
Nonlinear vibration absorbers applied on footbridges

Hamed Saber . Farhad S. Samani . Francesco Pellicano

Received: 13 April 2020 / Accepted: 14 October 2020 / Published online: 27 October 2020

� Springer Nature B.V. 2020

Abstract This paper deals with the performance of

linear and nonlinear dynamic vibration absorbers

(DVAs) to suppress footbridges vertical vibrations.

The walking pedestrian vertical force is modeled as a

moving time-dependent force and mass. The partial

differential equations govern the dynamics of the

system; such equations are reduced to a set of ordinary

differential equations by means of the Bubnov–

Galerkin method with an accurate multimode expan-

sion of the displacement field. The optimal vibration

absorber parameters are determined using two objec-

tive functions: maximum footbridge deflection and the

transferred energy from the footbridge to the DVA.

The most suitable nonlinear DVA is proposed for the

investigated footbridge. The results show that the

DVAs with quadratic nonlinearity are the most

performant DVAs.

Keywords Footbridge vibrations � Single

pedestrian � Nonlinear vibration absorber

1 Introduction

The reduction of human-induced vibrations is a

serviceability and safety issue in footbridges. Under

a moving pedestrian load, in near resonance condition,

the structure of the footbridge may suffer from large

deflections. The resonance occurs when a natural

frequency of the structure is within the range of

pedestrian pacing frequencies and cause damages.

There are several methods to reduce the vibrations of

the footbridges including, the selection of structural

material, general end conditions, and the most promis-

ing of them, dynamic vibration absorber (DVA). In

Ref [1] human-structure interaction models for the

vertical vibration under pedestrian excitation are

considered. In the mentioned paper, the beam equation

is modeled employing the modal coordinates and finite

element method. Pedersen and Frier [2, 3] worked on

the footbridge response under pedestrian load models

and investigated the sensitivity of the footbridge

vibrations to walking parameters. They represent the

excessive vibrations and serviceability problems of

slender footbridges under pedestrian traffic. In Ref.[2],

it was shown that walking parameters such as step

frequency, pedestrian mass, dynamic load factor are

essentially stochastic. Pedersen and Frier [3] were

focused on estimating the vertical structural response

to single person loading. In Ref [4] a literature review

of experimental and analytical pedestrian forces on the

footbridges are brought. They investigated human-
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structure, dynamic interaction, and pedestrian syn-

chronization during walking. In the past years, a large

amount of investigations has been carried out on

moving mass models, see, for instance, Refs.[5–7].

The effect of pedestrian mass has been considered by

these models; hence the Coriolis and centripetal forces

were usually disregarded. Pfeil et al. [8], estimated

human-induced vibration amplitudes of vertical bend-

ing in footbridges. They investigated a single DOF

model to simulate the walking pedestrian—structure

interaction, which was developed based upon the

vertical accelerations.

DVAs have been used to reduce structural vibra-

tions. Samani et al. [9] showed the performances of

linear and nonlinear DVAs applied to the specific

problem of moving loads or vehicles. They found that

the cubic stiffness shows better performance concern-

ing the linear one. They conclude that using higher

power for the nonlinear stiffness leads to a more

effective reduction of the beam deflection. Wu [10]

suggested using the DVA in the middle of a beam span

under the force exerted by a moving load. On the other

hand, considering moving mass instead of moving

load seems to be feasible; in Refs [1, 11] was shown

that the time response of a beam under either moving

masses or moving loads is almost similar. Wu [10]

followed Den Hartog’s method [12] to determine the

optimized values of stiffness and damping ratio of the

DVA. Pun and Liu [13] explored the potential of the

nonlinear vibration absorber in a system subjected to

harmonic loading. They showed that a hardening

absorber can deliver a wider bandwidth range of

frequency, with respect to the linear one. Ding and

Chen [14] provided a comprehensive review of the

researches on the nonlinear vibration absorber. Their

work emphasizes on designs, analysis, conclusion, and

applications of nonlinear vibration absorber devices to

enhance vibration reduction in engineering fields.

Lievens et al. [15] propose an optimization approach

based upon the worst-case for the design of a TMD

which accounts for uncertainties in the modal param-

eters. The goal was the minimization of the mass of the

TMD, by tuning the mass, stiffness, and damping

values. They have considered limit values for accel-

eration, deflection, and upper and lower limit for the

stiffness and damping. In [16], Jiang et al. worked

theoretically and experimentally on the effects of a

nonlinear vibration absorber with cubic stiffness, on

the steady-state vibration of a linear primary system.

They illustrated the ability of a nonlinear vibration

absorber in absorbing the vibrations over a relatively

wide frequency range. It is an attractive advantage

over classical linear vibration absorbers. Gourdon

et al. [17, 18] applied experimentally a cubic nonlin-

earity with implementing two linear springs. Gatti [19]

has been worked on the performance of a nonlinear

TMD with cubic stiffness behavior. By using an

analytical formulation, the effect of nonlinearity and

mass ratio of the attachment is investigated for both

softening and hardening stiffness. A. Alhassan et al.

[20] have investigated the effect of human-induced

vibrations on a special footbridge in Jordan. They have

used ETABS software to identify footbridge proper-

ties. They showed that by using a tuned mass damper

(TMD), the fundamental vibration frequency of the

mentioned footbridge will be decreased to a

stable value less than human excitation frequencies,

after attaching of a TMD to the footbridge. They

concluded that the footbridge will be stable under a

pedestrian excitation. They used the Den Hartog

values for the mechanical characteristics of the TMD.

Ferreira et al. [21] used a semi-active damper between

the structure and TMD to control synchronous lateral

excitations in footbridges. By proposing a numerical

method, they have evaluated the effectiveness of the

new semi-active TMD with the conventional passive

one. The main conclusion was that by using the new

procedure, a lower mass for the semi-active TMD was

required to achieve the same performance as that of

the passive one. Moutinho et al. [22] have proposed

the implementation of a semi-active TMD to reduce

vibrations in a specific footbridge. The semi-active

TMD was including a magnetorheological damper;

which was controlled by phase control law. Because

the mentioned footbridge had several critical vibration

modes with natural frequencies close to 2 Hz, only a

conventional passive linear TMD cannot act effi-

ciently on all of the modes. In these cases, a semi-

active TMD seems to be appropriate, where the

capability of self-tuning and the possibility of per-

forming multimode control are given. Maslanka [23]

presented a semi-active TMD with acceleration and

relative motion feedbacks optimized in the frequency

domain. This type of semi-active tuned mass damper

with a mass of one-seventh of an equivalent TMD

optimized with Den Hartog formulation has the same

vibration damping efficiency respect to a TMD with

Den Hartog values. The displacement due to the
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proposed semi-active TMD is not greater than a Den

Hartog one. This type of semi-active TMD has a

magnetorheological controllable viscous damper.

Parseh et al. [24], considered the dynamics of linear,

Euler–Bernoulli beam with an attached nonlinear

energy sink (NES), considering cubic nonlinear stiff-

ness, subjected to harmonic excitation. They claimed

that to achieve better performance for NES in

comparison with tuned mass damper, NES must be

designed for maximum amplitude of exciting force.

Samani and Pellicano [25], investigated the perfor-

mance of DVA in suppressing the vibrations of a

simply supported beam subjected to an infinite

sequence of regularly spaced concentrated moving

loads. It was shown that there is more beam deflection

reduction by using nonlinear DVAs comparing with

linear type. They investigated the performance of

several types of nonlinear DVAs on the beam includ-

ing, piecewise linear stiffness, cubic stiffness, 5 order

monomial stiffness, linear-quadratic damping, cubic

damping.

Nonlinear vibration absorbers are applied to reduce

vibrations of structures, bridges, and various engi-

neering fields. The following references are brought to

show the effectiveness of nonlinearity for various

applicable cases. Yang and Wang [26] modeled a

cantilever beam embedded with the impact damper.

The impact damper causes momentum exchange

between the beam and impact mass. Experimental

results show a robust reduction in the velocity

amplitude of the investigated beam. In another

research, Gourc et al. [27] showed the effectiveness

of using a nonlinear vibration absorber in controlling

the chatter instability in turning processes. Finally, the

experimental results showed a significant reduction of

the tool amplitude by using a nonlinear vibration

absorber. Wang et al. [28] proposed a nonlinear

passive mass damper, to mitigate the unwanted

responses of building structures. The vibration absor-

ber consists of a mass connected to the primary

structure through a linear and a cubic nonlinear spring.

The proposed vibration absorber showed high perfor-

mance in the mitigation of structural response.

In the present paper, the dynamics of the Euler–

Bernoulli beam subjected to a moving pedestrian is

studied. The major contribution is offering the best

nonlinear DVA for pedestrian footbridges, to mini-

mize deflection of the footbridge and to damp the

vibration in the shortest possible time. A classical

linear DVA is limited in that it reduces the vibration of

a bridge over a narrow excitation frequency; while a

nonlinear one can be applied under a wide range of

excitation frequency. To solve the governing partial

differential equations (PDE) of the beam, the Bubnov–

Galerkin approach was applied to transform the PDE

into a set of ordinary differential equations. The

dynamics are studied numerically by integrating the

ordinary equations using the Gauss–Kronrod method.

The time response results with an attached DVA are

compared with the bare footbridge time history results.

By applying different types of nonlinear DVAs on the

footbridges and comparing them with the linear DVA,

characterized by Den Hartog formulation, the effec-

tiveness of nonlinearity in DVAs is presented.

2 System description and basic formulations

Due to the walking or running of a pedestrian on a

footbridge, three force components produced in ver-

tical, horizontal, and longitudinal directions. The

vertical one is the most noteworthy of those. The

vertical component, due to its high amplitude, has

been considered by researchers during the distant past.

The force model exerted by a single pedestrian within

one step is illustrated in Fig. 1; it represents the forces

produced from the left and right foot that overlap in

time while walking, just as there is always one foot on

the footbridge [6, 29]. Unlike spatially discrete forces

at the foot placement position, walking can be

described by spatially continuous footfall forces [30].

The ground natural reaction force from successive

footfalls can be described by the following series, [1],

see Fig. 2:

Fig. 1 Vertical force and approximated model force [1]
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G tð Þ ¼ W þ
Xh

k¼1

Wgk cos 2pkfpt þ uk

� �
ð1Þ

where, W = mpg is the pedestrian weight while

standing, g is the gravity acceleration; mp is the

pedestrian mass; fp is pacing frequency (variable with

the velocity of the pedestrian; i.e. the number of

footfalls per second [31]); gk is the coefficient of

Fourier series which is named ‘‘dynamic load factor’’;

uk is the phase angle of the harmonic; h represents the

number of harmonics.

In the past, researchers used different numbers of

harmonics and coefficients in the Fourier series to

represent the vertical force [31–33]. The mean values

of the first four harmonics, used in this study, are as

follows [5]:

g1 ¼ 0:37 fp � 0:95
� �

� 0:5

g2 ¼ 0:054 þ 0:0044fp

g3 ¼ 0:026 þ 0:0050fp

g4 ¼ 0:010 þ 0:0051fp

ð2Þ

2.1 Pedestrian simulated as moving mass/force

In this section, the passing pedestrian is modeled as

either a moving mass or a moving force with the

amplitude of G(t). A solid passing velocity of m is

considered for the pedestrian. The following general

equation is intended to simulate the moving mass

model, which is a function of time and position:

F x; tð Þ ¼ G tð Þ � mpw;tt

� �
d x� vtð Þ H

L

v
� t

� �� 	
ð3Þ

where, G(t) is the footfall force amplitude exerted by a

pedestrian and is represented by Eq. (1); w is the

deflection response of the beam. d is the Dirac delta

function and defines the location of moving mass

during the passing time, and H(t) is the Heaviside

function [34]. The moving force model can be written

as the following equation:

F x; tð Þ ¼ G tð Þd x� vtð Þ H
L

v
� t

� �� 	
ð4Þ

2.2 Footbridge with attached DVA

The model consists of a simply supported linear

Euler–Bernoulli beam excited with moving force/-

mass. As it is shown in Fig. 2, a DVA is connected to

the footbridge to reduce the vibrations.

The partial differential equation of the dynamics of

the footbridge with boundary and initial conditions are

as follows:

EIw;xxxx x; tð Þ þ qAw;tt x; tð Þ þ f uð Þ þ g u;t
� �� �

d x� dð Þ
¼ F x; tð Þ x 2 0; Lð Þ; t[ 0

ð5Þ

w 0; tð Þ ¼ 0; w L; tð Þ ¼ 0; w;xx 0; tð Þ ¼ 0; w;xx L; tð Þ
¼ 0

ð6Þ

w x; 0ð Þ ¼ 0; w;t x; 0ð Þ ¼ 0; u tð Þ ¼ w d; tð Þ � z tð Þ
ð7Þ

w;t ¼
ow

ot
; w;tt ¼

o2w

ot2
; w;xxxx ¼

o4w

ox4
ð8Þ

where, I is the moment of inertia of the cross-sectional

area of the beam; q is the material density; A is the

cross-sectional area of the beam; F(x, t) is taken from

Eq. (4), in which the reaction force amplitude obtain

from Eq. (1), g u;t
� �

¼ ku;t tð Þ is the viscous damping

force; f(u) is the stiffness force in Eq. (5); the term

f uð Þ þ g u;t
� �� �

d x� dð Þ represents the force exerted

by the dynamic damper; d represents the location of

the damper on the beam, which is equal to L
2

and k is the

damping coefficient of the viscous damper. The

dynamics of the DVA is governed by the following

equations:

m0z;tt � ku� ku;t tð Þ ¼ 0; t[ 0 ð9Þ

Fig. 2 A footbridge model with the attached DVA subjected to

a moving mass
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z 0ð Þ ¼ 0; z;t 0ð Þ ¼ 0; t[ 0 ð10Þ

where, m0 is the mass of the DVA and, z(t) is the

position of the mass of DVA, m0. By using the

Bubnov-Galerkin method the displacement function

of the footbridge is as Eq. (11):

w x; tð Þ ¼
XN

r¼1r¼1

qr tð Þur xð Þ ð11Þ

thus:

w;tt ¼
XN

r¼1r¼1

€qr tð Þur xð Þ ð12Þ

qr(t) are unknown functions of time (modal coordi-

nates), ur(x) are the normalized eigenfunctions and N

is the number of modes of the system. The eigenfunc-

tions are defined as:

ur xð Þ ¼ 2

mL

� �1
2

sin
rpx
L


 �
; xr ¼ rpð Þ2 EI

mL4

� �1
2

; r

¼ 1; 2; 3; . . .

ð13Þ

m = qA is the mass per unit length of the footbridge

andxr is the natural circular frequency of the rth mode.

The footbridge is subjected to a single moving mass.

By substituting Eqs. (11–12) into Eqs. (5–10), apply-

ing Eq. (3) in the right-hand of Eq. (5), using the

orthogonality conditions in Ref [34] and assuming

constant velocity, the jth modal equation can be

derived as follows:

€qj þ 2njxj _qj þ x2
j qj þ K tð Þ þ C tð Þf guj dð Þ

¼ uj vtð Þ G tð Þ � mp

XN

r¼1

€qr tð Þur vtð Þ
" #( )

ð14Þ

where, G(t) is satisfied by Eq. (1); K(t) and C(t) are

described by Eqs. (15) and (16):

K tð Þ ¼ k
XN

r¼1

qr tð Þur dð Þ � z tð Þ
" #a XN

r¼1

qr tð Þur dð Þ � z tð Þ
�����

�����

b

stiffness functionð Þ

ð15Þ

and

C tð Þ ¼ k
XN

r¼1

_qr tð Þur dð Þ � _z tð Þ
" #c XN

r¼1r¼1

_qr tð Þur dð Þ � _z tð Þ
�����

�����

d

damping functionð Þ

ð16Þ

where, a, b, c and, d are integer powers defined based

upon the type of stiffness and damping (linear or

nonlinear) used in various DVAs. In the system

described above, a moving mass pedestrian was

considered. The formulations can be extended to a

moving force model, as well. Governing equations

under moving force excitation is the same as moving

mass ones; where, mp in the right-hand side of Eq. (14)

should be replaced by zero, which means the absence

of inertial effects.

2.3 Classical linear DVA

To decrease the resonance phenomenon of a beam

subjected to a periodic load, the equivalent mass of the

beam should be defined, which depends on the

position of the DVA [12]. The optimal position to

attach a DVA to a simply supported beam, to suppress

the first mode is the middle of the beam [25]. The

related optimal values of the stiffness and damping of

the linear DVA, attached to a simply supported beam,

are as follows:

k ¼ m0

x1

1 þ l

� �2

ð17Þ

k ¼ 2m0x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l

8 1 þ lð Þ3

s
ð18Þ

where, x1 is the fundamental natural frequency of the

beam, l ¼ m0

me
is the mass ratio, and me ¼ mL

2 sinpdLð Þ2 is the

beam equivalent mass.

3 Validation

To evaluate the accuracy of the present results, the

case of a footbridge without DVA is investigated and

results compared with Ref. [1]. Consider the system of

Eqs. (14–16), with mp, k, and k equal to zero. A

simply-supported footbridge with the following

parameters brought in Table 1, is subjected to a

moving single pedestrian force:

The pedestrian weight is 724 N, which moves with

a velocity of 1.25 m/s and a frequency of 2 Hz. The

pedestrian force exerted to the footbridge by the

pedestrian feet is shown in Fig. 3. Due to the bridge

length, and the pedestrian velocity, the force exerted to
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the footbridge is truncated after 40 s, while the

pedestrian passed the footbridge.

Figures 4 and 5 show the acceleration time history

and corresponding RMS (root mean square) of the

footbridge mid-span under moving pedestrian force

and mass, respectively. The difference between the

maximum RMS of acceleration of the beam under

moving mass (1.178 m/s) and moving force (1.218 m/

s) is about 4%. Moreover, the difference between the

maximum deflection of the beam under moving mass

(9.1 mm) and moving force (11 mm) is about 9%.

Consequently, at the excitation frequency (2 Hz), for

the selection of performant DVA the equations of the

beam under moving force, is considered. Notably, the

pedestrian frequency is within the normal pacing

frequency range of 1.8–2.2 Hz [31]. Four modes

Bubnov–Galerkin expansion is selected after trunca-

tion evaluation; error is less than 1%. In Table 2 the

difference between present study and Ref.[1],

compared.

To verify the effectiveness of the nonlinearity of

DVAs, in the case of moving loads, further verification

is done; data are used from Ref [34] for this aim. By

considering the system of Fig. 2, where the integer

powers of the elastic and damping forces [related to

Eqs. (15) and (16)] are: a = 3, b = 0, c = 1, d = 0. The

system parameters in Ref [34] are brought in Table 3.

Figure 6a, b show the maximum deflection of the

mid-span of the beam against the stiffness of the

nonlinear absorber (linear damping and nonlinear

stiffness). Notably, the moving excitation is not due to

pedestrian walking, and it is a moving force with a

constant amplitude as mentioned in Ref.[34].

In Fig. 6a, b, 1-mode and 4-mode expansions are

used, respectively. Moreover, by using four mode

expansions, good agreement with Ref [34] is found.

Notably, transformation of the PDE to ODEs is done

analytically.

4 Passive nonlinear DVA formulation

In this study, different types of nonlinear DVAs with

quadratic and cubic nonlinearity are applied on the

footbridges. The effect of the attached nonlinear

DVAs is investigated in Sects. 5.2 through 5.7. The

reason for choosing the mentioned nonlinearity for the

DVAs in the present study is due to the custom use of

nonlinear mathematical models in the attached DVAs

applied on the vehicle bridges, in recent years

[9, 16–18, 25, 34–37]. Although the piece-wise linear

stiffness or damping types as mentioned by [25], and

nonlinear impact absorber modeled by [26] can be

added to the nonlinear DVAs, the mentioned ones in

this study are the most common types of nonlinear

DVAs for simply supported bridges. For the sake of

brevity, six common nonlinear DVAs in two objective

optimization goals are investigated in the following

section. These nonlinear DVAs and the linear ones

which are compared with each other are including

sixteen cases in the following sections. In Fig. 7, a

schematic of a nonlinear attachment vibration absor-

ber for the bridge is illustrated. Although the attached

stiffness and damper are linear individually, the whole

attachment DVA is nonlinear.

Table 1 Footbridge characteristics

Footbridge mass 500 kg/m

Footbridge length 50 m

Footbridge width 2 m

Footbridge depth 0.535 m

Damping ratio 0.004

Modulus of elasticity 200 GPa
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(a) (b)Fig. 3 Exerted force to the

footbridge, a short period,

b long period
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To investigate the order of nonlinearity, for the

mentioned nonlinear configuration for the attached

system in Fig. 7, the following procedure is done. It is

notable to say that, in Ref.[38], A similar model is

proposed for the configuration of a cubic passive

vibration absorber for a structure. In this section by

applying little changes to the mentioned model [38]

and modifying it for an attached nonlinear DVA to a

footbridge, a new model is proposed. By supposing the

blue spring shown in Fig. 8, as the spring with its free

length L, located in position 1. By attaching the mass,

m0 to the linear springs, m0 will be placed in its static

position 2. The Newton equation in the vertical

direction is as the following; which is due to the free

body diagram of position 2 in Fig. 8.

2R2 sin a ¼ m0g ð19Þ

R2 is the spring force in position 2. As shown in Fig. 8,

dst is the static location of the mass (m0). The force R2

is created in the spring due to the static displacement

of the DVA mass. m0g is the weight of the DVA mass,

m0. a is the angle between position 1 and position 2. a
and R2 are defined as the following equations:

a ¼ dstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
st þ L2

0

q ð20Þ

where, L0 is the free length of each of the springs.

t [ ]
0 10 20 30 40
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–0.5
0.0
0.5
1.0
1.5

(a)

0 20 40 60 80 100 120

–1.5
–1.0
–0.5
0.0
0.5
1.0
1.5

(b)

t [ ]

Fig. 4 Footbridge mid-span acceleration subjected to moving pedestrian force; yellow line: time response result of the present model;

blue filled circle RMS of the Ref.[1], blue line: RMS of the present result. a time history during 40 s. b time history during 120 s

t [ ] t [ ]
0 20 40 60 80 100 120

–1.5
–1.0
–0.5

0.0
0.5
1.0
1.5

(b)

0 10 20 30 40

–1.5
–1.0
–0.5

0.0
0.5
1.0
1.5

(a)

Fig. 5 Footbridge mid-span acceleration subjected to moving pedestrian mass; yellow line: time response result of the present model;

blue filled circle: RMS of Ref.[1], blue line: RMS of the present result. a time history during 40 s. b time history during 120 s

Table 2 Maximum values of RMS of acceleration time

response

Pedestrian model Ref [1] Present study Error percentage

Moving force 1.223 1.218 0.4

Moving mass 1.179 1.178 0.1

Table 3 Footbridge characteristics of Ref [34]

Footbridge mass 7.038 kg/m

Footbridge length 4 m

Footbridge width 0.03 m

Footbridge depth 0.03 m

Damping ratio 0.01

Modulus of elasticity 206.8 GPa

DVA mass 1.4076 kg/m
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R2 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
st þ L2

0

q
� L0

� 	
ð21Þ

By exerting the external force,F the mass of the

DVA will be located in position 3. Due to Eqs. (19) to

(21), the weight vector of m0, in the body diagram of

position 3 is omitted which is shown in Fig. 8. So the

following equations can be written for Newton’s law

in the vertical direction in position 3.

F ¼ 2R3 sin h ð22Þ

and,

R3 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ L2

0

q
� L0

� 	
ð23Þ

where, m is the displacement of the mass due to exerted

force F, and

sin h ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ L2

0

p ð24Þ

thus, Eq. (22), will be reformed as:

F ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ L2

0

q
� L0

� 	
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ L2
0

p

¼ 2kv 1 � L0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ L2

0

p
" #

ð25Þ
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Fig. 6 Comparison of beam

subjected to moving load

with an attached nonlinear

DVA; red line: present

results and blue filled circle:

Ref.[34]; a 1-mode

expansion and b 5-modes

expansion

Nonlinear DVA

Fig. 7 Schematic of the geometrically nonlinear DVA

Position 1

Position 2

Position 3

Free body 
diagram of 
Position 2

Free body diagram of 
Position 3

Fig. 8 Cubic configuration

of the springs
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By writing the Taylor expansion of relation 1ffiffiffiffiffiffiffiffiffi
v2þL2

0

p ,

about m = 0, the following equation will be achieved:

F ¼ 2kv 1 � L0

1

L0

� v2

2L3
0

þ 3
v4

8L5
0

� v6

4L7
0

þ . . .

� �� 	

ð26Þ

which is summarized to:

F ¼ k

L2
0

v3 þ O v5
� �

¼ Kv3 þ O v5
� �

ð27Þ

So the geometric nonlinearity of the attached

system in Fig. 7, produces a cubic stiffness

nonlinearity.

The above-mentioned procedure can be done for

any type of nonlinear configurations of the stiffness

and damping, which is not in the aims of this study.

5 Optimization of the DVA parameters

In this section, for various types of DVAs, the optimal

stiffness and damping of the linear DVA of the beam

are optimized. The position of the DVA also affects

the beam deflection [39]. Ref [25] shows that the

optimal position of the DVA for a simply supported

beam under periodic excitation is the middle of the

beam.

Two objective functions for the presented opti-

mization investigate in this paper. The first objective

function is the minimization of the maximum beam

deflection. The second goal function is the maximiza-

tion of the amount of energy dissipated by the DVA

(g), computed by Eq. (28); see Ref. [40].

g ¼ EDVA

Ein

¼

Rt1

0

k _zðtÞ �
PN

r¼1

_qrðtÞurðdÞ
� 	m

_zðtÞ �
PN

r¼1

_qrðtÞurðdÞ
����

����
n

dt

Rt0

0

Fi _qrðtÞurðxFÞ½ �dt

ð28Þ

where, Fi is the pedestrian force, which is defined by

Eqs. (3 and 4); xF = mt, is the position of the pedestrian

on the footbridge. EDVA is the energy absorbed by

DVA; Ein represents the input energy exerted by

pedestrian feet on the footbridge. The integer powers

m and n are defined depending on the type of damper

(linear or nonlinear) used in various DVAs. t1 is the

assumed time, large enough to be sure that the

transient response is damped; and t0 is the duration

of the load acting on the footbridge. This approach is

focused on the maximization of the energy dissipated

by the DVA [34].

5.1 Optimal design of the linear DVA

The optimum values k and k, obtained by Den

Hartog’s method [Eqs. (17) and (18)] for the present

numerical model are 5293 Ns/m and 164 kN/m,

respectively. Following the approaches considered

above, the optimum values related to both goal

functions will be achieved. Under a moving pedestrian

force, after focusing on the region where the maxi-

mum g and minimum deflection are located, the ranges

of k and k are 0 to 10 kNs/m and 50 kN/m to 300 kN/m,

respectively. By sampling the viscous damping and

stiffness on a 50 9 50 grid, meaning that the damping

and stiffness resolutions are 0.2 kNs/m and 5 kN/m,

respectively, the minimum deflection is obtained. The

optimized k and k for the deflection approach are the

values that offer the minimum value of the maximum

deflection in each frequency. The minimum deflection

of 0.96 mm for the gained optimum parameters: k = 6

kNs/m and k = 180 kN/m is achieved in an overall

search using the deflection objective function which is

shown in Fig. 9a. The optimized k and k for energy

objective function are the values in which the DVA

dissipates the maximum energy. In Fig. 10b peaks A,

B, and C show the minimum values of the optimized

DVA with energy approach. These peaks present the

worst situation of the optimized DVA for the probable

excitation frequency range. By choosing m = 2 and

n = 0 in Eq. (28), the g = 92.80%, for k = 6.4 kNs/m

and k = 145 kN/m is achieved which is shown in

Fig. 9b. It is notable that the integer powers in

Eqs. (15) and (16) are: a = 1, b = 0, c = 1 and

d = 0. The difference between the two mentioned

optimization approaches is that, in the energy

approach, the time response of the footbridge would

be damped faster, whereas in the deflection approach

the maximum deflection of the footbridge would be

minimum.

Note that, the common range of pedestrian walking

frequency is 1.6–2.4 Hz [31]; hence it is noticeable to

find the maximum deflection of the footbridge and the

amount of energy absorbed by DVA in a wide range of

low frequencies. The importance of using a frequency

domain illustration is due to the fact, that walking
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parameters such as pedestrian frequencies are stochas-

tic [2]. In Fig. 10, a comparison of DVAs optimized by

energy and deflection approach to DVA with Den

Hartog values, in a frequency domain is illustrated.

In the subsequent figures, peak points A, B and C

are presented for curves related to the deflection

approach optimized DVA, linear DVA with Den

Hartog values, and energy approach optimized DVA.

These points give the critical frequencies which affect

the selection of the optimized parameters for each

linear or nonlinear DVAs. Note that, these points for

deflection (w) graphs are correlated to frequencies that

present the maximum deflections and similarly, for

dissipated energy (g) graphs are associated with

frequencies that present the minimum dissipated

energy.

Peak A, in Fig. 10a, shows the minimum deflection

of 0.96 mm in the deflection approach method, which

is smaller than peaks B and C. In Fig. 10b, peak C

illustrates the g = 92.82% related to the energy

approach optimization, which is higher than peaks A

and B related to the deflection approach and the Den

Hartog method. The anti-peak at frequency 2 Hz, in

Fig. 10b, is due to a resonance phenomenon.

Notably, the optimal parameters of the attached

DVA to the footbridge under moving pedestrian mass

have also been checked. The results were very close to

those gained under moving pedestrian force. So, in the

following sections, the moving force model is only

used to investigate the acceleration and deflection of

the footbridge. In the subsequent sections, different

types of nonlinear DVAs are going to be analyzed.

When the frequency of the applied excitation is not

fixed, taking advantage of the nonlinear DVAs is

proposed.

5.2 Nonlinear DVA with quadratic damping

To minimize the deflection of the system, subjected to

periodic excitation some researchers suggested the use

of quadratic damping, e.g., Starovetsky investigated a

system with nonlinear energy sink with quadratic

damping characteristics [41]. By considering a linear

stiffness and quadratic damping, by choosing a = 1,

b = 0, c = 1, and d = 1 in Eqs. (15) and (16), the

maximum deflection of the footbridge and the

absorbed energy by the DVA, are illustrated in

Fig. 11a, b, respectively. By using the energy

approach method and employing Eq. (28) with

(a) (b)[ ]Fig. 9 DVA optimized

parameters. a deflection

approach optimization

method; b energy approach

optimization method

C

B

A

CB

A

(a) (b)Fig. 10 a Maximum

deflection of footbridges

subjected to linear DVAs in

frequency domain; b The

amount of dissipated energy

by linear DVAs
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m = 2 and n = 1, the following optimal values are

obtained: k = 1000 kNs2/m2 and k = 146kN/m. The

maximum value of the minimum dissipated energy by

DVAs is 92.77%, Fig. 11b, peak C. The minimum

deflection of 0.95 mm which is demonstrated by peak

A, for the achieved optimum parameters:

k = 415kNs2/m2 and k = 183 kN/m, Fig. 11a. These

optimal values are obtained in an overall search using

the deflection approach optimization method. The

peak points A, B, and C corresponding to the critical

frequencies are shown in Fig. 11.

5.3 Nonlinear DVA with quadratic stiffness

In this section a nonlinear DVA with quadratic

stiffness and linear damping is investigated; where

the integer powers of the elastic and damping forces

[related to Eqs. (15) and (16)] are a = 1, b = 1, c = 1,

and d = 0. Minaei and Ghorbani [42] have been

presented a new variable stiffness mechanism which

can be extended as an applicable nonlinear one in

engineering. To determine the optimal parameters for

the present nonlinear DVA, the energy approach

method is considered. By defining m = 2 and n = 0 in

Eq. (28), the optimal set is defined as k = 9900Ns/m

and k = 2.4 9 108 N/m2. Then, by applying the

deflection approach, the following k and k are found

4750 Ns/m and 1.55 9 108 N/m2. A detailed compar-

ison between different optimization results under

moving load excitation is brought in Table 4, at the

end of Sect. 5.7. The maximum deflection of the beam

and the absorbed energy by DVA is represented in

Fig. 12. The interesting result is that for the considered

nonlinear DVA with quadratic stiffness and linear

damping there is a perceptible anti-peak for energy

approach, Fig. 12b, point C. While, for the case with

linear DVA with Den Hartog optimized values and

case with nonlinear DVA with quadratic stiffness and

linear damping, optimized with deflection approach

optimization method, no anti-peak is observed.

Peak A, in Fig. 12a, shows the minimum deflection

of 0.97 mm in the deflection approach method, which

is smaller than peaks B and C, which means DVA with

quadratic stiffness and linear damping performance is

better concerning linear DVA. As it is illustrated in

Fig. 12a, a nonlinear DVA with quadratic stiffness

(dashed black line) which is optimized based upon the

deflection approach optimization method, approxi-

mately in the whole range of frequency (1.5 Hz-

2.5 Hz) performs better than a linear DVA with Den

Hartog values. In Fig. 12b, peak B (Den Hartog

values) presents g = 90.68%, which is higher than

peaks C and A, corresponding to energy and deflection

approach methods. The anti-peaks at frequency 2 Hz,

are due to a resonance phenomenon. It means that this

particular type of nonlinear DVA is not a more

efficient concerning the linear DVA from the energy

approach point of view.

Figure 13 is presented to check the correctness of

the peak and anti-peak observed in Fig. 12; points C in

Fig. 12a, b. For this purpose, the deflection of the

footbridge and the relative velocity of the DVA in the

critical frequency (1.86 Hz), and a frequency beside

the critical frequency (1.97 Hz) in the time domain are

investigated. Figure 13a–h present the deflection time

response of the footbridge; where Fig. 13i–n present

relative velocity time response of the mass of the

DVA. In Fig. 13, two excitation frequencies are

considered (1.86 Hz and 1.97 Hz). The attached linear

DVA with Den Hartog values and nonlinear DVA with

quadratic stiffness and linear damping (for both

above-mentioned optimization approaches) are con-

sidered. The beam with an attached nonlinear DVA,

optimized by the energy approach method, introduces

more significant maximum deflection (2.6 mm)

respect to the bare beam at the frequency of 1.86 Hz.

C
B

A

A

C

B

(a) (b)Fig. 11 a Maximum

deflection of footbridges

subjected to DVAs with

quadratic damping and

linear stiffness in

comparison with DVA with

Den Hartog values; b The

absorbed energy by the

mentioned DVAs
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The frequency of 1.86 Hz is the frequency in which a

peak in Fig. 12a or an anti-peak in Fig. 12b is

appeared (illustrated with point C on the green lines).

One important point is that the beam deflection

possessing nonlinear DVA, optimized by the energy

approach method, introduces more significant maxi-

mum deflection (2.6 mm) respect to the bare beam at

the frequency of 1.86 Hz. The beam with linear DVA

does not show any anti-peak for this frequency; this is

investigated in time history results in Fig. 13g, too.

The DVA mass velocity respect to beam ð _uÞ is

presented in Fig. 13k for the frequency of 1.86 Hz

(frequency of anti-peak). Similar time responses are

presented in Fig. 13b, d, f, and h for comparison. This

frequency (1.97 Hz) is close to the primary resonance,

which is less critical for the considered cases. These

time response results verify the results presented in

Fig. 12.

5.4 Nonlinear DVA with quadratic damping

and quadratic stiffness

The performance of nonlinear DVA with quadratic

stiffness and quadratic damping characteristics is

evaluated in this section. The optimal parameters are

listed in Table 4; the maximum deflection of the beam

and the absorbed energy by DVA is represented in

Fig. 14. It is apparent from Fig. 14b that by using this

type of DVA, optimized by the energy approach

method the minor anti-peak in the frequency of

1.88 Hz occurs. At the same frequency in the deflec-

tion graph, Fig. 14a point C, the peak is observable.

Table 4 Comparison between various optimization results under pedestrian excitation

Case Footbridge and

type of DVA

Optimization

approach

Maximum

deflection

[mm]

Minimum

value

of dissipated

energy [%]

Optimized k Optimized k

1 Bare footbridge – 11.41 – – –

2 Linear DVA Den Hartog values 1.1 90 164 9 103 N/m 5293 Ns/m

3 Linear DVA Energy 1.2 92.82 145 9 103 N/m 6400 Ns/m

4 Linear DVA Deflection 0.96 88 180 9 103 N/m 6000 Ns/m

5 Quadratic damping and linear stiffness Energy 1.6 92.77 146 9 103 N/m 1.0 9 106 Ns2/m2

6 Quadratic damping and linear stiffness Deflection 0.96 66 183 9 103 N/m 0.42 9 106 Ns2/m2

7 Quadratic stiffness and linear damping Energy 2.6 86 240 9 106 N/m2 9900 Ns/m

8 Quadratic stiffness and linear damping Deflection 0.97 82 155 9 106 N/m2 4750 Ns/m

9 Quadratic stiffness and damping Energy 2.2 89 265 9 106 N/m2 1.35 9 106 Ns2/m2

10 Quadratic stiffness and damping Deflection 0.97 30 150 9 106 N/m2 0.23 9 106 Ns2/m2

11 Cubic damping and linear stiffness Energy 1.8 92 148 9 103 N/m 95 9 106 Ns3/m3

12 Cubic damping and linear stiffness Deflection 0.96 27 185 9 103 N/m 27.5 9 106 Ns3/m3

13 Cubic stiffness and Linear damping Energy 3.5 79 257 9 109 N/m3 11,700 Ns/m

14 Cubic stiffness and Linear damping Deflection 1.1 81 129 9 109 N/m3 7750 Ns/m

15 Cubic damping and Cubic stiffness Energy 4.7 71 770 9 109 N/m3 1.2 9 109 Ns3/m3

16 Cubic damping and Cubic stiffness Deflection 1.1 4 137 9 109 N/m3 32 9 106 Ns3/m3

(a) (b)

A

C
B

B

A

C

Fig. 12 a Maximum

deflection of footbridge with

an attached DVA with

quadratic stiffness and linear

damping in frequency

domain; b The amount of

dissipated energy by DVA
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The integer powers for elastic and damping forces in

Eqs. (15) and (16) are a = 1, b = 1, c = 1, and d = 1.

The integer powers in Eq. (28) are: m = 2 and n = 1.

Peak A, in Fig. 14a, shows the minimum deflection

of 0.97 mm in the deflection approach method, which

is smaller than peaks B and C; which means DVA with

quadratic stiffness and quadratic damping perform

better respect to linear DVA. The optimal values

k = 230 kNs2/m2 and k = 150 9 106 N/m2 are

obtained in an overall search using the deflection

approach optimization method. These optimal values

for the energy approach method are k = 1350 kNs2/m2

and k = 265 9 106 N/m2. As shown in Fig. 14a, a

nonlinear DVA with quadratic damping and stiffness

(dashed black line), in the whole considered range of

frequency, except the ranges of [1.78 Hz- 1.83 Hz]

and [2.3 Hz–2.4 Hz] performs better than a linear one

with Den Hartog values. In Fig. 14b, peaks B and C

illustrate the g = 90.68% related to Den Hartog and

energy approach optimization values, which are

higher than peak A, of the deflection approach method.

The anti-peaks at frequency 2 Hz, are due to a

resonance phenomenon. It means that this type of

nonlinear DVA is not a more efficient concerning the

linear DVA from the energy approach point of view.

5.5 Nonlinear DVA with cubic damping

As it is mentioned in the introduction section of the

present study, in Ref [9] concluded that using the

higher power of nonlinearity for stiffness leads to a

more effective reduction of beam deflection. So, in the

following subsections, the higher power of nonlinear-

ity for damping and stiffness are investigated. In this

section a cubic damping and linear stiffness for the

DVA is considered. By choosing a = 1, b = 0, c = 3,

d = 0 in Eqs. (15) and (16), the maximum deflection of

the footbridge and the absorbed energy by the DVA,
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.

Fig. 13 Time responses of the footbridge mid-span a, b bare

beam deflections, c, d beam with nonlinear DVA optimized by

deflection approach, e, f beam with nonlinear DVA optimized

for energy approach, g, h beam with DVA with Den Hartog

values, i, j relative velocity of mass of DVA optimized by

deflection approach, k, l relative velocity of mass of DVA

optimized by energy approach, m, n relative velocity of mass of

DVA with Den Hartog values, Note: at t = 40 s the pedestrian

leaves the footbridge
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are illustrated in Fig. 15a, b, respectively. By using the

energy approach method and employing Eq. (28) with

m = 4 and n = 0, the following optimal values are

obtained as k = 9.5 9 107 Ns3/m3 and

k = 1.48 9 105 N/m. The maximum value of the

minimum dissipated energy by DVAs is 92% which

is shown by Fig. 15b by peak C. The minimum

deflection of 0.96 mm, which is shown by peak A, for

the achieved optimum parameters: k = 2.75 9 107

Ns3/m3 and k = 1.85 9 105 N/m, is obtained in an

overall search using the deflection approach optimiza-

tion method; results are shown in Fig. 15a. The peak

points A, B, and C corresponding to the critical

frequencies are shown in Fig. 15. Decreasing in

absorbed energy due to deflection approach optimiza-

tion values (frequencies lower than 1.75 Hz) is not due

to resonance or superharmonic resonance; in fact, it is

because of the method of optimization and the

mechanical values achieved from this method. The

interesting result is that for the considered nonlinear

DVA with cubic damping and linear stiffness, there is

a perceptible anti-peak at the frequency of 1.95 Hz for

the energy approach shown in Fig. 15b; which intro-

duces maximum deflection (1.8 mm) at the frequency

of 1.95 Hz that is shown in Fig. 15a.

5.6 Nonlinear DVA with cubic stiffness

This section investigates cubic stiffness performance

for the nonlinear DVA. The integer powers of the

elastic and damping forces [related to Eqs. (15) and

(16)] are a = 3, b = 0, c = 1, d = 0. To determine the

optimal parameters for the present nonlinear DVA, the

energy approach method is considered. By defining

m = 2 and n = 0 in Eq. (28), the optimal set is defined

as k = 11700Ns/m and k = 2.57 9 1011 N/m3. Then,

by applying the deflection approach, the following k
and k are found as 7750Ns/m and 1.29 9 1011 N/m3.

A detailed comparison between different optimization

results under moving load excitation is listed in

Table 4, at the end of Sect. 5.7. The maximum

deflection of the beam and the absorbed energy by

DVA is illustrated in Fig. 16. The interesting result is

that for the considered nonlinear DVA with cubic

stiffness and linear damping there is a perceptible anti-

peak for energy approach; while for the case of linear

DVA with Den Hartog values, and DVA with cubic

stiffness and linear damping, which is optimized by

deflection approach optimization method, no anti-

peak is observed, Fig. 16b, point C.

5.7 Nonlinear DVA cubic damping and cubic

stiffness

In this section, the behavior of the system with cubic

damping and cubic stiffness has been studied. By

applying energy and deflection approach optimization

methods, the mechanical characteristics of the DVA

are defined; which listed in Table 4. The maximum

deflection of the beam and the absorbed energy by the

DVA is illustrated in Fig. 17. It is apparent from

Fig. 17b that by using a DVA with cubic stiffness and

cubic damping, optimized by the energy approach

method the anti-peak in the frequency of 1.9 Hz

occurs. At the same frequency in the deflection graph,

Fig. 17a, point C, the peak is observable. The integer

powers for elastic and damping forces in Eqs. (15) and

(16) are a = 3, b = 0, c = 3, d = 0. The integer powers

in Eq. (28) are: m = 4 and n = 0.

The issue is apparent from Fig. 17 is that for cubic

damping and cubic stiffness, the DVA optimized for

the deflection approach behave suitably for both

approaches for the frequency range of 1.8–2.2 Hz.

Table 4 summarizes results for a bare beam and beam

subjected to DVAs (linear and nonlinear); these results

are for the frequency range of 1.5–2.5 Hz.

(b)(a)

C

A
B

C

A

B

Fig. 14 Footbridge with an

attached DVA with

quadratic stiffness and

quadratic damping in

frequency domain

a maximum deflection, b the

amount of dissipated energy

by DVA
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The Sects. 5.2 to 5.7 show that the optimal

parameters for the approach of minimum deflection

and approach of maximum absorbed energy are not

necessarily similar; i.e., it is essential to specify the

goal of using DVA and then decide for suitable DVA.

In Ref.[9], using higher power for the nonlinear

stiffness leads to a more effective reduction of the

beam deflection which is subjected to the vehicles;

wherein this study, quadratic nonlinearities show

better performance for the case of pedestrian excita-

tion. In this research higher-order in stiffness and

damping nonlinearities is studied. However, no

improvement is found; so, for the sake of brevity,

such results are omitted in this paper.

6 Discussion

In this section, the results of the previous sections are

discussed. The performance of different types of linear

and nonlinear DVAs is analyzed with two approaches.

The first approach is the minimization of the maxi-

mum footbridge deflection. Smaller footbridge deflec-

tion leads to smaller stress and finally longer structure

lifetime. The second approach maximization of the

energy transferred from the footbridge to the DVA.

Bigger dissipation energy by DVA means that the

footbridge vibration damps faster, i.e., less vibrational

motion. One interesting result of this paper arises from

Fig. 12a. It is shown that utilizing the DVA with

quadratic stiffness and linear damping, optimized by

the deflection approach, within 92% of the investi-

gated frequency range (1.5–2.5 Hz), the deflection of

the footbridge is smaller concerning a footbridge with

(a) (b)C

B
A

A

B
C

Fig. 15 DVA with cubic

damping and linear

stiffness; a Maximum

deflection of footbridge;

b the energy absorbed by

DVA

(a) (b)

A

C

B

CA

B

Fig. 16 DVA with cubic

stiffness and linear damping

attached to the footbridge;

a Maximum deflection of

footbridge; b the energy

absorbed by DVA

(b)(a)
C

B
A

C
A

B

Fig. 17 a Maximum

deflection of footbridge;

b the energy absorbed by

DVA
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a linear attached DVA. It means that this type of

nonlinear DVA leads to better performance over a

wide range of frequency. Another interesting result

arises from Fig. 14a; by using a nonlinear DVA with

quadratic stiffness and quadratic damping optimized

by deflection approach over 86% of the investigated

frequency range (1.5–2.5 Hz), the deflection of the

footbridge is smaller concerning the footbridge with

optimized linear DVA. This later type of DVA is the

most effective DVA type for a critical frequency

value. The rest of the other investigated types of DVAs

could not make sensible improvements. It is

notable by using: (1) nonlinear DVA with quadratic

damping and linear stiffness (2) nonlinear DVA with

cubic damping and linear stiffness, the maximum

deflection of 0.96 mm achieved. The maximum abso-

lute deflection for the footbridge without DVA is

11.4 mm; for the footbridge with optimized linear

DVA is 0.96 mm, which is similar to the optimal

nonlinear cases. The Den Hartog optimization pre-

sents the maximum deflection of 1.1 mm; which

means such parameters are not the absolute optimum

values. However, the nonlinear DVAs are effective for

reducing the maximum deflections over a wider

frequency range; it can be observable for different

DVA types, Figs. 11a, 10a and 12a. It can conclude

that the use of nonlinear (quadratic stiffness and linear

damping or quadratic damping and quadratic stiffness)

DVAs instead of the classical linear DVA is conve-

nient for the footbridges.

Figure 18 is presented merely to show how the

higher modes at the internal resonances can be

effective on the nonlinear results of this paper. 20

modes of the footbridge have been considered to

investigate the effect of the nonlinearity of the DVAs

on the excitation of the other modes. Fro this

verification, only two selected DVAs (cases 8 and

10) are investigated. As it is shown in Fig. 18a, b, the

continuous red line shows the footbridge response by

considering 4-mode expansion; where the black dotted

line shows the footbridge response with 20 modes of

vibration. The figures show that there is no difference

between the two expansions, so the internal reso-

nances would not occur under the excitation frequency

in the frequency ranges of 1.5–2.5 Hz. Notably, the

internal resonances may occur under the excitation

frequencies of more than 3 Hz and less than 1.25 Hz;

which is not in the applicable walking excitation

frequency ranges of 1.5–2.5 Hz.

7 Concluding remarks

In this paper, the vertical response of a bare simply-

supported footbridge subjected to a single moving

pedestrian is studied. The considered frequency range

is the applicable frequency range for normal pedes-

trian (1.5–2.5 Hz). The performance of different types

of linear and nonlinear DVAs is analyzed. The main

conclusion points of this research are listed as follow:

• Two nonlinear DVA types introduce better perfor-

mance respect to the optimized linear DVA:

(i) nonlinear DVA with quadratic stiffness and

linear damping and (ii) nonlinear DVA with

quadratic damping and quadratic stiffness; which

are optimized with deflection approach optimiza-

tion method. These two nonlinear DVAs with

optimal parameters can decrease footbridge deflec-

tion over the walking pedestrian frequency range.

• The present results give approximately 12%

smaller deflection for the footbridge with an

attached DVA with quadratic nonlinearity in

[m
m

]

(a) (b)Fig. 18 Maximum

deflection of footbridges;

a DVA with quadratic

stiffness and linear damping

attached to the footbridge;

b DVA with quadratic

stiffness and quadratic

damping attached to the

footbridge
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comparison with linear DVA with Den Hartog

formulation, under moving single pedestrian.

• With an attached DVA with cubic damping and

linear stiffness an 11% reduction will be achieved

in comparison with linear DVA with Den Hartog

formulation, under moving single pedestrian.

• Even by using a linear DVA optimized by deflec-

tion approach method, the maximum deflection of

the footbridge will be less than the deflection of the

footbridge with an attached linear DVA with Den

Hartog formulation. Note that, the excitation type

in this research is a kind of transient load with

harmonic amplitude considering for 4 expansion

modes.

• Results show that using an energy approach

optimization method for DVAs, will not help in

suppressing the deflection of the footbridge in

comparison with Den Hartog formulation. Even,

this type of optimization will not affect on the

velocity of damping the vibrations by absorbing

the energy from the footbridge.

• Nonlinear DVAs with cubic stiffness nonlinearity

does not have better performance respect to the

linear DVA with Den Hartog formulation in

suppressing the footbridge deflection.
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