-05 – 9.92076E-08 – 1.41104E-15 –

0.005 2.44551E-05 1.00 2.48227E-08 2.00 8.62417E-17 4.03

0.0025 1.22355E-05 1.00 6.20887E-09 2.00 5.31507E-18 4.02

0.00125 6.11977E-06 1.00 1.55271E-09 2.00 3.29302E-19 4.01

1.6 0.01 6.54281E-05 – 1.23339E-07 – 1.56315E-15 –

0.005 3.27508E-05 1.00 3.08444E-08 2.00 9.89008E-17 3.98

0.0025 1.63846E-05 1.00 7.71249E-09 2.00 6.22459E-18 3.99

0.00125 8.19461E-06 1.00 1.92832E-09 2.00 3.90593E-19 3.99

1.8 0.01 7.64028E-05 – 1.40558E-07 – 3.16440E-15 –

0.005 3.82421E-05 1.00 3.51467E-08 2.00 1.98766E-16 3.99

0.0025 1.91312E-05 1.00 8.78768E-09 2.00 1.24576E-17 4.00

0.00125 9.56817E-06 1.00 2.19706E-09 2.00 7.79820E-19 4.00
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established number (the order a is constant for each

node xi). Moreover, all tables contain the experimental

rates of convergence for each proposed method.

Analysing results presented in tables, one can

observe that the convergence is the fastest for the

piecewise quadratic interpolation (scheme 10), a little

slower in case of the piecewise linear interpolation

(scheme 7) and the slowest for the piecewise constant

interpolation (scheme 4). Additionally, the errors

generated by Method I are the biggest one, while for

Method III are the smallest one.

4 Application of Riesz-Caputo derivative

of variable order for the space-fractional

continuum mechanics - numerical study

In this section we present the application of the Riesz-

Caputo fractional derivative of variable order in

continuum mechanics. We consider one-dimensional

tension problem of the space-fractional continua in the

following form [46]:

o

ox
‘aðxÞ�1C 2� aðxÞð ÞRCx�‘D

aðxÞ
xþ‘ f ðxÞ

� �
þ b

E
¼ 0 ð13Þ

with Dirichlet’s boundary conditions

f ð0Þ ¼ 0

f ðlÞ ¼ 0:01l

�
ð14Þ

where b
E ¼ 0:1 and l ¼ 1. In Eq. (18), x denotes spatial

variable, ‘ is the length scale, f denotes the

Table 2 Errors and

experimental rates of

convergence for the

approximation of the Riesz-

Caputo derivative of

function f xð Þ ¼ exp xð Þ for
variable order a xð Þ ¼ 1þx2

2

x Dx Method I Method II Method III

Error Rate Error Rate Error Rate

0.2 0.01 2.06366E-05 – 5.23628E-08 – 3.94876E-15 –

0.005 1.03373E-05 1.00 1.31554E-08 1.99 2.44466E-16 4.01

0.0025 5.17346E-06 1.00 3.30045E-09 1.99 1.51746E-17 4.01

0.00125 2.58795E-06 1.00 8.27193E-10 2.00 9.43733E-19 4.01

0.4 0.01 2.52875E-05 – 6.95082E-08 – 6.46222E-15 –

0.005 1.26695E-05 1.00 1.75087E-08 1.99 4.00927E-16 4.01

0.0025 6.34134E-06 1.00 4.40176E-09 1.99 2.49195E-17 4.01

0.00125 3.17235E-06 1.00 1.10504E-09 1.99 1.55101E-18 4.01

0.8 0.01 2.73888E-05 – 1.16803E-07 – 1.97114E-14 –

0.005 1.37389E-05 1.00 3.01898E-08 1.95 1.25493E-15 3.97

0.0025 6.88124E-06 1.00 7.76567E-09 1.96 7.96998E-17 3.98

0.00125 3.44373E-06 1.00 1.98958E-09 1.96 5.05113E-18 3.98

1.2 0.01 4.47995E-05 - 8.55260E-08 – 6.66571E-16 –

0.005 2.24256E-05 1.00 2.13896E-08 2.00 4.26259E-17 3.97

0.0025 1.12193E-05 1.00 5.34859E-09 2.00 2.69926E-18 3.98

0.00125 5.61127E-06 1.00 1.33732E-09 2.00 1.69983E-19 3.99

1.6 0.01 6.83960E-05 – 2.66922E-07 – 4.14854E-14 –

0.005 3.43000E-05 1.00 6.85320E-08 1.96 2.62248E-15 3.98

0.0025 1.71769E-05 1.00 1.75197E-08 1.97 1.65496E-16 3.99

0.00125 8.59546E-06 1.00 4.46293E-09 1.97 1.04289E-17 3.99

1.8 0.01 7.20214E-05 – 1.28814E-07 – 4.46378E-15 –

0.005 3.60466E-05 1.00 3.22071E-08 2.00 2.79546E-16 4.00

0.0025 1.80323E-05 1.00 8.05228E-09 2.00 1.74906E-17 4.00

0.00125 9.01840E-06 1.00 2.01314E-09 2.00 1.09381E-18 4.00
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Table 3 Errors and

experimental rates of

convergence for the

approximation of the Riesz-

Caputo derivative of

function f xð Þ ¼ exp xð Þ for
variable order

a xð Þ ¼ sin xð Þ þ 1

x Dx Method I Method II Method III

Error Rate Error Rate Error Rate

0.2 0.01 1.60723E-05 – 3.02310E-08 4.09406E-16

0.005 8.04511E-06 1.00 7.56003E-09 2.00 2.58751E-17 3.98

0.0025 4.02481E-06 1.00 1.89034E-09 2.00 1.62750E-18 3.99

0.00125 2.01297E-06 1.00 4.72631E-10 2.00 1.02088E-19 3.99

0.4 0.01 2.36586E-05 – 5.19790E-08 – 2.00026E-15 –

0.005 1.18469E-05 1.00 1.30181E-08 2.00 1.23408E-16 4.02

0.0025 5.92790E-06 1.00 3.25836E-09 2.00 7.64717E-18 4.01

0.00125 2.96507E-06 1.00 8.15218E-10 2.00 4.75253E-19 4.01

0.8 0.01 3.44676E-05 – 1.18646E-07 – 1.60320E-14 –

0.005 1.72791E-05 1.00 3.02127E-08 1.97 1.00487E-15 4.00

0.0025 8.65136E-06 1.00 7.66646E-09 1.98 6.29514E-17 4.00

0.00125 4.32873E-06 1.00 1.93990E-09 1.98 3.94203E-18 4.00

1.2 0.01 1.94921E-05 1.10806E-07 2.29987E-14

0.005 9.78684E-06 0.99 2.93851E-08 1.91 1.50571E-15 3.93

0.0025 4.90457E-06 1.00 7.74780E-09 1.92 9.81780E-17 3.94

0.00125 2.45530E-06 1.00 2.03271E-09 1.93 6.37888E-18 3.94

1.6 0.01 2.09175E-07 – 1.45639E-09 – 3.37524E-16 –

0.005 1.05104E-07 0.99 3.94470E-10 1.88 2.26121E-17 3.90

0.0025 5.26960E-08 1.00 1.06208E-10 1.89 1.50804E-18 3.91

0.00125 2.63879E-08 1.00 2.84493E-11 1.90 1.00174E-19 3.91

1.8 0.01 1.48806E-05 – 9.56471E-08 – 2.12801E-14 –

0.005 7.47474E-06 0.99 2.56854E-08 1.90 1.41240E-15 3.91

0.0025 3.74691E-06 1.00 6.85677E-09 1.91 9.33326E-17 3.92

0.00125 1.87607E-06 1.00 1.82109E-09 1.91 6.14370E-18 3.93

Fig. 2 Spatial

discretization for one-

dimensional fractional

continuum body

Fig. 3 The comparison of

displacements through the

length of the body for

variable order a xð Þ ¼ 1
2
þ x

2

(left side) and a xð Þ ¼ 1� x
2

(right side), and

‘ 2 f0:01; 0:1; 0:2; 0:4g
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displacements, b is the body force, and E stands for the

Young modulus.

We start from introducing the spatial discretization

for the analysed one-dimensional continuum body that

is presented in Fig. 2.

Discrete form of the fractional operator

o
ox ‘aðxÞ�1C 2� aðxÞð ÞRCx�‘D

aðxÞ
xþ‘ f ðxÞ

� �
can be described

by the trapezoidal formula (Method II) as:

o

ox
‘aðxÞ�1C 2� aðxÞð ÞRCx�‘D

aðxÞ
xþ‘ f ðxÞ

� �����
x¼xi

� C 2� aið Þ‘ai�1

2Dx

�
Xi
k¼i�m

f 0kri;k þ
Xiþm

k¼i

f 0ksi;k

 

�
Xi�1

k¼i�m�1

f 0kri�1;k �
Xiþm�1

k¼i�1

f 0ksi�1;k

!
ð15Þ

Next, after applying the backward difference formula,

for the first order derivative, in Eq. (15) we obtain:

o

ox
‘aðxÞ�1C 2� aðxÞð ÞRCx�‘D

aðxÞ
xþ‘ f ðxÞ

� �����
x¼xi

� C 2� aið Þ‘ai�1

2ðDxÞ2

�
Xi
k¼i�m

ððfkþ1 � fkÞri;kÞ þ
Xiþm

k¼i

ððfkþ1 � fkÞsi;kÞ
 

�
Xi�1

k¼i�m�1

ððfkþ1 � fkÞri�1;kÞ �
Xiþm�1

k¼i�1

ððfkþ1 � fkÞsi�1;kÞ
!

ð16Þ

Finally, the following system of linear equations

equations can be formulated:

f0 ¼ 0

Pi
k¼i�m

ððfkþ1� fkÞri;kÞþ
Piþm

k¼i

ððfkþ1� fkÞsi;kÞ

�
Pi�1

k¼i�m�1

ððfkþ1� fkÞri�1;kÞ�
Piþm�1

k¼i�1

ððfkþ1� fkÞsi�1;kÞ¼
�b

FE

fn ¼ 0:01l

8>>>>>>>>>><
>>>>>>>>>>:

ð17Þ

where

F ¼ C 2� aið Þ‘ai�1

2ðDxÞ2

The system (17) (containing N þ 1 equations) has

been solved for two types of function a, namely

a xð Þ ¼ 1
2
þ x

2
and a xð Þ ¼ 1� x

2
and the following

parameters: N ¼ 200 and ‘ 2 f0:01; 0:1; 0:2; 0:4g.
The obtained results are presented in Fig. 3.

The analysis of Fig. 3 allows us to draw the

conclusion that the deformation of the space-fractional

continuum body solely depends on the length scale ‘

and the order a. Moreover, the introduction of variable

order of fractional continua makes the model more

flexible, thus in perspective validation of this model

with experimental data should be easier.

5 Conclusions

The approximation of the Riesz-Caputo fractional

derivative of variable order and with fixed memory

can be elaborated using different approaches. Herein,

three original methods are considered based on the

polynomial interpolation: piecewise constant (Method

I), piecewise linear (Method II), and piecewise

quadratic (Method III) interpolation. As presented,

the convergence is the fastest for Method III, a little

slower in case ofMethod II and the slowest forMethod

I. Moreover, the errors generated by Method I are the

biggest one, while for Method III are the smallest one.

Finally, the presented schemes can be directly applied

for modelling of scale effect is terms of space-

fractional continuum mechanics, making its ability

to mimic experimental results higher.
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