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Abstract The work is devoted to the numerical

aspects of the modeling tool elaborated to simulate the

phenomenon of solid phase transformation in shape

memory alloys. Particularly, a nonlocal approach,

namely the bond based variant of peridynamics, is of

concern to handle material model nonlinearities

conveniently. The proposed model considers thermo-

mechanical coupling which governs kinetics of the

process of phase change. The phenomenological

peridynamic model of a shape memory alloy is based

on the Gibbs free energy concept and thermoelasticity.

The work focuses on the superelasticity effect which

can be observed when a tested material is subjected to

a mechanical load. As a demanded application scope

for the proposed smart material model, its scheduled

future use in the study of operational conditions for a

gas foil bearing is considered. The motivation of the

work has primarily originated from the perspective of

more accurate, i.e., more physical, modeling of the

structural components which employ shape memory

alloys to stabilize the bearing operation. The authors

conduct a preliminary investigation regarding the

properties of the newly proposed numerical multi-

physics approach. Specifically, the scope of the work

covers description of the developed computational

framework as well as detailed derivation of its stability

criteria. Exemplary numerical results complement the

paper providing with determination of the stress–strain

relation and adequate parametric study.

Keywords Shape memory alloys � Peridynamics �
Nonlocal modeling � Phase transformation �
Thermomechanical coupling � Gas foil bearing

1 Introduction

Smart materials complement regular construction

materials and provide extraordinary capabilities,

therefore, opening new perspectives for engineering

applications [1]. Amongst various types of smart

materials, shape memory alloys (SMA) are especially

worth mentioning since they exhibit two shape

memory effects, i.e., one-way, and two-way memory
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effects. SAM also exhibit high damping capability [2],

and the ability to withstand large elastic deformations

at the strain up to 8% [3–7]. The later property is also

known as superelasticity or pseudoelasticity.

The two above-listed specific properties of SMA

are allowed due to the involved thermomechanical

effects. These effects may be observed when an SMA

sample is subjected to a mechanical or thermal load. In

that case the respective reversible solid phase trans-

formation, also known as martensitic transformation,

occurs. The resultant macroscale behavior of SMA

reflects the two-way phase transformation and can be

externally controlled. The capabilities of memorizing

geometric shapes and the superelasticity effect are

illustrated in Figs. 1, 2 and 3.

One-way memory effect stands for a reversible

phase change within the following subsequent steps

carried out for initially relaxed SMA sample, i.e.,

made of undeformed martensite (Fig. 1 for reference):

(1) mechanical load leading to deformed mertensite,

(2) mechanical relaxation resulting with a remem-

bered macroscopic shape of the specimen, (3) thermal

load (heating) leading to austenite that recovers the

initial shape of the SMA sample, (4) final cooling—the

recovered shape is maintained. Similarly, the rever-

sible superelasticity effect is visualized in Fig. 2

where the two phase changes are marked: (1) from

austenite to the deformed martensite for the increasing

mechnical load and, respectively, (2) transformation

from the deformed martensite to austenite performed

during mechanical relaxation. As shown in Fig. 2 the

martensitic transformation occurs if the ambient

temperature is greater than Af which is one of the

four characteristic temperatures (material properties)

of an SMA sample, i.e., As, Af , Ms, Mf . These

quantities specify the temperature limiting cases, i.e.,

marking initiation AðMÞs and finish AðMÞf , for

martensite to austente and austenite to martensite

transformations respectively. It should be noted that

kinetics of the above described phenomenon is

governed by the change of ambient temperature which

influences the stress level required to be achieved for

phase transformation. This relationship is illustrated in

Fig. 2 using the four skewed lines. Complementarily,

Fig. 3 provides with an example of the hysteretic

stress–strain curve which may be considered repre-

sentative for an SMA sample.

Fig. 1 One-way memory effect in SMA—visualization of the

mechanically and thermally induced phase transformation in the

stress–temperature coordinate system. The numbers mark

subsequent steps for mechanical and thermal loads and

relaxations

Fig. 2 Effect of superelasticity in SMA—visualization of the

mechanically induced phase transformation in the stress–

temperature coordinate system. The numbers mark subsequent

steps for mechanical loads and relaxation

Fig. 3 Effect of superelasticity in SMA—visualization of the

hysteretic stress–strain relation
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The observable macroscopic behavior of SMA

components results from the specific nature of

microscale solid phase transformations conducted in

their crystalline structure. Hence, modeling of the

SMA properties is a challenging issue. In fact, kinetics

of the thermally and mechanically activated changes

between martensite and austenite phases is governed

by both the internal and external factors. The former

are e.g., variation of spatial orientations of the grains,

complexity of contact effects between the grains,

variations regarding alloy composition as well as the

level of its purity. The later factors primarily cover the

types and localizations of the applied loads. All these

factors lead to high spontaneity of the phenomena

observed in SMA. Effectively, even if the demanded

dominant effects are clearly visible, which are the

memory effects and superelasticity, the involved

physical processes exhibit inherent randomness. This

specificity results in the variation of the courses of

phase transformations. In other words, the respective

paths (trajectories) which describe the deformations of

an SMA sample in a stress–strain–temperature coor-

dinate system, as presented in Fig. 3, are subjected to

irreducible variation.

There are known the following types of SMA

models [8]: microscopic thermodynamics, microme-

chanics-based macroscopic models and macroscopic

phenomenological models, including the approaches

based on the free energy concept. Unfortunately, there

is not yet proposed a modeling method which would

holistically address the specificity of SMA in a

computationally effective way [4, 5, 9, 10]. In fact,

microscopic models are considered to be the most

accurate due to an explicit handling the physics of

phase transformations. These models allow to describe

nucleation process in the crystalline structure as well

as to track the course of phase change front observed

within the SMA body undergoing mechanical or

thermal activation. However, the microscopic

approaches require significant amount of computa-

tional resources to be used for the engineering

applications. The micromechanics-based macroscopic

models make use of the representative volume element

(RVE) approach [11]. The results obtained at macro-

scale are determined with the averaged properties

found based on the calculations carried out for a single

grain. The main advantage of the mentioned methods

is their relatively high accuracy at acceptable level of

the computational effort, also in case of macroscale-

sized SMA components. However, identification of a

high number of the so-called internal variables is

required to build a constitutive model. Finally, the

macroscopic phenomenological models may be used

to effectively handle the global properties of SMA

components, i.e., at macroscale [12, 13]. The simpli-

fied approach to thermodynamics and phenomenolog-

ical modeling allow for a convenient introduction of

the experimental data to elaborate the SMA constitu-

tive relation. Lack of a direct link between the model

properties and the characteristics of the microstruc-

tural behavior of SMA, however, states for a drawback

of the referenced approach. Although macroscopic

phenomenological models do not address the nano-

and microscale phenomena in SMA accurately, there

are known successful applications of this modeling

approach to engineering problems. The authors of the

study [2] investigate a non-linear dynamical response

of an SMA-based oscillator. The developed thermo-

mechanical model is capable of catching hysteretic

stress–strain relation and correctly determine the

restoring force required to model the proposed device

functionality, making use of internal variables and the

previously reported dissipation function [14]. In [15],

an antagonistically operating SMA-based position

control aeroelastic system is presented. The compu-

tational analysis was performed using a phenomeno-

logical model inspired by Tanaka [16], taking into

account the phenomenon of heat convection for phase

transformations in SMA. The work [17] reports the

results of investigation conducted for a sliding mode

control system elaborated for vibration control and

angular positioning of a flexible link attached to the

DC motor shaft. For the discussed technical solution

which is equipped with SMA components, an analyt-

ical model was proposed following the phenomeno-

logical approach previously reported in [18]. A

mesoscale finite element (FE) model based on

Voronoi tessellation and microplane theory was

investigated for porous SMA in [19].

The authors of the present work employ the free

energy based macroscopic phenomenological

approach to propose a peridynamic SMA model to

capture the effect of superelasticity taking into account

thermomechanical coupling. In reference to the

authors’ previous work, the current study experiences

an extended capability of the model allowing for non-

isothermal phase transformations as well [5]. The

present research should be also considered an
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extension of the recent paper reported at the

DSTA2019 conference [12].

The authors’ motivation for the application of

peridynamics to the SMA model has originated from

various unique capabilities of the mentioned modeling

method [20]. Peridynamics was primarily proposed

for continuum mechanics [21]. Hence, it can be

conveniently used to build a model for a given type of

materials, including smart materials, operating using

macroscopic parameters. This feature is especially

important when developing macroscopic phenomeno-

logical models for SMA which is within the scope of

the current study. Moreover, an integral based formu-

lation of the governing equation allows to handle

various types of model nonlinearities when solving

problems numerically, including material nonlineari-

ties, e.g., hysteretic stress–strain relations. Finally, a

peridynamic model, due to its nonlocal formulation,

may inherently offer efficient multiscale approach

which is crucial when reflecting nano- and microscale

phenomena in the modeled macroscale behavior. It is

highly important that, due to the extraordinary prop-

erties of peridynamics, the results obtained for peri-

dynamic models may converge to the outcomes of

either local or other nonlocal computation approaches,

e.g., classically formulated FE method or molecular

dynamics, respectively, depending on the require-

ments of the stated problem. Amongst others, in the

following fields of static and dynamic studies peridy-

namics confirmed its versatility [20]: material failure

(damage, fracture, spontaneous crack growth and

fatigue) [22, 23], constitutive models (elasticity,

plasticity, viscoelasticity, viscoplasticity) [24], multi-

scale problems, multidomain (multiphysics) prob-

lems, including heat transfer, thermal diffusion [25],

thermoelasticity [26], complex flow problems, impact

problems, wave dispersion and numerical techniques,

taking into account various types of materials (not

necessarily metallic ones), e.g., composites [23] and

polymers [27]. As experienced thus far by the authors

of the present research, the field of peridynamic

modeling for SMA-type materials is still not yet

addressed.

As a demanded scope of the future application for

the proposed peridynamic SMA model, the authors of

the present work consider its use in the study of

operational conditions for a gas foil bearing (GFB),

primarily for reduction of mechanical vibrations

[28–31]. GFB are a type of the journal bearings. In

contrast to the standard journal bearings, however,

GFB are lubricated using an air film of the thickness

equal to tens of micrometers. By their nature GFB

experience multidomain interactions between struc-

tural components, also involving fluid-structure inter-

actions present between fluidic and structural

components of the supporting layer in a bearing. The

motivation of the work has originated from the

perspective of more accurate, i.e., more physical,

modeling of the structural components which employ

SMA to stabilize the bearing operation. Both multi-

physics (via thermomechanical coupling) and nonlo-

cality (using integral based governing equation) are

advantageously taken into account for future elabora-

tion of a comprehensive model a GFB [21, 32, 33].

The paper is organized as follows. In present

Sect. 1 the overall motivation of the work as well as

fundamentals regarding SMA are addressed. Next,

Sect. 2 introduces the mathematical formalism for the

total specific Gibbs free energy required for elabora-

tion of the SMA phenomenological model. Section 3

introduces the multiphysics model of SMA based on

the theories of peridynamics and thermoelasticity,

making the reference to the authors’ previous work.

The property of the developed numerical model is

discussed in Sect. 4, specifically making use of

stability analysis. Section 5 reports exemplary numer-

ical results for the developed peridynamic SMA model

to visualize its fundamental computational capability,

in terms of hysteretic stress–strain relation determi-

nation and adequate parametric study. Summary of the

paper as well as concluding remarks are drowned in

final Sect. 6.

2 Phenomenological model of SMA

The elaborated peridynamic SMA model takes into

account the following theories:

• Total specific Gibbs free energy—allows for

introduction a phenomenological model of SMA

which considers nonlinear (hysteretic) stress–

strain relation required to model phase transfor-

mations. Advantageously, it operates based on the

martensite phase contribution factor which is a

macroscale model parameter;

• Peridynamics—introduces nonlocality into the

governing equation to handle the geometric and
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material nonlinearities more conveniently and

accurately in a numerical model, especially for

dynamics;

• Thermoelasticity—enables thermomechanical

coupling in an SMA material.

The total specific Gibbs free energy G for SMA is

defined as follows [34]

Gðr; T ; n; �tÞ ¼ � 1

2q
Cijklrijrklþ

� 1

q
rij½aijðT � T0Þ þ �t�þ

þ c½T � T0 � T lnðT=T0Þ�þ

� s0T þ u0 þ
1

q
f ðnÞ

ð1Þ

where r—second order Cauchy stress tensor, for rij,

rkl the Einstein summation notation is used, T—

temperature, T0—reference (ambient) temperature,

n—martensite phase contribution factor, it can vary

within the interval [0, 1], �t—second-order transfor-

mation strain tensor, q—mass density, Cijkl—fourth-

order elastic compliance tensor, aij—second-order

thermal expansion coefficient tensor, c—specific heat,

s0—specific entropy at the reference state, u0—

specific internal energy at the reference state, f ðnÞ—
the transformation hardening function, it defines

elastic strain energy for the interactions between

various variants of the martensite phase, f ðnÞ also

considers the interactions with other surrounding

phases.

For one-dimensional (1-D) case, Eq. (1) becomes

Gðr; T ; n; �tÞ ¼ � 1

2q
Cr2 � 1

q
r½aðT � T0Þ þ �t�þ

þ c½T � T0 � TlnðT=T0Þ� � s0T

þ u0 þ
1

q
f ðnÞ

ð2Þ

The SMA material properties declared in Eq. (2),

except from the mass density q, thermal expansion

coefficient a and specific heat c, are defined using

linear combinations of the quantities attached to both

phases with the weighting factor n:

C ¼ CA þ nðCM � CAÞ ¼ CA þ nDC ¼ 1

EA
þ

þ n
1

EM
� 1

EA

� � ð3Þ

s0 ¼ sA0 þ nðsM0 � sA0 Þ ¼ sA0 þ nDs0 ð4Þ

u0 ¼ uA0 þ nðuM0 � uA0 Þ ¼ uA0 þ nDu0 ð5Þ

where �A and �M are the austenite and martensite

properties respectively. EA and EM are the Young’s

moduli.

The total strain � can be found as the sum of elastic

linear material response �E ¼ Cr, the nonlinear (hys-

teretic) contribution �t and the thermal strain

�T ¼ aðT � T0Þ

� ¼ Crþ �t þ aðT � T0Þ ð6Þ

The contributing strains �E and �t appear due to

mechanical load, whereas �T represents thermal

expansion (Note, the coefficient a declares the regular

linear material expansion resulting from the temper-

ature variation without reference to the phase change).

The rate of the transformation strain _�t can be

determined as a function of the parameter K and the

rate of martensite contribution factor _n

_�t ¼ K _n, for _n 6¼ 0 ð7Þ

The parameter K is defined based on the maximum

uniaxial transformation strain H

K ¼
ffiffiffi
3

2

r
H ð8Þ

Next, the Clausius–Planck inequality is introduced to

assure non-decreasing entropy of the SMA model

irrespectively form the sign of the rate of external

mechanical load

r _�t � q
oG

on
_n� 0 ð9Þ

The derivative oG
on can be determined using Eq. (2), (3),

(4), (5) and (7)
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oG

on
¼ � 1

2q
DCr2 � 1

q
Kr� TDs0þ

þ Du0 þ
1

q
of ðnÞ
on

ð10Þ

Having introduced Eq. (10) and (8) into Eq. (9) one

can obtain the following conditionally formulated

formula

Pðr; T ; n; _nÞ _n� 0 ð11Þ

with

P ¼ 1

2
DCr2 þ qDs0T þ

P1; _n[ 0

P2; _n\0

(
ð12Þ

P1 ¼
ffiffiffi
6

p
Hrþ qDs0ðMs �Mf Þnþ

� 1

4
qDs0ð3Ms þ Af þ As �Mf Þ

ð13Þ

P2 ¼
ffiffiffi
6

p
Hrþ qDs0ðAf � AsÞnþ

� 1

4
qDs0ðMs þ 3Af � As þMf Þ

ð14Þ

Finally, phase transformations in an SMA sample are

governed by the conditionally defined transformation

function U

U ¼ P� Y ; _n[ 0

�P� Y ; _n\0

(
ð15Þ

with

Y ¼ 1

4
qDs0ðMs þMf � Af � AsÞ ð16Þ

When the external mechanical load grows, i.e., the

stress r increases, and the condition Uð _n[ 0Þ[ 0 is

satisfied, the fraction n grows what expresses growing

contribution of the martensite phase. Contrarily, an

increase of austenite, i.e., reduction of n, is observed if

Uð _n\0Þ[ 0 and the stress r gradually decreases.

In the following the SMA model based on the total

specific Gibbs free energy is briefly presented making

use of the theory of peridynamics and

thermoelasticity.

3 Peridynamic model of SMA

As already mentioned in Sect. 1, peridynamics con-

stitutes an integral based description of statics and

dynamics problems in physics. As shown in Fig. 4, a

peridynamic model considers nonlocal interactions

between the so-called particles within the space

defined as the horizon H [21]. Hence, all the parts of

the particles that are covered by the horizon are taken

into account to determine the resultant reaction force

acting on an actual central particle.

The advantageous properties of peridynamics orig-

inate from its nonlocal integral based formulation of

the governing equation [21]

q€uðx; tÞ ¼
Z
H

f ðuðx̂; tÞ � uðx; tÞ; x̂� xÞdVx þ bðx; tÞ

ð17Þ

Equation (17) can be then used to derive the numerical

description of a 1-D model of an homogeneous and

isotropic material [5]

mi €u
t
i ¼ 2

XN
j ¼ �N

j 6¼ 0

bi;jcik
utiþj � uti
jjjN2

� �
þ Ft

i

ð18Þ

with the stiffness coefficient

k ¼ EA

Dx
ð19Þ

Fig. 4 Peridynamic modeling of a continuum domain for a

deformable body. Horizon defines the spatial range for nonlocal

interactions between particles
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The reader is kindly advised to study the work [5] to

identify all the remaining model parameters included

in Eq. (18).

The present paper is a continuation of the authors’

previous study conducted to combine nonlocality and

the theory of thermoelasticity to elaborate the consti-

tutive model of SMA [5, 12]. Particularly, the recently

proposed peridynamic model allows for simulations of

mechanically induced phase transformations observed

for the superelasticity effect.

Below, the formulation of the peridynamic ther-

momechanical SMA model is presented. First, making

use of the computational framework presented in [5]

(Eq. (47)–(58)) the following governing equations can

be found

mi €u
t
i ¼ 2

XN
j ¼ �N

j 6¼ 0

bi;jci
kA

aEni þ 1

utiþj � uti
jjjN2

� �
þ

þ F�
Mni

aEni þ 1
þ Ft

i

ð20Þ

Next, (1) making the adequate changes in Eq. (20)

originated from the differences between the total

strains defined via Eq. (6) in the present paper and

Eq. (14) in [5] as well as (2) introducing the theory of

thermoelasticity

q€u ¼ lr2u þ ðkþ lÞrru þ f � crT

1

j
_T ¼ r2T � gr _u þ Q

j

ð21Þ

the 1-D thermomechanical peridynamic model of an

SMA material can be derived to take the final form as

follows [12]

mi €u
t
i ¼ 2

XN
j ¼ �N

j 6¼ 0

bi;jci
kA

aEni þ 1

utiþj � uti
jjjN2

� �
þ

þ F�
Mni þ aEAA

aEni þ 1
hti � cADxrhti þ Ft

i

ð22Þ

complemented by the thermal diffusion equation

_h
t

i ¼ jr2hti � jgr _uti þ Qt
i

ð23Þ

In the following the discussion on the stability criteria

for the developed model is carried out.

4 Stability analysis

Below, stability analysis for the developed 1-D

peridynamic model of SMA material (presented via

Eqs. (22) and (23) in Sect. 3) is conducted to derive

the requirements regarding the maximal time step Dt
(integration time) allowed to be used in numerical

simulations.

First, the finite difference (FD) schemes are

adequately introduced to substitute all the partial

derivatives in Eq. (22) and (23) with numerical

formulas:

€uti ¼
ut�1
i � 2uti þ utþ1

i

Dt2
ð24Þ

_uti ¼
utþ1
i � ut�1

i

2Dt
ð25Þ

r _uti ¼
1

4DtDx
utþ1
iþ1 � ut�1

iþ1 � utþ1
i�1 þ ut�1

i�1

� �
ð26Þ

_h
t

i ¼
htþ1
i � hti
Dt

ð27Þ

rhti ¼
htiþ1 � hti�1

2Dx
ð28Þ

r2hti ¼
hti�1 � 2hti þ htiþ1

Dx2
ð29Þ

Having introduced Eqs. (24) and (28) and skipping the

external force excitation Ft
i , Eq. (22) becomes

mi
ut�1
i � 2uti þ utþ1

i

Dt2
¼

¼ 2
XN

j ¼ �N

j 6¼ 0

bi;j
kA

aEni þ 1

utiþj � uti
jjjN2

� �
þ

þ F�
Mni þ aEAA

aEni þ 1
hti � cADx

htiþ1 � hti�1

2Dx

ð30Þ

and then
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mi
ut�1
i � 2uti þ utþ1

i

Dt2
¼

¼ 2
k�i
N2

XN
j ¼ �N

j 6¼ 0

bi;j
utiþj � uti

jjj

� �
þ

þ F��
i hti �

cA
2

htiþ1 � hti�1

� �

ð31Þ

with:

k�i ¼
kA

aEni þ 1
ð32Þ

F��
i ¼ F�

Mni þ aEAA

aEni þ 1
ð33Þ

Note, the factor ci is not present in Eqs. (30) and (31)

since the internal particles in the peridynamic modal

are taken into account which means neither the

condition i ¼ 1 nor i ¼ iMAX is satisfied.

Next, the nonlocal case exhibiting the horizon

declared using N ¼ 2 is considered in Eq. (31) which

leads to

ut�1
i � 2uti þ utþ1

i ¼

¼ Dt2k�i
mi

1

8
uti�2 þ

1

2
uti�1 �

5

4
þ 1

2
utiþ1 þ

1

8
utiþ2

� �
þ

þ Dt2F��
i

mi
hti �

cA
2

htiþ1 � hti�1

� �
ð34Þ

and then

ut�1
i � 2uti þ utþ1

i ¼ r2h
t
i �

cA
2

htiþ1 � hti�1

� �
þ

þ r1

1

8
uti�2 þ

1

2
uti�1 �

5

4
þ 1

2
utiþ1 þ

1

8
utiþ2

� �

ð35Þ

with

r1 ¼ Dt2k�i
mi

ð36Þ

r2 ¼ Dt2F��
i

mi

ð37Þ

Similarly, introduction Eqs. (26), (27) and (29) into

thermal diffusion equation (23) as well as skipping

external thermal excitation Qt
i yields

htþ1
i � hti
Dt

¼ j
hti�1 � 2hti þ htiþ1

Dx2
þ

� jg
1

4DtDx
utþ1
iþ1 � ut�1

iþ1 � utþ1
i�1 þ ut�1

i�1

� �
ð38Þ

Next, Eq. (38) evolves to the form

hti ¼ htþ1
i � jDt

hti�1 � 2hti þ htiþ1

Dx2
þ

þ jg
4Dx

utþ1
iþ1 � ut�1

iþ1 � utþ1
i�1 þ ut�1

i�1

� � ð39Þ

Within the scope of the current work only the specific

case of high thermal conductivity is considered.

Hence, the following condition regarding the temper-

ature distribution along an SMA rod remains satisfied

8t 2 0;Nf g; 8i; j 2 N \ ½1; iMAX � : hti � htj ð40Þ

Taking into account the condition (40) in Eqs. (35)

and (39) leads to:

ut�1
i � 2uti þ utþ1

i ¼ r2h
t
iþ

þ r1

1

8
uti�2 þ

1

2
uti�1 �

5

4
þ 1

2
utiþ1 þ

1

8
utiþ2

� �

ð41Þ

hti ¼ htþ1
i þ jg

4Dx
utþ1
iþ1 � ut�1

iþ1 � utþ1
i�1 þ ut�1

i�1

� �
ð42Þ

Finally, substituting hti in Eq. (41) using the formula

(42) yields the following combined numerical form for

the two-domain case

ut�1
i � 2uti þ utþ1

i ¼

¼ r1

1

8
uti�2 þ

1

2
uti�1 �

5

4
þ 1

2
utiþ1 þ

1

8
utiþ2

� �
þ

þ r2h
tþ1
i þ r3

4
utþ1
iþ1 � ut�1

iþ1 � utþ1
i�1 þ ut�1

i�1

� �
ð43Þ

with
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r3 ¼ r2jg
Dx

ð44Þ

Next, based on Eq. (43), stability conditions for

numerical calculations can be derived via a numerical

error equation which describes its propagation in the

temporal and spatial domain. The adequate error

equation can be defined taking into account the

displacement and temperature errors, i.e., � and h�

respectively. Hence, Eq. (43) takes the form

�t�1
i � 2�ti þ �tþ1

i ¼

¼ r1

1

8
�ti�2 þ

1

2
�ti�1 �

5

4
þ 1

2
�tiþ1 þ

1

8
�tiþ2

� �
þ

þ r2
h�tþ1 þ r3

4
�tþ1
iþ1 � �t�1

iþ1 � �tþ1
i�1 þ �t�1

i�1

� �
ð45Þ

The errors � and h� take spatial and temporal terms:

�tþq
iþj ¼ exp ðauðt þ qÞDtÞ exp ð

ffiffiffiffiffiffiffi
�1

p
juðiþ jÞDxÞ ¼

¼ exp ðautDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
juiDxÞ

	 exp ðauqDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
jujDxÞ

ð46Þ

h�tþq
iþj ¼ exp ðahðt þ qÞDtÞ exp ð

ffiffiffiffiffiffiffi
�1

p
jhðiþ jÞDxÞ ¼

¼ exp ðahtDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
jhiDxÞ

	 exp ðahqDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
jhjDxÞ

ð47Þ

Introduction Eqs. (46) and (47) in (43) leads to

RA ¼ r1RB þ r2RC þ r3

4
RD ð48Þ

where

RA ¼ Ru exp ð�auDtÞ þ exp ðauDtÞ � 2ð Þ ð49Þ

RB ¼ Ru
1

8
exp ð�2

ffiffiffiffiffiffiffi
�1

p
juDxÞ

�
þ

þ 1

2
exp ð�

ffiffiffiffiffiffiffi
�1

p
juDxÞ �

5

4
þ

þ 1

2
exp ð

ffiffiffiffiffiffiffi
�1

p
juDxÞ þ

1

8
exp ð2

ffiffiffiffiffiffiffi
�1

p
juDxÞ

�
¼

¼ Ru
1

4
cos ð2juDxÞ þ cos ðjuDxÞ �

5

4

� �

ð50Þ

RC ¼ exp ðahtDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
jhiDxÞ exp ðahDtÞ ð51Þ

RD ¼ Ruðexp ðauDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
juDxÞþ

� exp ð�auDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
juDxÞþ

� exp ðauDtÞ exp ð�
ffiffiffiffiffiffiffi
�1

p
juDxÞþ

þ exp ð�auDtÞ exp ð�
ffiffiffiffiffiffiffi
�1

p
juDxÞÞ ¼

¼ 2
ffiffiffiffiffiffiffi
�1

p
Ruðexp ðauDtÞ � exp ð�auDtÞÞ sinðjuDxÞ

ð52Þ

with

Ru ¼ exp ðautDtÞ exp ð
ffiffiffiffiffiffiffi
�1

p
juiDxÞ ð53Þ

To avoid the displacement error growth the following

condition must be satisfied which is also considered

sufficient to prevent from increasing temperature error

j �
tþ1
i

�ti
j 
 1 ð54Þ

which results in

j exp ðauDtÞj 
 1 ð55Þ

and

j exp ð�auDtÞj � 1 ð56Þ

Whichever condition of the two above stated, i.e., (55)

or (56), is taken into account it allows to find the

stability conditions. Based on (55) and (56) it can be

assumed that the two exponential expressions present

in RA, i.e., exp ðauDtÞ and exp ð�auDtÞ, simultane-

ously converge to 1. Hence, Eq. (48) can be split into

the two equivalent, i.e., equal, formulas allowing to

explicitly and separately define the above mentioned

exponential expressions. The respective equation

derived for the expression exp ðauDtÞ takes the form
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exp ðauDtÞ ¼
r1RB

2Ru
þ r2RC

2Ru
þ r3RD

8Ru
þ 1 ð57Þ

however, noticing that exp ðauDtÞ � exp ð�auDtÞ con-

verges to 0, the parameter RD cancels out.

Further simplification regarding Eq. (57) can be

performed analyzing the fraction RC=Ru which

becomes

RC

Ru
¼ exp ððah � auÞtDtÞ exp ð

ffiffiffiffiffiffiffi
�1

p
ðjh � juÞiDxÞ

	 exp ðahDtÞ
ð58Þ

Due to the previously assumed uniform distribution of

the temperature the respective equivalent wave num-

ber for the temperature identified along a 1-D model jh
converges to 0. Moreover, excluding the imaginary

component �
ffiffiffiffiffiffiffi
�1

p
sinðjuiDxÞ from Eq. (58)—as it

appears after introduction the Euler’s formula for the

expression exp ð
ffiffiffiffiffiffiffi
�1

p
ð�juÞiDxÞ—Eq. (58) takes the

form

RC

Ru
¼ exp ððah � auÞtDtÞ exp ðahDtÞ cosðjuiDxÞ

ð59Þ

Noticing that the most demanding case for numerical

calculations references to the wave number ju;MAX ¼
P=Dx (it is an equivalent description for the shortest

wavelength kMIN ¼ 2Dx) the expression RC=Ru

becomes

RC

Ru
¼ � exp ððahðt þ 1Þ � autÞDtÞ ð60Þ

Similarly, based on the greatest wavelength criterion

ju;MAX the expression RB=Ru takes the form

RB

Ru
¼ 1

4
cos ð2ju;MAXDxÞ þ cos ðju;MAXDxÞ

� 5

4
¼ �2

ð61Þ

Having considered Eqs. (60), (61) and RD ¼ 0 the

formula (57) and the condition (55) take the following

forms

exp ðauDtÞ ¼ �r1 �
r2

2
exp ððahðt þ 1Þ � autÞDtÞ þ 1

ð62Þ

j1 � r1 �
r2

2
exp ððahðt þ 1Þ � autÞDtÞj 
 1 ð63Þ

Now, the two cases of the exponential expression

exp ððahðt þ 1Þ � autÞDtÞ may be considered not to

violate validity of the condition (63), namely the

above mentioned exponential expression should con-

verge either to 0 or�1. Hence, the two complementary

cases are derived

j1 � r1j 
 1 ð64Þ

j1 � r1 �
r2

2
j 
 1 ð65Þ

Taking into account the most demanding case of the

greatest elastic wave velocity in an SMA sample cA, as

observed for austenite (for ni ¼ 0, EA [EM), it can be

found that

r1 ¼ Dt2k�i
mi

¼ Dt2EAA

miDx
¼ Dt2

Dx2
ðcAÞ2 ð66Þ

r2 ¼ Dt2F��
i

mi
¼ Dt2aEAA

mi
¼ Dt2

Dx
aðcAÞ2 ð67Þ

since

cA ¼

ffiffiffiffiffiffi
EA

q

s
ð68Þ

q ¼ m

ADx
ð69Þ

Finally, substitution of r1 and r2 in (64) and (65),

respectively making use of (66) and (67), leads to the

following stability conditions

Dt

ffiffiffi
2

p Dx2

cA
ð70Þ

Dt

ffiffiffi
2

p Dx

cA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ aDx=2

p ð71Þ

The derived stability conditions (70) and (71) allow

for making a reliable choice on the time integration for

numerical calculations Dt. The conditions should be

satisfied simultaneously as they introduce both solely

the mechanical property (the velocity cA) and the
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thermomechanical one (coefficient of thermal expan-

sion a). As already mentioned the above stated

conditions are valid for the presently studied specific

case of uniform distribution of the temperature. An

extension of the work considering the temperature

variation along an SMA rod is scheduled by the

authors to be the subject of the future research activity.

5 Numerical study: stress–strain relation

and parametric analysis

In present section, exemplary numerical results are

provided for the developed peridynamic SMA model

to visualize its fundamental computational capability.

First, the reference temperature T0 is arbitrarily

assumed to take values from the range ½0�C; 50�C�
for identification the changes regarding hysteretic

stress–strain relationships observed for mechanical

load. The following material properties are taken into

account for an SMA wire: Young’s moduli for

austenite and martensite EA ¼ 160GPa and

EM ¼ 145GPa, the characteristic solid phase trans-

formations temperatures As ¼ �8�C;Af ¼
10�C;Ms ¼ �35�C;Mf ¼ �55�C; maximum trans-

formation strain H ¼ 0:008, specific heat

c ¼ 329J=ðkgKÞ, mass density q ¼ 6450kg=m3, stress

influence coefficient qDs0 ¼ �0:2MPa=K and ther-

mal expansion coefficient equals a ¼ 22 � 10�6K�1.

Figure 5 presents the results of numerical simulations.

Making use of the results visualized in Fig. 5, it can

be found that hysteretic behavior—originating from

the phenomenon of superelasticity—is not seen for

each analyzed case. Within the scope of the assumed

maximum level of the externally induced stress

(arbitrarily set to be 700MPa), the above mentioned

nonlinear material response is identified only when

T0\40�C. For positive values of stress, i.e., for

uniaxial extension only, closed hysteretic loops are

achieved for the cases when 10�C 6 T0 6 35�C. More

specifically, the hysteretic subloops—resulting from

incomplete phase transformations—are observed

when T0 2 f30�C; 35�Cg. A linear elastic material

behavior is found for T0 > 40�C. The two remaining

case studies for T0 2 f0�C; 5�Cg characterize non-

zero residual strain in a modeled SMA sample after

stress relieving.

Next, a parametric study regarding selected model

properties is carried out to discuss the sensitivity of the

simulation results for the uncertainty originating from

experimental identification of the considered material

properties [35]. To conduct an exemplary calculation

on uncertainty propagation, the authors of the present

work arbitrarily assume the level of 5�C variation for

the previously introduced characteristic solid phase

transformations temperatures As, Af , Ms and Mf . The

introduced �5�C intervals of temperature uncertainty

refer to the 3r levels for the four independent normally

distributed components ~X� ¼ N ðl ¼ 0; r2Þ being

added to the nominal values of the transformations

temperatures �, where � 2 fAs;Af ;Ms;Mf g. This

allows for definition of adequate four random numbers

~� such that ~� ¼ � þ ~X�. Figure 6 presents the results of

the conducted study on uncertainty propagation, i.e.,

the analysis of influence of parametric errors, for the

reference temperature T0 ¼ 20�C.

Latin hypercube sampling is applied to improve

distribution of the randomly generated 1000 samples

for the characteristic temperatures ~� according to the

assumed uncertainty levels.

As visualized in Fig. 6, the above introduced type

and level of model uncertainty leads to the adequate

variation of the shape of stress–strain relation for the

modeled SMA sample. Due to the assumed uncorre-

lated changes of the characteristic temperatures—

which are considered to model the errors appearing

during process of experimental identification of the

mentioned material properties—the regions in the

Fig. 5 Stress–strain relations obtained for various reference

temperatures—numerical study
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stress–strain coordinate systems where phase trans-

formations are respectively initiated and finished

randomly evolve. Consequently, there may be

observed various slopes and localizations of the

curves’ sections representing the courses of forward

and reverse phase transformation processes (adequate

sections are marked with ‘2’ and ‘4’ in Fig. 6). In

contrast, no change regarding the hysteresis sections

marked as ’1’ and ’3’ are noticed which is expected

since the Youngs’ moduli (that govern the adequate

curve slopes) are considered constant for the con-

ducted numerical analysis. In reference to the deter-

mined uncertainty regarding the shape of stress–strain

relationship, it may be also expected the respective

variation of the amount of energy that can be

dissipated in an SMA component for a single complete

stretching and release cycle. The raised issue is of

particular importance in case of SMA-based damping

components [35].

6 Summary and final conclusions

The paper addresses the 1-D peridynamic thermome-

chanical model proposed to simulate the behavior of

SMA components. The model is successfully formu-

lated combining advantageous properties of both (1)

integral based peridynamic governing equation and

(2) phenomenological SMA model based on the

concept of the total Gibbs free energy. The former

approach allows for convenient modeling various

types of model nonlinearities, e.g., those regarding

material, geometry and boundary conditions, whereas

the latter model enables handling the properties of an

SMA material in a computationally efficient manner.

Additionally, the classically formulated theory of

thermoelasticity complements the newly developed

SMA model with the temperature based contributors.

The overall application scope for the developed model

deals with simulations of the phenomena of supere-

lasticity in SMA components subjected to mechanical

loads under non-isothermal conditions. The above

mentioned case study is scheduled by the authors to be

performed for the models of GFB equipped with SMA

parts used to reduce mechanical vibrations.

Unfortunately, there has not been yet proposed a

holistic approach to reliably model all the phenomena

observed in SMA at various geometric scales. There

are many various models dedicated to study specific

aspects of the SMA behavior. Continuously growing

demands regarding simulation efficiency and accuracy

result in contradictory objectives and conditions that

cannot be satisfied simultaneously. In fact, micro-

scopic models are reliable but require significant

amount of computational resources. In contrast, run-

ning fast macroscopic codes cannot lead to very

accurate outcomes. The model presented in the current

work should be considered as a step towards more

accurate modeling of SMA behavior making use of a

phenomenological approach. The derived stability

criteria allow for reasonable choice on the integration

time to prevent from numerical errors effectively. The

present work focuses entirely on the theoretical

aspects of numerical modeling. Exemplary results of

numerical analyses are provided to confirm funda-

mental computational capability of the developed

SMA model. The formulated stability criteria will

allow to conduct numerical simulations which are

scheduled by the authors for the future research as the

continuation of the present work.
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