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Abstract Oblique wave scattering by a breakwater

consisting of an array of thin porous walls in a two-

layer ocean with varying bottom topography is

investigated by using linear wave theory. Further,

wave trapping is studied by considering an imperme-

able seawall. The entire bottom profile is assumed to

be a shelf-type comprising a varying bottom of finite

length and two uniform bottoms of semi-infinite

lengths. Porous walls extending from bottom to free-

surface are assumed at a lower water-depth level (lee

side). Impingement of waves, which approach from a

deeper depth level (seaside), on walls is considered.

The Fourier method or method of eigenfunction

expansion is applied for the uniform bottom, whereas

an approximation technique, called a mild-slope

equation, is used for the varying bottom. Solutions

from these two methods are matched at interfaces

under physical conditions. An explicit solution is

derived in the form of a system of algebraic equations.

The effect of several bottom configurations on wave

interaction with porous walls is analyzed. Reflection

and transmission coefficients and wave force on

porous walls and seawall are analyzed for the param-

eters related to waves, bottom, and porous medium.

The study reveals that porous walls are very effective

in reducing wave transmission for bottom profiles

dominated by waves. Wave forces on porous walls are

less in the two-layer ocean than in a homogeneous

ocean. In wave trapping, seawall attains higher wave-

force for incoming surface waves than for incoming

interfacial waves. The ratio of water-depth levels and

wave incident angles are also analyzed for the

mitigation of wave forces. The force on seawall

increases with the increased depth ratio in surface

wave incidence, while the force decreases with the

increased depth ratio in interface wave incidence. The

findings may be useful for coastal engineers to

understand wave scattering by multiple porous struc-

tures in the stratified ocean.

Keywords Surface wave � Interfacial wave � Porous
walls � Varying bottom � Reflection coefficient �
Transmission coefficient � Wave force

1 Introduction

The study of water wave propagation through an array

of porous walls or screens is of longstanding interest to

applied mathematicians and coastal engineers since

porous walls are found to be very useful in dissipating

wave energy. Porous walls as wave reduction devices

are extensively used in harbors, ports, and marinas to

create tranquility zones. Also, these have been used in

reducing coastal erosion. The typical perforated/
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slotted breakwaters and pile breakwaters in the form of

multiple rows have been considered to attenuate

waves in harbors. For instance, a perforated caisson

breakwater with three wave-absorbing chambers in

Porto Torres industrial harbour, Italy (Franco [7]), a

breakwater with five chambers for the Dalian Chem-

ical Production Terminal in China and a bottom-

standing surface piercing pile breakwater in Singapore

(see Huang et al. [8]) were constructed. Also, porous

barriers are proposed to enhance the effectiveness of

wetlands habitat restoration projects (see Williams

and Wang [30]). The thin porous walls, considered in

the present study, are very similar to perforated/

slotted/pile breakwaters. The fluid flow through a

porous structure having fine porosity is modeled by

Darcy law. The research on the performance of

multiple porous walls in reducing waves in different

scenarios has been carried out for the past few

decades. Several mathematical techniques have been

proposed to deal with various physical settings of

porous walls in the process. In this Section, we have

discussed some useful models and methods of the

solution developed by investigators. Employing the

matrix method, wave reflection from several porous

screens, modeled as wave dampers, spaced equally in

a narrow wave tank, which was ended with a vertical

wall, was studied by Evans [6]. Using the eigenfunc-

tion expansion method, Twu and Lin [27, 28] analyzed

multiple porous plates to attenuate wave energy in a

semi-infinite long channel of constant water-depth.

Liu et al. [19] considered the problem of oblique

interaction of waves with a multi-chambered caisson

made up of multiple porous walls and solved analyt-

ically by making use of the matched eigenfunction

expansion method. This study was further extended to

perforated caisson breakwaters with perforated parti-

tion walls by Liu et al. [20]. Huang et al. [8] presented

an extensive review related to hydraulic conductance

in the presence of a perforated breakwater near the

coast. This review concludes that destructive waves

can be controlled by reducing waves’ transmission

over a wide range of frequency through multi-perfo-

rated walls. Karmakar and Guedes Soares [13, 14]

described the impact of multiple flexible porous

barriers on the transmission of progressive waves.

An application of a multi-domain boundary element

method to the analysis of reflection and transmission

of oblique waves from double porous thin walls can be

found in [9]. Kaligatla et al. [12] investigated the

effect of varying bottom topography on wave scatter-

ing by multiple porous barriers by applying a modified

mild-slope equation and matched eigenfunction

expansion. A further extension of the idea of Kaligatla

et al. [12], which considers flexible porous barriers,

was illustrated by Behera and CO Ng [2]. By

employing the eigenfunction expansion method along

with least square approximation, Das and Bora [5]

studied wave damping phenomena by two vertical

porous plates of different lengths in two different cases

concerned with the submerged and surface piercing

positions.

Due to global warming, frequent climate change is

one of the severe natural threats, and it causes an

increase in sea level, which eventually leads to an

increase in waves. A solid sea wall is a protection

measure against coastal erosion and flooding in coastal

areas. When waves interact with a sea wall, the

dissipation of incident wave energy occurs mostly by

its run-up and reflection. In the case of a vertical wall,

wave heights near it increase twice the incident wave

amplitude at most. It accounts for scouring near its toe,

and thus safety measures are needed for the wall’s

stability. Using porous breakwaters at a distance from

the solid wall offers a possible solution to reduce wave

heights. Many investigators examined the perfor-

mance of porous breakwaters near sea walls in the

homogeneous ocean. Using matched eigenfunction

expansion method, Das and Bora [4] investigated the

reflection of water wave by a rectangular porous

structure situated at an elevated bottom near a solid

wall. Through the eigenfunction expansion method

and the boundary-element method, Koley et al. [16]

studied the trapping of waves by thick porous struc-

tures placed near a wall. Using the Green’s function

technique, Kaligatla et al. [17] investigated the

phenomenon of an oblique wave trapping by a flexible

porous plate in finite and infinite water depths. They

also obtained the distances between the plate and the

rigid wall to get zero force on the wall. In these

investigations, the bottom is assumed to be uniform.

However, in the case of bottom undulations, Kaligatla

et al. [11] studied a problem of wave trapping by dual

porous walls kept in front of a rigid wall by applying

the modified mild-slope equation and method of

matched eigenfunction expansion. Later, Tabssum

et al. [26] extended this study for thick porous

structures.
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In the literature mentioned above, the authors

investigated wave motion characteristics through

porous structures in a homogeneous fluid. However,

temperature or salinity variations and gravitational

settling are some of the reasons for ocean stratifica-

tion. Thus, a multi-layered fluid is sometimes present.

Such a phenomenon draws coastal researchers’ atten-

tion towards the hydrodynamic problems within the

regime of distinct superposed homogeneous fluids.

One such situation of superposed fluids has been

modeled as a two-layer or three-layer fluid system.

The other aspect that impetus to deal with a multi-

layered fluid system is the oil slicking in oceans that

occasionally happens in the fast-growing industrializ-

ing countries. To understand the phenomenon of wave

scattering in two-layer fluid, many researchers have

modeled and investigated water wave problems

involving thin-type permeable (porous) and imperme-

able structures in a two-layer fluid system under the

assumption of constant water-depth. Using the eigen-

function expansion method in conjunction with the

least square method, Lee and Chwang [18] studied

wave scattering of progressive incident waves by

partial vertical impermeable barriers in a two-layer

fluid. Through Havelock’s type of expansion, a study

on the radiation and scattering of waves past a porous

structure in a two-layer fluid of finite and infinite

depths was carried out by Manam and Sahoo [21]. The

scattering of surface and interfacial waves by a porous

membrane barrier in a stratified ocean was analyzed by

Kumar et al. [15] by orthogonality relation and least-

square approximation method. Wave propagation

problems in two-layer fluid over uneven bottom

topography (with no porous structures) were treated

long ago. For example, using the WKBJ (Wentzel–

Kramers–Brillouin–Jeffreys) technique, Barthelemy

et al. [1] explored the scattering of long progressive

waves by a vertical step in the bottom in a two-layer

fluid. Later, Chamberlain and Porter [3] generalized

the study of [1] for arbitrary bottom topography

(slowly varying) by deriving model equations through

variational principle. The model equations are a

generalized form of shallow-water approximations

called mild-slope equations and can be applied to all

wavelengths. The mild-slope approximation is one of

the most effective methods of handling linear wave

scattering by varying bottom topography. The mild-

slope equation is a result of the depth-averaging

technique, which eliminates vertical coordinate. Thus,

the dimensional complexity of problems is reduced by

one. However, the study, which includes arbitrary

bottom topography in the above-stratified ocean

models with porous structures, is minimal. Tabssum

et al. [25] illustrated the application of Chamberlain

and Porter’s mild-slope equation for the study of

wave-interaction with a thick porous breakwater in a

two-layer ocean of varying depth. However, a break-

water consisting of an array of porous walls is also in

coastal engineering practice, as discussed above. With

an array of porous walls, trapping of more wave

energy in the chambers between walls may also be

possible.

The present article deals with the scattering of

linear gravity waves (surface and interfacial waves) in

a two-layer fluid when they impinge obliquely on an

array of porous walls of thin-type in the presence of

undulated sea bottom. This study extends the research

work of Kaligatla et al. [12] on wave scattering by

multiple porous walls in a homogeneous ocean of

varying depth. The porous walls are assumed to extend

from the bottom to free- surface at lower sea-depth. A

shelf type sea bottom is assumed in the present study.

The bottom is composed of two different horizontal

bottom levels and a varying bottom. The bottom is

viewed as an approximation to continental margin. A

typical example of such sloping topography is the

Australian NorthWest Shelf, which was considered by

Holloway et al. [10]. Rattray et al. [23] investigated

the generation of long internal waves at a continental

slope. A study on the scattering of internal waves by

different slope-shelf bottom topographies can be

found from [22]. Furthermore, using the linear theory

of two-layer flow, Talipova and Pelinovsky [29]

derived an analytical solution to study the internal

wave transformation over a oceanic slope-shelf. In the

present study, we have used the eigenfunction expan-

sion method for uniform bottom levels, and an

approximate method for varying bottom, known as

mild-slope equation derived by Chamberlain and

Porter [3]. However, a modified form of Chamberlain

and Porter’s equation for oblique incident waves is

employed here. The solutions from two approaches are

matched at shared boundaries under defined physical

conditions. All the unknown constants of the problem

are obtained by solving a set of linear algebraic

equations. In this paper, we study two problems,

namely wave scattering problem and wave trapping

problem. The scattering problem is designed in an
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unbounded water domain in the horizontal direction,

whereas the trapping problem is designed in the water

domain, which ends with a vertical impermeable back

wall at the lee side. These two problems are explored

for different bottom geometries. The scattering coef-

ficients, such as reflection and transmission coeffi-

cients of surface and interfacial waves, are

investigated for different wave and structural param-

eters. In this article, porous walls’ effectiveness in

reducing wave transmission is analyzed. Moreover,

we examined the performance of porous walls in

reducing wave force on the vertical backwall.

2 Formulation of boundary value problems

In this Section, we stated two model problems

concerned with oblique wave scattering and trapping

by porous walls in a two-layer ocean of varying depth.

The mathematical formulation of these problems is

done using linear water wave theory in the Cartesian

coordinate system (x, y, z). The xy-plane is considered

as mean free-surface while positive z-axis is directed

vertically upward. The two-layer fluid is deemed

incompressible and inviscid and its motion is irrota-

tional. The two homogeneous fluids are separated by a

mean interface at z ¼ �h. We assume that the upper

layer fluid has density q1 whereas the lower layer fluid
has density q2 with q2 [ q1. The sea bottom is

designed as a step-type bottom like continental shelf.

It is constructed by linking a varying bottom of finite

length z ¼ �h2ðxÞ ( 0� x� L) to two semi-infinite

horizontal bottom levels z ¼ �h1 and z ¼ �h3 with

h1 [ h3. The entire sea bottom is impermeable. As

shown in Fig. 1, an array of s number of thin porous

walls extending from bottom to free-surface are

located at z ¼ �h3. In particular, Fig. 1a illustrates a

scattering model whereas Fig. 1b illustrates a trapping

model. The walls are of fine porosity and fluid flow

past porous walls obeys Darcy law. To handle this

problem in a simple way, the whole fluid region is

divided into three regions: X =

f�1\x\0;�1\y\1;�h1 � z� 0g first region,

X = f0� x� L;�1\y\1;�h2ðxÞ� z� 0g second
region, X = fL\x\1;�1\y\1;�h3 � z� 0g
third region. The third region X is further divided into

sþ 1 subregions and are designated by Xj for

j ¼ 1; 2; 3; . . .; sþ 1. In Fig. 1, L1 denotes the distance

between the first porous wall and the end point of

varying bottom. Lj, j ¼ 2; 3; . . .; s represents the

spacing between two adjacent barriers, and Lw denotes

the spacing between the backwall and the last porous

wall as in Fig. 1b.

The problems determine scattering of monochro-

matic surface and interfacial waves which impinge on

porous walls obliquely from the region X. Henceforth,
we abbreviate the surface and interfacial waves and

write SW and IW respectively. The incident wave will

be assumed to be either surface wave or interfacial

wave. The phenomenon of wave scattering is

described in terms of reflection and transmission

coefficients of both SW and IW under wave-wave

interaction. Based on the assumptions on waves and

fluid, the fluid motion in each region can be described

by velocity potential Ujðx; y; z; tÞ =

Re f/jðx; zÞe�iðayyþxtÞg for j ¼ �1; 0; 1; 2; . . .; s; sþ
1 with ay= kIsinh, where kI is a wavenumber of

incident SW making an angle h with x� axis and Re

is meant for real part. The spatial velocity potential /j

for j ¼ �1; 0 corresponds to the regions X and X
respectively. Herex denotes an angular frequency and

i2 ¼ �1. The velocity potential /jðx; zÞ for j ¼
�1; 0; 1; 2; . . .; s; sþ 1 satisfies the equation

�
o2

ox2
þ o2

oz2
� a2y

�
/j ¼ 0; ð1Þ

in the respective fluid region Xj.

The free-surface boundary condition is written as

o/j

oz
� K/j ¼ 0 on z ¼ 0 for j ¼ �1; 0; 1; 2; . . .; s; sþ 1;

ð2Þ

where K ¼ x2=g and g is the gravitational constant.

The no-flow boundary condition on flat sea bottom

is expressed as

o/j

oz
¼ 0 on z ¼ �h1;�h3 for j ¼ �1; 1; 2; . . .; s; sþ 1:

ð3Þ

The boundary condition for varying bottom is given by
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o/0

oz
þ dh2

dx

o/0

ox
¼ 0 on z ¼ �h2 for 0� x� L:

ð4Þ

The kinematic and dynamic conditions at mean

interface ðz ¼ �hÞ are expressed as

�
o/j

oz

�
z¼�h�

¼
�
o/j

oz

�
z¼�hþ

for j ¼ �1; 0; 1; 2; . . .; s; sþ 1;

ð5Þ
�
o/j

oz
� K/j

�
z¼�h�

¼q

�
o/j

oz
� K/j

�
z¼�hþ

for j ¼ �1; 0; 1; 2; . . .; s; sþ 1;

ð6Þ

where q ¼ q1=q2.
Since the fluid pressure and mass flux are contin-

uous across the interface between the regionsX andX,

and X and X1, the associated velocity potentials are

matched and suitable mass flux conditions are applied

at the inerface. This is illustrated in the following

method of solution.

The horizontal velocity of fluid flow past porous

walls must be continuous. Thus, the conditions on the

porous walls at x ¼ Lþ L1 þ . . .þ Lj, j ¼ 1; 2; . . .; s

are given by

o/j

ox
¼

o/jþ1

ox
for � h3 � z� 0; ð7Þ

According to the Darcy law, the horizontal velocity of

fluid flow through a porous wall is proportional to the

(a)

(b)

Fig. 1 Schematic of

multiple porous walls in a

two-layer sea of undulating

bottom
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pressure jump across the wall. Yu [31] derived a

boundary condition for a thin porous wall by simpli-

fying the porous medium theory of Sollitt and Cross

[24]. The boundary condition for a jth porous wall is

expressed as

o/j

ox
¼ ikIGjð/j � /jþ1Þ for � h3 � z� 0; ð8Þ

where

Gj ¼
�j

kIdjðfj � irjÞ
; ð9Þ

where Gj is a complex porous effect parameter of jth

wall, �j is porosity, fj is the resistance force coefficient,

rj is an inertial force coefficient and dj ð¼ dÞ is the

thickness of porous wall. The real and imaginary parts

of Gj have the physical meaning: real part refers to the

resistance effect of the porous medium against the

flowwhile imaginary part refers to the inertial effect of

fluid inside the porous medium. The resistance effect

causes wave energy dissipation whilst the inertial

effect causes a phase shift in wave motion. Hence,

wave energy dissipation is introduced by the condi-

tions in (7) and (8). The value of rj has been treated as

unity whereas the value of fj must be determined

through an experiment. The value of jGjj lies within
the interval ð0;1Þ. A porous wall becomes imperme-

able structure when jGjj ¼ 0 and transparent one when

jGjj ! 1.

Moreover, on the impermeable backwall as in

Fig. 1b, the no-flow condition in the positive x-

direction is given by

o/sþ1

ox
¼ 0 at x ¼ Lþ L1 þ . . .þ Lw: ð10Þ

3 Method of solution

To determine the solutions of present problems, the

eigenfunction expansion method in the region of

constant water-depth, whereas the mild-slope equation

(MSE) of Chamberlain and Porter [3] in the region of

varying water-depth are employed. The variable

bottom geometry is assumed to be smooth in a finite

interval (0, L). Furthermore, the bottom is likely to

have slope discontinuity at x ¼ 0 and x ¼ L. The MSE

associated with only propagating wave modes is used

in this solution method, since for a two-layer ocean

model of varying depth, a mild-slope equation that

includes eigenmodes related to all evanescent waves is

not available in the literature. The two solutions in the

regions of constant depth and varying depth are

matched at the interface boundaries using continuity in

fluid pressure. Moreover, mass conserving jump

conditions are also applied at the slope discontinuities

of the bottom profile. Here, we illustrated the deriva-

tion of the solution for the scattering problem.

Following Chamberlain and Porter [3], the spatial

velocity potentials in the fluid regions are expressed as

/�1ðx; zÞ ¼
XII
n¼I

ðIneiknxx þ Rne
�iknxxÞfnðkn; zÞ in X

ð11Þ

/0ðx; zÞ ¼
XII
n¼I

WnðxÞZnðh2ðxÞ; zÞ in X ð12Þ

and

/jðx; zÞ ¼

XII
n¼I

ðBj
ne

ipnxx þ Cj
ne

�ipnxxÞgnðpn; zÞ for j ¼ 1; 2; . . .; s

XII
n¼I

Tne
ipnxxgnðpn; zÞ for j ¼ sþ 1:

8>>>><
>>>>:

ð13Þ

in X where In for n ¼ I; II are amplitudes of incident

SW and IW which will be specified. The constants Rn

and Tn for n ¼ I; II are the amplitudes of reflected and

transmitted waves respectively and that are to be

determined. The constants Bj
n, C

j
n, for n ¼ I; II and

j ¼ 1; 2; . . .; s are also to be determined. The

wavenumbers knx and pnx can be calculated from the

relations knx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n � a2y

q
and pnx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2n � a2y

q
. In the

Galerkin’s expansion (12), Wn are unknown functions

and the eigenfunctions fnðkn; zÞ, Znðqn; zÞ and gnðpn; zÞ
for n ¼ I; II are derived as

fnðkn; zÞ ¼
anðkn cosh knzþ K sinh knzÞ; �h\z\0

bnðcosh knðzþ h1ÞÞ; �h1\z\� h

�

ð14Þ
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Znðqn; zÞ ¼
cnðqn cosh qnzþ K sinh qnzÞ; �h\z\0

dnðcosh qnðzþ h2ðxÞÞÞ; �h2\z\� h

�

ð15Þ

gnðpn; zÞ ¼
snðpn cosh pnzþ K sinh pnzÞ; �h\z\0

fnðcosh pnðzþ h3ÞÞ; �h3\z\� h;

�

ð16Þ

where

an ¼
qK sinh knðh1 � hÞ

kn sinh knh1ðK cosh knh� kn sinh knhÞ
; bn ¼

qK
kn sinh knh1

;

cn ¼
qK sinh qnðh2ðxÞ � hÞ

qn sinh qnh2ðK cosh qnh� qn sinh qnhÞ
; dn ¼

qK
qn sinh qnh2

;

sn ¼
qK sinh pnðh3 � hÞ

pn sinh pnh3ðK cosh pnh� pn sinh pnhÞ
; fn ¼

qK
pn sinh pnh3

:

The kn, qn and pn are the positive real roots of the

dispersion equations

K2fqþ coth kh coth kðh1 � hÞg � kKfcoth khþ coth kðh1 � hÞg
þ k2ð1� qÞ ¼ 0;

ð17Þ

K2fqþ coth qh coth qðh2 � hÞg � qKfcoth qhþ coth qðh2 � hÞg
þ q2ð1� qÞ ¼ 0;

ð18Þ

K2fqþ coth ph coth pðh3 � hÞg � pKfcoth phþ coth pðh3 � hÞg
þ p2ð1� qÞ ¼ 0;

ð19Þ

respectively. It is analyzed that each dispersion

relation has infinite purely imaginary roots that

correspond to evanescent waves. In the present

investigation, the effect of evanescent waves on wave

scattering is not taken into account. In the case of

constant water depths i.e. z ¼ �h1 and z ¼ �h3, the

wavenumbers kn and pn for n ¼ I; II are ordered as

kI\kII and pI\pII . Moreover, in the case of

z ¼ �h2ðxÞ, the wavenumber qn ¼ qnðh2ðxÞÞ needs

to be obtained locally from the Eq. (18). It may be

observed that the eigenfunctions are orthogonal by the

relation

hUn;Umi ¼ q2

Z �h

�hl

UnUm dzþ q1

Z 0

�h

UnUm dz ¼ 0; m 6¼ n

for m; n ¼ 1; 2; 3, where hl ¼ h1 or h2ðxÞ or h3 and Un

is any of the eigenfunctions given above.

For water wave scattering by bottom undulations in

a two-layer ocean, Chamberlain and Porter [3] derived

a system of two partial differential equations by

employing variational principle in the case of normal

incidence. For oblique wave incidence, with a little

modification to the differential equations of [3], a set

of coupled differential equations forWn in Eq. (12) are

derived as

XII
n¼I

�
d

dx

�
anm

dWn

dx

�
þ
�
ðbnm � bmnÞ

dh2
dx

dWn

dx

�

þ
�
cnm þ bnm

d2h2
dx2

þ ðdbnm
dh2

� dnmÞ
�
dh2
dx

�2

� a2yanm

�
Wn

�
¼ 0

ð20Þ

for m ¼ I; II, where

anm ¼ hZn; Zmi ¼ q1

Z 0

�h

ZnZmdzþ q2

Z �h

�h2

ZnZmdz;

bnm ¼ q1

Z 0

�h

oZn
oh2

Zmdzþ q2

Z �h

�h2

oZn
oh2

Zmdz;

cnm ¼ q1

Z 0

�h

o2Zn
oz2

Zmdzþ q2

Z �h

�h2

o2Zn
oz2

Zmdz;

dnm ¼ q1

Z 0

�h

oZn
oh2

oZm
oh2

dzþ q2

Z �h

�h2

oZn
oh2

oZm
dh2

dz:

The differential equation in (20) can be solved

numerically. It may be noted that the evanescent

waves are neglected in the derivation of Eq. (20).

Hence, it is valid in the case of slowly varying bottom,

in the sense that jðdh2=dxÞ=ðqIh2Þj � 1. When the sea

bottom is very steep, one needs to consider a sufficient

number of evanescent modes in the trial solution.

Next, a system of algebraic equations for the

unknown constants, involved in the above expansions,

shall be derived by applying continuity of pressure and

mass conserving jump conditions at x ¼ 0 and x ¼ L

together with the matching conditions (7) and (8) of

porous walls. Continuity of fluid pressure at x ¼ 0 and

x ¼ L yields

XII
n¼I

�
Wnanm � Rne

�iknxxanm

�

¼
XII
n¼I

Ine
iknxanm at x ¼ 0 for m ¼ I; II

ð21Þ
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XII
n¼I

�
Wn �

�
B1
ne

ipnxx þ C1
ne

�ipnxx
��

anm ¼ 0

at x ¼ L for m ¼ I; II

ð22Þ

Also, as mass flux must be continuous at those

interfaces, we derive

XII
n¼I

�
anm

dWn

dx
þ ðbnm

dh2
dx

þ iknxanmÞWn

�

¼
XII
n¼I

2iknxanmIne
iknxx at x ¼ 0 for m ¼ I; II

ð23Þ

XII
n¼I

�
anm

dWn

dx
þ ðbnm

dh2
dx

þ ipnxanmÞWn � 2ianmpnxB
1
ne

ipnxx

�

¼ 0 at x ¼ L for m ¼ I; II

ð24Þ

Upon utilizing the conditions (7) and (8) at x ¼

Lþ
Xs�1

j¼1

Lj for the first s� 1 porous walls, we get

XII
n¼I

ðBj
n � Bjþ1

n Þeipnxx � ðCj
n � Cjþ1

n Þe�ipnxx
	 


pnxhgn; gmi ¼ 0

ð25Þ

XII
n¼I

Bj
nðpnx � kIGjÞeipnxx � Cj

nðpnx þ kIGjÞe�ipnxx
	

þkIGjðBjþ1
n eipnxx þ Cjþ1

n e�ipnxxÞ


hgn; gmi ¼ 0:

ð26Þ

Finally, the same conditions on the last porous wall

gives

XII
n¼I

ðBj
n � TnÞeipnxx � Cj

ne
�ipnxx

	 


pnxhgn; gmi ¼ 0 at x ¼ Lþ
Xs

j¼1

Lj;

ð27Þ

XII
n¼I

Bj
nðpnx � kIGjÞeipnxx � Cj

nðpnx þ kIGjÞe�ipnxx
	

þTnkIGje
ipnxx




hgn; gmi ¼ 0 at x ¼ Lþ
Xs

j¼1

Lj:

ð28Þ

On solving Eqs. (21)–(28), one can find 4ðsþ 2Þ
number of unknowns for s number of porous walls.

On the other hand, in the case of impermeable

backwall, the velocity potential /sþ1ðx; zÞ in the

region Xsþ1 is to be replaced by

/sþ1ðx; zÞ ¼
XII
n¼I

Tn cos pnxðL0 � xÞ gnðpn; zÞ; ð29Þ

where L0 ¼ Lþ L1 þ . . .þ Lw and Tn represents the

amplitude of trapped wave. In this case as well, one

can obtain the same number of unknowns for s number

of porous walls.

4 Computational results

This section describes numerical results for the

scattering and trapping of surface and interfacial

waves by the multiple porous walls in two possible

situations: (i) surface wave incidence when the lower

fluid layer is in still position and (ii) interfacial wave

incidence when the upper fluid layer is in still position.

In each incident case, one needs to evaluate four

scattering coefficients to describe the reflection and

transmission of SW and IW. The mild-slope equation

(20) is solved numerically for different bottom profiles

by employing the in-built function NDSolve in

Mathematica programming. By Klm
r and Klm

t , we

denote the normalized reflection and transmission

coefficients respectively of the wave in lth layer due to

an incident wave in mth layer (for l;m ¼ 1; 2).

According to Chamberlain and Porter [3], the normal-

ized scattering coefficients are derived explicitly as
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K11
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð0Þa11ð0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð0Þa11ð0Þ

p jR1j
jI1j

; K11
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðLÞa11ðLÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð0Þa11ð0Þ

p jT1j
jI1j

;

K21
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð0Þa22ð0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð0Þa11ð0Þ

p jR2j
jI1j

; K21
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðLÞa22ðLÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð0Þa11ð0Þ

p jT2j
jI1j
ð30Þ

for surface wave incidence whereas

K12
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð0Þa11ð0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð0Þa22ð0Þ

p jR1j
jI2j

; K21
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðLÞa11ðLÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð0Þa22ð0Þ

p jT1j
jI2j

;

K22
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð0Þa22ð0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð0Þa22ð0Þ

p jR2j
jI2j

; K22
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðLÞa22ðLÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð0Þa22ð0Þ

p jT2j
jI2j
ð31Þ

for interfacial wave incidence. For the present prob-

lem, these coefficients constitute the energy balance

relations involving an energy loss coefficient Ke,

ðK11
r Þ2 þ ðK11

t Þ2 þ ðK21
r Þ2 þ ðK21

t Þ2 þ Ke ¼ 1 ð32Þ

and

ðK12
r Þ2 þ ðK12

t Þ2 þ ðK22
r Þ2 þ ðK22

t Þ2 þ Ke ¼ 1:

ð33Þ

In the case of the absence of porous walls, these

relations are analogous to those without Ke, derived in

[3]. The coefficient Ke refers to the amount of wave

energy dissipation by the porous walls, and it is zero in

the case of impermeable walls. We analyzed the

dependency of Ke on seabed configurations and the

number of porous walls. Incident wave amplitudes I1
and I2 of surface and interfacial waves are assumed to

be one, and the gravitational constant g ¼ 9:81m=s2 is

fixed for all the results. For computational purpose, we

consider relative parameters in dimensionless form

such as length of varying bottom KL, gap between

porous walls Li=k1 ði ¼ 2; 3; . . .; sÞ where k1 is

wavelength in the first region, depth of interface Kh

or h=h1 and depth ratio h3=h1. The graphical repre-

sentation of bottom profiles are shown in Fig. 2 with

their mathematical functions in Eq. (34)

Z ¼
�h1; �1\x� 0

�h2ðxÞ; 0� x� L

�h3; L� x\1

8><
>: ð34Þ

where

The parameter d0 is restricted to (0, 1/2) and m refers to
number of ripples in sinusoidal bottom with amplitude

d0 and L ¼ ml where l is bottom wavelength. It may be

noted that the inclined curved bottom will have a

raised protrusion as d0 ! 1=2 at the level z ¼ �h3.

This is plotted for d0 ¼ 0:2 in Fig. 2b and this value is

fixed for all the results of scattering and trapping. In

addition, the parameter values Li=k1 ¼ 0:4

ði ¼ 1; 2; . . .; sÞ, m ¼ 4, KL ¼ 1, d0=h1 ¼ 0:08 and q ¼
0:1 are fixed for all the results of scattering and

trapping unless otherwise mentioned. As a particular

case of mound bottom, the present results are

compared with that in Fig. 1a of [3]. The mound

bottom profile, as shown in Fig. 3, is represented by

h2ðxÞ ¼ h1

�
3

5
þ 2

5
cos

2px
L

�
; 0� x� L ð36Þ

with Kh1 ¼ 0:8, Kh ¼ 0:1, q ¼ 0:1. Here h1 ð¼ h3Þ is
the constant water-depth both sides of the mound.

h2ðxÞ ¼

h1 � ðh1 � h3Þ
x

L
; Inclined plane bottom

h3 �
h3 � h1

2d
0 � 1

L� x

L

� �2

3
L� x

L

� �2

� 4ð1þ d
0 Þ L� x

L

� �
þ 6d

0

( )
; Inclined curved bottom

h3 þ ðh1 � h3Þ
�
1þ 2

�
x

L

�3

� 3

�
x

L

�2

� d
0 ½1� cos

2mpx
L

�
�
; Diagonal sinusoidal bottom

8>>>>>>>><
>>>>>>>>:

ð35Þ
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4.1 Wave scattering

4.1.1 Effect of the number of porous walls

Figure 4a–d show the variations of scattering coeffi-

cients in Eq. (30) with bottom length KL in the case of

incidence of SW on s number of porous walls in the

presence of mound bottom. The present results are

compared with that in Fig. 1a of Chamberlain and

Porter [3] when no porous wall is present (s ¼ 0). The

reflection coefficient K11
r of SW decreases when s ¼ 0

and becomes zero with the increase inKL. On the other

hand, higher reflection in SW occurs due to porous

walls. Moreover, K11
r further increases with an incre-

ment in the number of porous walls. As a result, the

transmission coefficient K11
t of SW reduces with the

increasing number of porous walls, as evident from

Fig. 4b. The variation in K11
r is little for two and three

porous walls. However, there is a considerable vari-

ation in K11
t for the same number of porous walls,

(a) (b) (c)

Fig. 2 Bottom configurations

Fig. 3 Mound bottom

(a) (b)

(c) (d)

Fig. 4 Variations in

scattering coefficients K11
r ,

K11
t , K21

r and K21
t against KL

due to s number of porous

walls when h ¼ 0� and Gj ¼
G ¼ 1þ 0:5i for j ¼ 1; 2; 3
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indicating that much wave energy is dissipated by

increasing porous walls. In Fig. 4c and d, a similar

scattering phenomenon occurs in IW with the same

number of porous walls, however it is opposite with

KL. Thus, multiple porous walls reduce wave propa-

gation into lee side regions by attenuating wave

energy, and tranquillity can be maintained in coastal

areas.

Figure 5a–d illustrate the variations of scattering

coefficients given in Eq. (31) with bottom length KL

when IW impinges on s number of porous walls in the

presence of mound bottom. The study of Chamberlain

and Porter [3], as shown in Fig. 1a of their article,

reveals that wider mound induces high transmission of

IW. Here also, consideration of porous walls leads to

higher reflection and lower transmission of SW and

IW. Results reveal that K21
r and K12

r are similar due to

the symmetry of the mound bottom, as noticed in [3]

for no porous wall. However, K21
t and K12

t are not

similar due to porous walls. The figure shows that IW

is also highly dissipated by a large number of porous

walls. However, from Figs. 4a and 5c, it reveals that

for a fixed porous wall, reflection in SW increases as

the moundwidens, whereas reflection in IW decreases.

(a) (b)

(d)(c)

Fig. 5 Variations in

scattering coefficients K12
r ,

K12
t , K22

r and K22
t against KL

for the parametric values

used in Fig. 4

Table 1 Energy loss coefficient ðKeÞ by porous walls in the

case of incidence of SW

Length of mound bottom Number of porous walls (s)

s ¼ 1 s ¼ 2 s ¼ 3

KL ¼ 2 0.3423 0.5778 0.7230

KL ¼ 4 0.4307 0.5329 0.6336

KL ¼ 6 0.4485 0.4784 0.5423

KL ¼ 8 0.4578 0.4458 0.4883

KL ¼ 10 0.4609 0.4378 0.4744

Table 2 Energy loss coefficient ðKeÞ by porous walls in the

case of incidence of IW

Length of mound bottom Number of porous walls (s)

s ¼ 1 s ¼ 2 s ¼ 3

KL ¼ 2 0.4644 0.4652 0.5189

KL ¼ 4 0.4421 0.4944 0.5697

KL ¼ 6 0.4217 0.5435 0.6529

KL ¼ 8 0.4101 0.5737 0.7040

KL ¼ 10 0.4073 0.5813 0.7167
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Nevertheless, transmission in SW and IW decreases

with mound width as in 4(b) and 5(d). Hence, internal

wave energy is highly dissipated by porous walls as

compared to surface wave energy.

Table 1 shows the energy loss coefficient ðKeÞ for
the number of porous walls s ¼ 1; 2; 3 associated with

Fig. 4. For the mound bottom of smaller length, wave

energy dissipation increases with the increase in the

number of porous walls in the case of incidence of SW.

Table 2 shows the energy loss coefficient ðKeÞ for the
number of porous walls s ¼ 1; 2; 3 associated with

Fig. 5. Unlike in the Table 1, for the mound bottom of

larger length, considerable loss of wave energy occurs

with the increase of porous walls in the case of

incidence of IW.

4.1.2 Effect of bottom profiles

In Fig. 6, the reflection and transmission coefficients

against the bottom length KL are depicted for different

bottom profiles and one porous wall in the case of

incoming SW. From Fig. 6a, the reflection coefficient

K11
r of SW decreases up to certain bottom lengths. K11

r

increases for higher values of KL in the case of

diagonal sinusoidal bottom. Not much variation

occurs in the associated transmission coefficient K11
t

which may be due to the porous wall. Moreover, the

reflection coefficient K21
r of IW decreasing with an

oscillatory nature as bottom length KL increases.

Inclined curved bottom accounts for high oscillations

in the reflection coefficient K21
r of IW. Unlike the high

transmission of SW, IW is little less transmitted over

bottoms.

Figure 7 shows the effects of different bottom

profiles on wave scattering in the case of incoming IW.

As in Fig. 6c and d, the reflection and transmission

coefficients of SW in Fig. 7a and b are decreasing with

the bottom length KL. The variations in K12
r due to

inclined plane bottom are moderate compared to the

curved and sinusoidal bottoms. Bottom profiles are

accounted for little effect on transmission coefficient

K22
t of IW. A comparison between Figs. 6b and 7d

reveals that transmission in IW is less in IW incidence.

4.1.3 Effect of porous parameter (G)

In Fig. 8, the resistance and inertial effects of four

porous walls on waves are illustrated by plotting

scattering coefficients versus wave angle h in the case

(a) (b)

(c) (d)

Fig. 6 Variations in

scattering coefficients K11
r ,

K11
t , K21

r and K21
t against KL

for different bottom profiles

when h3=h1 ¼ 0:5,
h=h1 ¼ 0:3, Kh1 ¼ 1,

h ¼ 60�, q ¼ 0:3 when

G1 ¼ G ¼ 1þ 0:5i
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(a) (b)

(c) (d)

Fig. 7 Variations of

scattering coefficients K12
r ,

K12
t , K22

r and K22
t against KL

for different bottom profiles

with the parametric values

used in Fig. 6

(a) (b)

(c) (d)

Fig. 8 Variations of

scattering coefficients K11
r ,

K11
t , K21

r and K21
t against h

due to different porosity

G ¼ Gj; j ¼ 1; 2; 3; 4, when
Kh1 ¼ 1, h3=h1 ¼ 0:5,
h=h1 ¼ 0:3 and q ¼ 0:3
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of incoming SW over the inclined curved bottom. The

real value of the porous effect parameter G refers to

the resistance effect of the porous medium whilst the

imaginary value refers to the inertial effect of the

porous medium. The plots reveal that increasing real

values of G results in decreasing in the reflection of

SW and IW.When imaginary values are assigned toG,

higher reflection occurs for angles greater than 35�.
Furthermore, for a fixed real value of G, increment in

its imaginary value leads to even higher reflection in

SW and IW. Lower transmission occurs in SW and IW

for smaller values of |G|. Hence, in order to achieve

less transmission of waves, smaller real vales of G

seem to be suitable. For higher reflection, G with

larger imaginary value plays a vital role. Further, K11
r

attains a minimum value for h 2 ð60�; 80�Þ while the

corresponding K11
t does not attain its maximum value

within this range due to dissipation of wave energy by

the walls. On the other hand, K21
r attains maximum for

incident angles around 30� and then monotonically

decreases for higher angles. The corresponding coef-

ficient K21
t of IW is significantly reduced by the walls.

When the incident angle of SW is 90�, j K11
r j¼ 1

while j K21
r j¼ 0 which means that transfer of energy

from SW to IW does not occur at this angle.

In Fig. 9, the resistance and inertial effects of four

porous walls on wave scattering are illustrated in the

event of incoming IW over the inclined curved

bottom. In this incident case, the role of porous effect

parameter G is analogous to the case studied in Fig. 8.

The surface wave incidence in Fig. 8a reveals that SW

is significantly less reflected for angles between 60�

and 80�. Similarly, in the present case, SW also gets a

minimum for smaller angles and higher angles.

Moreover, reflection and transmission of waves in

each layer due to incoming IW are significantly less

than the case of incoming SW.

4.1.4 Effect of density ratio ðqÞ

In Fig. 10, the influence of fluid density ratio q ¼
q2=q1 on scattering coefficients in the event of SW

incidence on a single porous wall in the presence of the

inclined curved bottom is shown. Here, the reflection

and transmission coefficients are drawn as functions of

dimensionless interface depth h=h1 for different

values of q. It may be recalled that q2 [ q1. From
Fig. 10a, an increase in q leads to a decrease in the

reflection of SW when the interface is closer to the

(a) (b)

(c) (d)

Fig. 9 Variations of

scattering coefficients K12
r ,

K12
t , K22

r and K22
t against h

due to different porosity

G ¼ Gj; j ¼ 1; 2; 3; 4 for

parametric values used in

Fig. 8
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(a) (b)

(c) (d)

Fig. 10 Variations of

scattering coefficients K11
r ,

K11
t , K21

r and K21
t against

interface depth h=h1 for
different density ratio ðqÞ,
when Kh1 ¼ 0:1,
h3=h1 ¼ 0:75, h ¼ 60� and
Gj ¼ G ¼ 1þ 0:5i for
j ¼ 1; 2; 3; 4

(a) (b)

(c) (d)

Fig. 11 Variations of

scattering coefficients K12
r ,

K12
t , K22

r and K22
t against

interface depth h=h1 for
different density ratio ðqÞ
for the same parametric

values used in Fig. 10
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free-surface and an increase in the reflection of SW

when the interface is closer to the bottom. Further, it is

found that the variations in q do not significantly affect
the transmission of SW, as shown in Fig. 10b. The

reflection and transmission in IW are negligible, which

may be due to no transfer of energy between waves.

Figure 11 describes the scattering coefficients as in

Fig. 10, but in the case of incoming IW. It may be

noticed that the trends of K12
r and K12

t of SW in

Fig. 11a and b are almost similar to K21
r and K21

t of IW

in Fig. 10c and d, respectively, except for their

magnitude. The increasing values of q lead to an

increment to the reflection coefficient K22
r whereas a

reduction to the transmission coefficient K22
t . The

variations are in an opposite trend in IW incidence,

unlike the case of SW incidence. It may be due to the

bottom effect on IW. Since negligible reflection and

transmission in SW occurs, there is no energy transfer

between waves in this incident case as well. From the

Figs. 10 and 11 , it brings out that more transmission in

SW occurs in the incidence of SW.

4.1.5 Wave-induced force on porous walls

Wave force on jth porous wall is obtained by

integrating the pressure jump over water-depth and

is expressed in the dimensionless form

Fj ¼
I1

q1gh1h
;

where I1 ¼iqx
Z 0

�h3

½/jþ1ðx; zÞ � /jðx; zÞ�dz at x ¼ Lþ
Xj

i¼1

Li

ð37Þ

Figure 12 depicts the wave-induced force Fj on

four consecutive porous walls against the porous effect

parameter G in the case SW incidence over the

inclined plane bottom. In this plot, three different

arrangements of G) values in the positive x-direction

are taken into account. The first one is concerned with

increasing G values, the second with decreasing G

values, and the third with equal values ofG. In the first

arrangement, the first porous wall receives higher

force and the force then decreases monotonically with

the increasing value of G. As the wave approaches the

next consecutive porous walls, a decrease in the force

is found, and hence least force is encountered by the

fourth porous wall. A similar phenomenon has also

been observed by Kaligatla et al. [12] in the case of

homogeneous fluid. The wave load on the walls gets

reversed when the order of G gets reversed, as shown

in Fig. 12b. Further, the present results reveal that due

to transmission of wave energy between waves, the

porous walls experience a lesser force than the

homogeneous fluid model (see Fig. 13 of [12]).

Moreover, for any value of G except G ¼ 0, the

variations in force on walls are similar for the second

and third arrangements. On the other hand, in the case

of homogeneous fluid, the variations in force on walls

are similar for the first and third arrangements, as

shown in [12].

Figure 13 plots the wave-induced force Fj on the

four consecutive porous walls as a function of the

porous parameter G, in the case of incidence of IW

over the inclined plane bottom. Again, the three

different cases of G are discussed here. Results show

that the magnitudes of wave load on walls in all the

(a) (b) (c)

Fig. 12 Variations of force against the porous effect parameter G in the cases a G1 ¼ G;G2 ¼ 2G;G3 ¼ 3G;G4 ¼ 4G, b G1 ¼
4G;G2 ¼ 3G;G3 ¼ 2G;G4 ¼ G and c Gj ¼ G for j ¼ 1; 2; 3; 4 when q ¼ 0:5, Kh1 ¼ 1, h3=h1 ¼ 0:5, h=h1 ¼ 0:2 and h ¼ 30�
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three cases are less than that in Fig. 12. In contrast to

the results in Fig. 12a and c, variations in force in the

first and third arrangements are similar. However, the

second arrangement of porosity distinguishes with

others within a certain higher range ofG. Moreover, in

each case, the fourth porous wall gets zero force for

some values of G.

4.2 Wave trapping

This section analyzes the performance of three porous

walls in trapping waves to mitigate wave-induced

force on impermeable backwall. In computation, G1,

G2 andG3 are given nonzero values whereasG4 ¼ 0 is

considered to set up the fourth wall as an impermeable

backwall. The inclined curved profile for bottom is

assumed for the results. Force on impermeable

backwall Fw in dimensionless form is expressed as

(a) (b) (c)

Fig. 13 Variations of force against the porous effect parameter G in those three cases as considered for Fig. 12, but for incoming IW

(a) (b)

(c) (d)

Fig. 14 Variations of

reflection coefficients K11
r ,

K21
r , K12

r and K22
r against G

for q ¼ 0:1, Kh1 ¼ 0:8,
h3=h1 ¼ 0:75, Kh ¼ 0:2,
Lw=k1 ¼ 0:4 and h ¼ 30�
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Fw ¼ I 2

q1gh1h
; where I2 ¼ iqx

Z 0

�h3

/sþ1ðx; zÞ dz

at x ¼Lþ Lw þ
X3
i¼1

Li:

ð38Þ

4.2.1 Effect of porous parameter G

In Fig. 14, the effects of porous parameterG of porous

walls on wave scattering are illustrated. Three

arrangements such as (i)

G1 ¼ G;G2 ¼ 2G;G3 ¼ 3G, (ii) G1 ¼ 3G;G2 ¼
2G;G3 ¼ G and (iii) Gj ¼ G for j ¼ 1; 2; 3 in the

direction of wave propagation are considered. Fig-

ure 14a and b are depicted for incoming SW while

Fig. 14c and d are depicted for incoming IW. The

results reveal that the incident wave’s reflection

becomes a minimum in each arrangement for values

of G 2 ½0; 2�. On the other hand, the induced wave

reflection attains a minimum in each arrangement for

values of G 2 ½0; 4�. Wave reflection is least for larger

values ofG in the third arrangement, whereas it is least

for smaller values of G in the second arrangement.

These arrangements can be made by the requirement

of higher and lower reflection of waves.

The wave-induced force on backwall ðFwÞ for

incoming SW and IW is depicted in Fig. 15a and b

respectively for the arrangements made in Fig. 14.

When G ¼ 0, the first wall itself becomes a rigid wall,

hence in either case of incoming waves, the backwall

does not have wave load. The results show that in the

third arrangement, the backwall gets the least force.

This arrangement leads to the least reflection and least

force on backwall, which implies the dissipation of

more wave energy by the porous walls.

4.2.2 Effect of depth ratio ðh3=h1Þ

For analyzing the effect of chamber width Lw=k1
between the third porous wall and backwall, on wave

scattering, the reflection coefficients are illustrated in

Fig. 16. The coefficients are plotted for different

values of depth ratio h3=h1. The first two subfigures are

regarded with incoming SW, while the last two

subfigures are regarded with incoming IW. The porous

walls are considered to have equal porosity

G ¼ 1þ 0:5i. Reflection coefficients exhibit almost

periodic nature with Lw=k1. For the SW incidence,

results indicate that the reflection of SW increases up

to h3=h1 ¼ 0:5 and then decreases. On the other hand,

the reflection of IW decreases with an increasing depth

ratio for a fixed chamber width. However, in the IW

incidence, results indicate that the reflection of both

SW and IW decreases with increasing depth ratio for

the most values of chamber width. In the case of flat

bottom, the induced waves are negligibly reflected.

From these results, optimum chamber widths for

which maximum reflection in waves occurs can be

obtained.

Wave force on backwall related to the parameter

values used in Fig. 16 are shown in Fig. 17. Partic-

ularly, Fig. 17a and b are regarded with SW and IW

incidence, respectively. In the first incident case, for

certain values of Lw=k1, wall gets higher force at the

depth ratios h3=h1 ¼ 0:5; 0:99. The less reflection of

IW at these depth ratios may account for the higher

force. On the other hand, in the second incident case,

the wall gets the higher force at smaller depth ratio

values. Moreover, these figures show values of Lw=k1
for which zero force is attained on backwall. The

(a) (b)

Fig. 15 Variations of force

on backwall ðFwÞ against
G for a incident surface

wave and b incident

interfacial wave with the

same parametric values used

in Fig. 14
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achievement of zero force on backwall indicates that

porous walls trap more wave energy.

Figure 18 depicts wave force Fw on backwall as a

function of wave angle h when depth ratio h3=h1
changes. For these results, porous walls are assumed to

have equal porosity G ¼ 1þ i. Figure 18a displays

force for incoming SW, whereas Fig. 18b shows force

for incoming IW. The results show angles of wave

incidence by which negligible force acts on the

backwall. Further, at higher incident angles, the force

increases with the increase in depth ratio in SW

incidence, whereas force decreases with the increase

in depth ratio in IW incidence. In the first incident

case, negligible force occurs at many incident angles

compared to the second incident case.

4.2.3 Effect of wave period (T)

Figure 19 plots the reflection coefficients versus

incident angle ðhÞ of SW and IW for different wave

periods (T). Figure 19a and b are related to incoming

SW, whilst Fig. 19c and d are related to incoming IW.

(a) (b)

(c) (d)

Fig. 16 Variations of reflection coefficients K11
r , K21

r , K12
r and K22

r against Lw=k1 for different depth ratios h3=h1 when

G1 ¼ G2 ¼ G3 ¼ G ¼ 1þ 0:5i, q ¼ 0:1, Kh1 ¼ 1, Kh ¼ 0:2, h ¼ 30�

(a) (b)

Fig. 17 Variations of force

on backwall Fw for a
incident surface wave and b
incident interfacial wave

against Lw=k1 with the

parametric values used in

Fig. 16
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Figure 19a and b illustrate that surface waves of all

periods are reflected uniformly at a particular range of

lower angles, and then they are highly reflected at

higher angles. At the same time, reflection in IW

decreases with increasing angle of incidence. Further,

the reflection phenomenon in the second incident case

is quite similar to the first case. It is seen that reflection

coefficients have little variations as the wave period

increases in both incident wave cases.

Figure 20 displays the variations of resulting force

on backwall ðFwÞ associated with Fig. 19. Figure 20a

demonstrates force for incoming SW, and Fig. 20b is

for incoming IW. These results illustrate that the

variations of forces in both the incident cases are

approximately analogous concerning the incident

wave angle. However, the backwall gets a higher

force in the first incident case. Moreover, the force

decreases as the wave period increases. We remark

that zero force is achieved at some wave angles due to

porous walls.

(a) (b)

Fig. 18 Variations of force

on backwall Fw for a
incident surface wave and b
incident interfacial wave

against wave angle h for

different depth ratios h3=h1
with the parametric values

used in Fig. 14

(a) (b)

(c) (d)

Fig. 19 Variations of reflection coefficients K11
r , K21

r , K12
r and K22

r against incident wave angle h for different wave periods T when

G1 ¼ G2 ¼ G3 ¼ G ¼ 0:5þ 0:5i, q ¼ 0:1, h3=h1 ¼ 0:5, Lw=k1 ¼ 0:4 and h=h1 ¼ 0:2
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5 Conclusions

In this paper, wave scattering and trapping by multiple

porous walls in a two-layer ocean with different

bottom configurations are studied. This is carried out

by applying the eigenfunction expansion method for

constant water-depth and a mild-slope equation for

varying water-depth. The solution is derived by

matching the solutions at interface regions. In the

incidence of surface and interfacial waves, the four

scattering coefficients and the energy loss coefficient

are investigated for the effects of several prominent

factors. We made the following conclusions from the

results.

Wave scattering

(a) Porous walls are found to be significant for

particular bottoms over which more transmis-

sion of waves occurs.

(b) An increment in the number of porous walls

results in higher reflection and lower transmis-

sion in SW and IW.

(c) By the porous walls, under different bottom

profiles, the changes in wave reflection are

observed to be of much damping nature as

compared to the wave transmission.

(d) Increasing resistance effect of porous wall leads

to lower reflection and higher transmission in

SW and IW. Moreover, small inertial effect of

porous walls results in less transmission of both

waves.

(e) Transmission in SW does not change with

density ratio higher than 0.5 for incoming SW.

However, the transmission in IW reduces with

increasing density ratio for incoming IW.

(f) In comparison with a homogeneous fluid, the

magnitude of wave forces on porous walls is

observed to be less in two-layer fluid which may

be due to transmission of wave energy between

waves.

(g) In SW incidence, porous walls get higher wave

load than that in IW incidence.

Wave trapping

(a) In the presence of an impermeable backwall,

less reflection and transmission in SW and IW is

noticed when the porous walls have equal and

large values of the porous effect parameter G.

(b) The wave force on the wall is less in case of

porous walls of equal porosities in the incidence

of either SW or IW, which may be due to more

wave trapping.

(c) The varying depth ratio has no significant effect

on the reflection of IW comparatively.

(d) Optimum distances between the backwall and

porous wall are found to attain zero force on

wall.

(e) The force on wall increases with the increased

depth ratio in SW incidence whereas the force

decreases with the increased depth ratio in IW

incidence. Relatively, wall gets higher force in

SW incidence.

(f) The force acting on wall in SW incidence is

higher than that in IW incidence.

(g) Waves of higher periods have a negligible effect

on reflection.

(h) Waves of smaller periods, either SW or IW,

exert a large amount of force on wall. Moreover,

considerable force occurs at moderate incident

wave angles.

The results of the model have significance for the

stratified water regions having small amplitude water

waves. These results shall be useful for experimental

(a) (b)

Fig. 20 Variations of force

on backwall Fw for a
incident surface wave and b
incident interfacial wave

against wave angle h with

the parametric values used

in Fig. 19
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model test results. Since the evanescent modes are

neglected in this study, the results are valid for slowly

varying bottoms but not for steep bottoms. Thus, the

shortcoming may be taken up for further investigation.

The model can be extended for partial porous break-

waters. Moreover, for wave trapping chambers,

impermeable partition walls between the porous walls

may be assumed for the extension of this model.
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