
MODELLING AND ANALYSIS OF MECHANICAL SYSTEMS DYNAMICS

Nonlinear modeling and analysis of rotors supported
by magnetorheological squeeze film journal bearings

Airton Nabarrete . Gustavo de Freitas Fonseca

Received: 2 April 2020 / Accepted: 15 September 2020 / Published online: 14 October 2020

� Springer Nature B.V. 2020

Abstract The driver coupled to a driven system

through mechanical couplings is very common in

rotating machinery. These couplings can present

angular and parallel misalignments with more or less

degree due to manufacturing tolerances or mainte-

nance proceedings. Theoretical and experimental

analyses have been published demonstrating the

effects of rotor misalignment and the vibration stabil-

ity of rotor systems. In this work the nonlinear

formulation of a magnetorheological fluid journal

bearing is included in the finite element model that

evaluates the nonlinear responses of a complete rotor

system subject to rigid coupling misalignment. The

modified Reynolds equations for Bingham viscoplas-

tic materials are implemented in the finite element

procedures to evaluate the nonlinear hydrodynamic

reaction forces acting on the bearing positions. The

finite element formulation for the shaft-line and

mechanical couplings is based on the Timoshenko

beam theory. Misalignment forces are calculated and

included in the equations of motion. The nonlinear

dynamic responses are calculated by the modified

Newmark method incorporating the Newton–Raphson

iteration method to find the equilibrium position at

each time step. Bifurcation analysis demonstrates the

influence of misalignment to obtain periodic and

period-doubling orbit for the center position of the

rotor. Results are demonstrated through displacements

versus time and frequency responses.

Keywords Rotor misalignment � Nonlinear
rotordynamics � Magnetorheological squeeze film �
Modified Newmark method � Bifurcation

1 Introduction

Misalignment and unbalance are common disturbance

sources in rotating machines that promote anticipated

faults in oil-film journal bearings. While the misalign-

ment comes from the mechanical assembly of rotating

shafts, like the coupling of a driver to a driven rotating

system, the unbalance is always present after the

machine turning or milling of a manufactured rotating

part. Both defects can generate oscillations of the shaft

inside the oil-film journal bearing resulting in varia-

tions of the pressure distribution and consequently in

bearing reaction forces and moments. Recently mag-

netorheological (MR) fluids have been developed to

be incorporated in journal bearings with the promise of

controlling these rotor oscillations by changing stiff-

ness and damping coefficients with an applied external

magnetic field.
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It is important to take in account the nonlinear

phenomena caused by fluid-film dynamic instability.

The occurrence of rotor lateral self-excited vibrations

like whirl and whip arises from the nonlinear behavior

of the fluid [1, 2], where the unstable operation or the

high-level vibration of the system contributes to the

potential damage of the rotating machinery. Castro

et al. [3] studied these instabilities in rotor-bearing

system considering a nonlinear force model. Jing et al.

[4] considered the nonlinear model proposed by

Capone to analyze the nonlinear dynamic behavior

of bearings, taking into account the oil-whip phe-

nomenon. Wang et al. [5] analyzed the bifurcation

behavior of a flexible rotor supported by two fluid-film

journal bearing. Irannejad and Ohadi [6] have

expressed the pressure distribution with the effects

of the squeeze film and obtained the hydrodynamic

forces by the use of numerical integrations in axial and

circumferential directions. Adiletta [7] observed the

appearance of chaotic motions for rigid rotors sup-

ported by short journal bearings.

Considering the dynamic behavior promoted by the

mechanical coupling misalignment Xu andMarangoni

[8, 9] developed a complete model of a driver shaft

coupled to a driven system using the method of

component mode synthesis and compared the results

with experimental ones. In another analysis of this

problem, Al-Hussain [10] considered the angular

misalignment of a flexible coupling to connect two

rotor segments supported by hydrodynamic bearings.

Sekhar and Prabhu [11] evaluated the force and

moment due to standard parallel and angular misalign-

ments at coupling locations using a higher order finite

element model. The presence of a second order

harmonic in the response was demonstrated in their

work by performing a linear finite element analysis.

Pennacchi et al. [12] studied the ratios between higher

order harmonic components and synchronous vibra-

tions. They observed that superharmonic components

are the most remarkable nonlinear effects caused by

coupling misalignment in rotors.

The nonlinearity of the complete rotor-bearing-

coupling system arises from the oil film forces acting

on the bearing. Although these nonlinear oil film

forces act locally at the bearing positions on the rotor,

their effects are global due to the general coupling of

the system [13]. Aiming at analysing the nonlinear

behavior of the complete rotor-bearing-coupling sys-

tem a finite element (FE) model is proposed in this

research. The radial and angular misalignments of a

rigid coupling cause nonlinear vibrations to the rotor

due to the reaction forces produced by the squeeze film

bearings. In this work, the change in dynamic

responses due to the use of magnetorheological

squeeze films (MRSF) in the bearings is also analyzed,

as presented by the authors in a previous work [14].

The modified Reynolds equations for a viscoplastic

Bingham material are derived to determine the fluid-

film pressure distribution as previously done by Wang

et al. [15]. The magnetic pull force is calculated

considering the behavior of MRSF as described by

Tichy [16]. In this work the FE model of the shaft-line

considers the Timoshenko beam theory and allows

different sections for the shaft segments. Masses and

inertias of a disk are added to the node where it is

positioned. Centrifugal forces are calculated for the

disk unbalanced mass considering the orientation with

respect to the turning phase reference. Newmark’s

implicit method is used in this work to numerically

solve the equations of motion. Due to the nonlinear

reaction forces from the MRSF in the bearings the

common Newmark method could not guarantee the

rotor dynamic equilibrium and a correction process

was done by the Newton–Raphson method for each

time step.

2 Finite element model of the rotor system

The complete rotor-bearing-coupling system is com-

posed of two shaft segments connected by the rigid

coupling and supported by squeeze film journal

bearings. The one-dimensional finite element formu-

lation is considered for the shafts allowing different

properties to be chosen in the case of a stepped rotor

modeling. The beam finite element having only

flexural deformations are formulated and imple-

mented to obtain the stiffness, mass and gyroscopic

matrices. The Timoshenko beam theory is considered

by taking into account the shear deformation and

rotary inertia effects. In this work, analysis of axial and

torsional deformations are not considered.

As depicted in Fig. 1, elevation and plan views are

represented by the orthogonal planes y-z and x-z,

respectively, with z-axis being the spinning axis. Each

finite element node along the shaft has four degrees of

freedom (DOFs), being two of them the transverse

displacements u, v, along the x- and y-axes,
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respectively, and more two angular displacements ov
oz,

ou
oz, about the x- and y-axes, respectively.

The displacement vector qe for each element is

qe ¼ u1;
ou1
oz

; v1;
ov1
oz

; u2;
ou2
oz

; v2;
ov2
oz

� �T
ð1Þ

where the superscript e stands for the element number.

The assumption of small shaft bending in rotordy-

namics problems brings linearized equations of

motion for the beam finite element applied to the

rotating shaft. For the constant rotational speed _u,
these equations of motion are

Me €qe þ ð _uGe þ CeÞ _qe þKeqe ¼ Qe þWe ð2Þ

where qe andQe are 8x1 vectors andMe, _uGe,Ce and

Ke are 8x8 matrices.

The expression (2) is derived from energy princi-

ples as documented in previous publications [17, 18]

and not repeated here. The matrices and vectors are

typical for one-dimensional elements:Me is a positive

definite symmetric matrix derived from the kinetic

energy representing the mass/inertia; _uGe is a real

skew-symmetric matrix derived from the rotational

kinetic energy representing the conservative gyro-

scopic effect;Ke is a positive semi-definite symmetric

matrix derived from the strain energy representing the

elastic stiffness; Ce is proportional to the stiffness

matrix representing the damping; Qe is a force vector,

which includes all the excitation forces acting on the

shaft element; We is the element static weight.

For calculating the static weight, gravity accelera-

tion values are considered for the translational shaft

element DOFs in the form

We ¼ Me gx; 0; gy; 0; gx; 0; gy; 0
� �T ð3Þ

The system equations of motion are obtained by

assembling the equations from the shaft elements

together with the ones from other essential compo-

nents. The rotor disc is modeled as a simple lumped

mass element with properties of mass and polar

moments of inertia. The coupling that connects two

shaft segments has also the properties of mass and

polar moments of inertia, but it is considered a special

element due to the additional properties required, such

as misalignment of the angular and radial coupling,

which will be better described later in the Sect. 4. The

lumped masses calculated from the disc or coupling

properties are added directly to the degrees of freedom

of the corresponding model nodes. In this work, the

bearing is defined as an interconnection component

between a shaft element node and the ground. It does

not introduce additional DOFs to the model, but

promote the rotor system support with forces which

are nonlinear in nature. Besides the bearing nonlinear

forces, the global mathematical model have also

forces coming from the mechanical coupling

misalignment, mass unbalance and static weight of

the rotor.

The assembled equations of motion for the rotor-

bearing-coupling system is represented by

M €qþ ð _uGþ CÞ _qþKq ¼ Fb þ Fcoupl þ Funb þW

ð4Þ

where all the global matrices are real and assembled

from the associated components. The global displace-

ment vector is denoted by q in expression (4), _u
represents the rotational speed of the rotor, and Fb,

Fcoupl, Funb andW are, respectively, the vectors of the

nonlinear forces of the oil film, excitation forces due to

misalignments of the rigid coupling, unbalance forces

and rotor weight.

3 Nonlinear forces of hydrodynamic bearing

The fluid pressure of the squeeze film bearing prevents

contact between the rotating journal and the bearing

surface. A short journal-bearing scheme is considered

and the calculation of the distributed pressure in the

cylindrical journal is performed by solving the sim-

plified Reynolds equation. It is necessary to consider

Fig. 1 One-dimensional finite element description with local

coordinate planes x-z and y-z
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the imposed variational inequalities for nonlinear

problems like elastic contact, fluid lubrication, etc.

For fluid lubrication of the journal bearing the solution

must satisfy certain restricted requirements in the

solution domain, i.e. if negative values are calculated

for the fluid film pressure, representing the cavitation,

a restriction of null values may be applied.

The integration of the pressure distribution along

the circumferential coordinate and the width is a

procedure used to obtain the equivalent reaction forces

of the bearing in the x and y directions. These forces

depend on the radial displacements and velocities of

the journal inside the bearing, what demands an

iterative process to determine the dynamic equilibrium

of the moving parts. The accuracy of nonlinear oil-film

forces and their derivatives affects not only the

convergence of the numerical solutions, but also the

analysis of stability and bifurcation.

Wada et al. [19] used mathematical models and

experiments to state that an electrorheological (ER)

fluid can be described by the Bingham material model

since it presents a viscoplastic characteristic repre-

sented by two parameters: yield shear stress and

viscosity. The yield shear stress s0 is proportional to

the square of the applied electric field. When the

magnitude of the deviatoric stress tensor is below this

shear stress, the material behaves as rigid. On the other

hand, above the yield shear stress, the ER behaves like

a quasi-Newtonian fluid.

Provided that this work deals with magnetorheo-

logical fluid (MR), it is important to give some

attention regarding the differences and similarities

between ER and MR fluids. MR fluids often exhibit

field-induced shear stress with two times magnitude

compared with the ER fluid [20]. Additionally, it is

stated that conductivity and electric breakdown can be

neglected inMR fluids, whilst in ER such effects are of

great relevance. However, Ginder et al. discussed that

when the magnetic field is in the linear or low-field

regime, the calculation of fields and forces in MR

fluids is analogous to that for ER fluids.

Given that context, this work proceeds with the

modification of Reynolds equation in the velocity

profile and pressure distribution by treating the MR as

a Bingham viscoplastic fluid in the same sense as done

by Zapomel and Ferfecki [21]. This analysis is also

detailed for a rigid rotor byWang et al. [22], where the

mathematical model considers the short bearing

approach with embedded MR fluid and different

configurations for electric currents induced in the

bearings. In another research Wang et al. [15]

presented the whole Reynolds equation deduction

and the particularization to the viscoplastic Bingham

material. The expressions for the pressure distribution

were deduced concerning the short bearing approach

to construct the finite element model of a rotating

system supported by a single MR squeeze film journal

bearing.

According to literature [15, 16], the MR fluid

viscosity is considered as depicted in Fig. 2. Thus, the

dynamic viscosity of the MR fluid is written as

l ¼ lp ; if _c� s0
l� lp

l ¼ lf þ
s0
_c
; if _c[

s0
l� lp

ð5Þ

where lp is the plastic viscosity and lf is the

Newtonian viscosity.

The yield shear stress s0 is nearly proportional to

the square of the applied electric field H in the journal.

For a thin gap, H is the applied voltage difference

between the two surfaces of rotor and bearing divided

by the gap [16]. An estimation is given by s0 ¼ AH2,

where A is the electrorheological fluid property, with

values in the range of 10�10 to 10�9 N=V2.

It is remarked by Wang et al. [15] that lp � lf .
During the simulations performed by Bompos and

Nikolakopoulos [23], lp ¼ 100 lf has been adopted.

The authors of the present work could not find any

reference regarding a lower limit between the lp and
lf relation. That said, in order to avoid convergence

issues for the simulations in this work it has instead

adopted lp ¼ 20 lf since this proportion still covers

Fig. 2 Bingham fluid biviscosity model adapted from [15]
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the relation proposed by Wang et al. [15]. H is

approximated by H ¼ IN=2h, where I is the electric

current, N is the number of coil turns and h is the film

thickness.

The Reynolds equation for journal bearings can be

expressed as

R

L

� �2
o

oz
h3

op

oz

� �
¼ oh

ou
þ 2

oh

os
ð6Þ

where p is the fluid film pressure, u is the circumfer-

ential angle, z is the axial coordinate of calculation,

s ¼ _u t is the dimensionless time.

The necessary bearing parameters are the radial

clearance c, bearing length L, bearing radius R and

fluid film dynamic viscosity as presented in expression

(5). As depicted in Fig. 3, the auxiliary coordinate

system X-Y is positioned with the Y axis in the same

direction where the maximum and minimum fluid film

thickness are measured. The journal movement inside

the bearing produces different trajectories depending

on the dynamics of the rotating shaft. Any orbit

described by the journal center are inside the whirl

circle. The rotation of the auxiliary coordinate system

relative to x-y is measured by the angle h. The position
of the journal inside the bearing is described by the

eccentricity eb and the angle h.
Solving the Reynolds equation for the MR squeeze

film journal bearing the fluid film pressure p is written

as

pðh; zÞ ¼ � 6 l _u eb sin h

c2 1þ eb cos hð Þ3
z2 � L2

4

� �
;

if _c� s0
l� lp

pðh; zÞ ¼ �
6 _u eb sin h½ _c lf þ s0ðHÞ�

c2 1þ eb cos hð Þ3
z2 � L2

4

� �
;

if _c[
s0

l� lp

ð7Þ

In this work the pressure distribution is expressed as

presented by Wang et al. [15] by adopting the Gumbel

boundary conditions, but neglecting the cavitations

effects. Based on Irannejad’s conclusions [6], the

atmospheric pressure can be considered as the mini-

mum value for the pressure distribution of squeeze oil

films. Then the dynamic pressure presented in expres-

sion (7) is considered in the form

p ¼ patm; if 0� h\p

p ¼ pðh; zÞ; if p� h\2p
ð8Þ

The hydrodynamic forces in radial and tangential

directions are

Fr ¼ R

Z L=2

�L=2

Z 2p

p
pðh; zÞ cos h dh dz

�����
�����

Ft ¼ R

Z L=2

�L=2

Z 2p

p
pðh; zÞ sin h dh dz

�����
�����

ð9Þ

In addition, the magnetic pull force appears due to

eccentricity between the two magnetic poles: the

rotating shaft and the bearing [16]. The magnetic pull

force direction aligns with the radial hydrodynamic

forces. Then, the expression of the magnetic pull force

is written as

Fm ¼ lf U
2
m

pRL ebffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � e2bÞ

3
q ð10Þ

where Um the magnetic motion force.

Neglecting the magnetic field outer the journal

bearing, the magnetic motion force can be calculated

by Um ¼ IN. Besides, the eccentricity eb is a function

of the relative positions (horizontal and vertical)

between the shaft and the bearing, which can be

determined by eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

Fig. 3 Cross-sectional view of the journal bearing and the

auxiliary coordinate system X-Y
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Thereby, the radial effective force can be calculated

by subtracting the hydrodynamic radial force and the

magnetic pull force

Freff ¼ Fr � Fm ð11Þ

Calculating the forces Fx and Fy from the radial

effective force and the tangential hydrodynamic forces

in accordance with the coordinate system depicted in

Fig. 3, it follows

Fx ¼ �Freff cosw� Ft sinw

Fy ¼ �Freff sinwþ Ft cosw
ð12Þ

where, w ¼ arctan ðy=xÞ.
The Jacobians of hydrodynamic forces Fxðx; y; _x; _yÞ

and Fyðx; y; _x; _yÞ with respect to the journal displace-

ments x, y and velocities _x; _y are calculated firstly, and

the computational cost spent on the Jacobians is much

less than those spent on the oil film forces themselves.

4 Modeling of rigid coupling misalignment

The term angular misalignment is easily understood in

the literature, although the term offset is not always

clear and correct as used [12]. Related to the

misalignment concept, offset does not represent the

distance between two parallel shafts not coaxial,

which could be understood as fixed in the space. The

offset occurs when there is a wrong static alignment

between the two rotors to be coupled, many times due

to the flanges that are wrongly machined and have

wrong distributed bolt holes. In this case, when both

flanges are mounted a radial rotating misalignment is

imposed. As a consequence, it is necessary to take into

account the effect of rigid coupling misalignment on

the static centerline and consider that the reaction

forces of the bearing are changing owing to the

rotation of the shaft, or in other words, to the

orientation of the misalignment with respect to the

phase reference.

In the finite element model of the connected shafts,

the mounted coupling flanges are represented in the

connection node between both shaft segments. Look-

ing for imperfections in this coupling one possible

representation of an imperfect machining causing

angular and radial misalignments is drafted schemat-

ically in Fig. 4a and a wrong mounting of the coupling

flanges in Fig. 4b. The draft views are too much

simplified and cannot give the idea of all possibilities

for the imperfect machining or the wrong mounting of

the flanges. The machining of one flange of the

coupling is not necessarily executed together with the

other one. Then it is possible to have bolt holes

machined in any axial angle when comparing one

flange to the other. Therefore, not only the magnitudes

of the misalignments Dr and Da have to be considered,
but also the angles /r and /a, where the radial and

angular magnitudes occur relative to an angular

reference. Then radial and angular misalignments are

conveniently formulated to impose the generalized

displacements Dq coupl, which are function of the

angular position h ¼ _ut of the shaft as follows

Dq couplðhÞ ¼ Dq couplð _utÞ ¼

1 0

0 i

i 0

0 1

2
6664

3
7775

Dr ei/r

Da ei/a

( )
eiut

ð13Þ

The imposed generalized displacements cause static

reaction forces RðhÞ on the bearings that can be

calculated by the static equilibrium of the free-body

composed by shaft segments and coupling as

RðhÞ ¼ K qþ Dq couplðhÞ
� �

þW ¼ Kqþ FcouplðhÞ þW

ð14Þ

where FcouplðhÞ is the equivalent force vector due to

the coupling misalignment.

The static reactions are then calculated considering

the partitioning of the stiffness matrix [24] and re-

ordering the degrees of freedom of the nodes and

grouping the free and the constrained ones as

0

RðhÞ


 �
¼

Kff Kfc

Kcf Kcc

� �
qf

qc


 �
þ

FcouplðhÞf
0


 �
þ

Wf

Wc


 �

ð15Þ

where FcouplðhÞc ¼ 0, because the coupling is not in

the same position of bearings.

Firstly, considering the expression (15), the static

free displacements of the rotor shall be solved as

function of its angular position h. Then the reaction

forces actuating on the rotor at the bearing positions

are calculated. Due to the presence of the coupling

misalignment, these bearing reactions have generally

both x and y components which are 1x periodical.
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5 Dynamical behavior of the rotor-bearing-

coupling system

The nonlinear equations of motion of the rotor-

bearing-coupling system at the operating speed are

rewritten as

M €qþ ð _uGþ CÞ _qþKq� Fbðq; _qÞ ¼ Fcoupl þ Funb þW

ð16Þ

where, in the right side of expression (16), the sum of

forces is also considered as Fext.

The response of the state variables for any time

t considers the equilibrium of all forces actuating on

the nonlinear dynamic system. Typically, responses of

the highest vibration modes of the numerical model

are physically meaningless, insignificantly small, but

potentially lightly damped. However, the shortest

natural period governs the stability of numerical

integration methods. The explicit numerical integra-

tion methods can artificially add numerical damping to

suppress instabilities with the higher vibration mode

responses while the implicit numerical methods can be

unconditionally stable [25].

The Newmark method is used in this work for

solving the nonlinear equations numerically. This

implicit method is quite popular for the numerical

integration of linear equations of motion in structural

dynamics [24]. However the nonlinear behavior of the

system brings some known difficulties for implicit

methods. Note that since differentiation amplifies high

frequencies of the dynamic model, changes in the

displacements q and velocities _q from time ti to time

tiþ1 will be much smoother than the corresponding

changes in the accelerations €q. Therefore, it is not

sufficient to consider the equilibrium for each time

step of calculation, but the differential equilibrium of

the system considering the time step Dt, in the form

MD€qi þ ð _uGþ CÞD _qi þKDqi � Df inl ¼ DFi
ext

ð17Þ

where the finite difference relationships are

Df inl ¼ Fbðqiþ1; _qiþ1Þ � Fbðqi; _qiÞ
¼ Fbðqi þ Dqi; _qi þ D _qiÞ � Fbðqi; _qiÞ

D€qi ¼ €qiþ1 � €qi

D _qi ¼ _qiþ1 � _qi

Dqi ¼ qiþ1 � qi

ð18Þ

The incremental acceleration and velocity are evalu-

ated as

D€qi ¼ 1

bDt2
Dqi � 1

bDt
_qi � 1

2 b
€qi

D _qi ¼ C
bDt

Dqi � C
b
_qi þ Dt 1� C

2 b

� �
€qi

ð19Þ

The Newmark parameters b ¼ 1=4 and C ¼ 1=2 were

considered because of the numerical stability [26]. The

substitution of expression (19) into expression (17),

then re-grouping terms and solving for the increment

in displacements, it follows

1

bDt2
Mþ C

bDt
ð _uGþ CÞ

� �
Dqi ¼ 1

bDt
Mþ C

b
ð _uGþ CÞ

� �
_qi

þ 1

2b
M� Dt 1� C

2 b

� �
ð _uGþ CÞ

� �
€qi þ Df inl þ DFi

ext

ð20Þ

The incremental displacement Dqi is then obtained as

follows

Fig. 4 a Draft with angular and radial measurements of the flange faces considering the same plane of reference. b Correspondent

wrong mounting for the coupling
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Dqi ¼ K̂�1 Ĉ _qi þ M̂€qi þ Df inl þ DFi
ext

� 
¼ K̂�1f i

ð21Þ

where,

K̂ ¼ 1

bDt2
Mþ C

bDt
ð _uGþ CÞ þK

� �

Ĉ ¼ 1

bDt
Mþ C

b
ð _uGþ CÞ

� �

M̂ ¼ 1

2 b
M� Dt 1� C

2 b

� �
ð _uGþ CÞ

� �
ð22Þ

The dynamic system described in expression (17) has

a local nonlinearity due to the not negligible nonlinear

bearing force increment Df inl. This fact is observed by

the dependence of f i on the incremental displacement

Dqi and the incremental velocity D _qi, as described in

the expressions (18). The common Newmark method

cannot obtain the response of the system at time tiþ1

directly, but is possible to improve it. The prediction

value for the next step can be taken as the initial value

and then a correcting process is done by the New-

tonRaphson method. Here, the Newton–Raphson

algorithm is an efficient method to solve the expres-

sion (21), calculating the incremental displacement.

The iterative algorithm proceeds as follows:

Step 1 The initial value for Dqi is denoted Dqi0 and

is arbitrarily set to zero. The corresponding value for f i

is

f̂
i
Dqi0
� �

¼ DFi
ext þ Ĉ _qi þ M̂€qi ð23Þ

Step 2 The Newton–Raphson recurrence relation is

simply

Dqinþ1 ¼ K̂
�1
f̂ i Dqin
� � ð24Þ

where,

f̂
i
Dqin
� �

¼ f̂
i
Dqi0
� �

þ Fb qi þ Dqin; _q
i þ D _qin

� �
� Fb qi; _qi

� �
ð25Þ

and

D _qin ¼
C

bDt
Dqin �

C
b
_qi þ Dt 1� C

2 b

� �
€qi ð26Þ

Step 3 Expression (24) is iterated upon until

Dqinþ1 � Dqin
�� ��\�, with � representing the tolerance

for the convergence. In this work, � was selected as

1� 10�6m, which is very low in comparison with the

bearing dimensions or clearance. The convergence of

this form of the Newton-Raphson method depends on

the local smoothness of Fb qi; _qið Þ. Convergence can

be improved, for a particular time step, by making Dt
smaller.

After obtaining the solution for Dqi, the displace-

ments and velocities are updated with

qiþ1 ¼ qi þ Dqi

_qiþ1 ¼ 1� C
b

� �
_qi þ Dt 1� C

2 b

� �
þ C
bDt

Dqi

ð27Þ

The accelerations are updated with the expression (16)

as

€qiþ1 ¼ M�1 Fb qiþ1; _qiþ1
� �

þ Fiþ1
ext � ð _uGþ CÞ _qiþ1 �Kqiþ1

� �
ð28Þ

In this work the rotor has proper boundary conditions

and the rigid body motions are disabled. Then the

finite element model of the constrained structural rotor

system has positive definite matrices for stiffness and

mass [24]. Also, it is important to note thatK does not

depend onDqi. The matricesK andMmay be inverted

or factorized only once at the beginning of the

simulation. The equilibrium of the nonlinear system

is obtained by iteration with the NewtonRaphson

method where the prediction value of the next step is

taken as the initial values, and then the correcting

process is implemented.

6 Numerical results

In this work, two simulations are performed using the

numerical methods described in Sect. 5. In the first one

the radial and angular misalignments of a rigid

coupling promote nonlinear responses using common

squeeze film journal bearings to emphasize the

efficacy of the numerical method. In the second

analysis the MR fluid properties are considered and

differences in nonlinear responses for an unbalance

mass are noticed when considering or not the electro-

magnetic induction in the journal bearings. In order to

promote the best performance to the simulations the

rotors are modified geometrically from one case to the

other. However, the two rotors are composed by

flexible shafts, for which the density of mass is
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7800 kg=m3
, the Youngs elastic modulus is

206:7GPa, the Poisson ratio is 0.3 and the proportional

damping to stiffness value is 25� 10�5.

6.1 Radial and angular misalignment

The rotor configuration proposed to the first analysis is

showed in Fig. 5, where two segments with the same

length are connected by a rigid coupling. The shaft and

bearing dimensions and parameters are presented in

Table 1. All the four cylindrical bearings have the

same dimensions.

Different amounts of radial and angular misalign-

ment for the rigid coupling have been proposed. One

simulation of the dynamic response of the rotor-

bearing-coupling system is performed at the rotating

speed of 100 rad=s. Figure 6a, b depict the stationary

orbits of the journal near the first bearing, considering

the radial and angular misalignments, respectively. It

is important to highlight that there is no imbalance

present in this first simulation case. In both figures the

stationary orbits start as periodic and reach the double

period behavior. Moreover, even for a small amount of

misalignment, it is possible to preview the existence of

higher order harmonics, either by the deformations of

the orbit or by the vertical displacement variations.

Experiments showing these harmonics have been

presented by Xu and Marangoni [9]. It is possible to

observe the influence of gravity by the small vertical

displacement and the elongated shape of the orbits

when the low misalignment intensity is applied. In

opposite, for higher misalignment intensity the verti-

cal displacement of the orbit increases in comparison

to the horizontal one changing drastically the orbit

geometric form.

To extend the demonstration of the nonlinear

behavior the bifurcation analysis was performed as

showed in Fig. 7. The bifurcation diagram was

obtained with the variation of the radial misalignment

intensity from Dr ¼ 0:1 lm to Dr ¼ 12 lm, consider-
ing the rotating speed of 500 rad=s. In this figure, the

maximum positive horizontal displacements for the

stationary orbits were taken, considering the shaft

position near the first bearing. The periodic orbit

behavior occurs for low intensity values of radial

misalignment. A bifurcation appears with

Dr ¼ 3:8 lm, approximately. Above this intensity

value the period-doubling bifurcation is observed.

The quasi-periodic regime of the journal is denoted for

the intensity range between Dr ¼ 9:7 lm and

Dr ¼ 12:0 lm. By increasing this intensity above

Dr� 12:0 lm, the quasi-periodic regime turns to a

periodic behavior again.

6.2 Unbalance mass

In this second analysis the two segments of the rotor

are uncoupled and only the left segment is considered.

The dimensions were changed too. The two bearings

are specified as MR squeeze film journal bearings. The

shaft is discretized with five elements instead of three

in the former analysis and supports a rigid disk at the

right end, as depicted in Fig. 8. The dimensions and

parameters are presented in Table 2.

The waterfall diagram in Fig. 9 has been deter-

mined for the Bearing 2. Over the 1:0� line there is a

peak at 1600 rpm or 27Hz, corresponding to the

critical speed of the system. However, the 0:5� line

Fig. 5 Two segments of rotors connected by rigid coupling

Table 1 Rotor dimensions and parameters for misalignment

analysis

Property Symbol Value Unit

Total rotor Length Ls 1.16 [m]

Shaft diameter Ds 20� 10�3 [m]

Bearing diameter Db 23� 10�3 [m]

Bearing length Lb 14:0� 10�3 [m]

Bearing pad 360 ½	�
Radial clearance c 0:42� 10�3 [m]

Dynamic viscosity lf 0.2 [Pa s]
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presents higher displacements above 3600 rpm with

values at least 3 times the ones observed in the critical

speed.

For a better understanding of the dynamic behavior

of the rotor it has been done a run-up simulation, when

the angular speed is increased systematically. Fig-

ure 10 shows the vertical displacement in Bearing 2 as

a function of the rotation speed. The first peak occurs

at 27 Hz (1600 rpm) approximately, which is the

critical speed previously demonstrated in the waterfall

diagram. After that, the system stabilizes in a rotation

speed window corresponding 40–70 Hz. However,

when the rotation speed reaches 70 Hz (4200 rpm) the

vertical displacements starts to increase, reaching the

whip instability above 80 Hz (4800 rpm).

The time response has been determined at 800 rpm

for 1.0 A of electric current. The vertical displace-

ments of bearing 2, which represent the MR squeeze

film journal bearing is shown in Fig. 11. The response

represents a nonlinear behavior, since presents a

variable period. On the other hand, the displacement

amplitude demonstrates stabilization in 0:8� 10�6 m

after 0.3 s. The time scale in Fig. 11 has been

expanded as depicted in Fig. 12 to see details of the

nonlinear transients.

For the same bearing operating with no electric

current, the orbit with a quasi-elliptical shape is

concentrated in the fourth quadrant, as showed in

Fig. 13. When the electric current equals to 1:0A the

orbit takes a circular shape and its center is placed at

the origin of the coordinate system. A reduction in

horizontal and vertical displacements is also observed

when electrical currents are applied to the MR system.

Finally, a run-up frequency response with I = 1.0

A and the unbalance increased of 10 kg m is demon-

strated in Fig. 14. An increase of the system critical

speed to 33 Hz or 2000 rpm is noted with the

application of the electric current, which is 23%

higher than the value observed when no electric

current applied. Thus, it can be assumed that the

electromagnetic induction contributed to the increase

of the system stiffness. In addition, the oil whip

instability is no longer noticeable in the frequency

range of 0 to 100 Hz.

Fig. 6 a Radial and b angular misalignment in bearing 1 for _u ¼ 100 rad=s

Fig. 7 Bifurcation diagram for radial misalignment considering
_u ¼ 500 rad=s

Fig. 8 One segment of rotor with a rigid disk
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7 Conclusions

In this work, the nonlinear responses of a rotor system

due to the radial and angular misalignments in the

rigid coupling were performed by an improved

Newmark method, with a local iteration using the

NewtonRaphson method. The proposed method is

considered as unconditionally stable and had the

iteration executed only on the degrees of freedom

related to the nonlinear forces acting on the bearings.

The nonlinear steady-state shaft orbits were obtained

for different intensities of radial and angular misalign-

ments and the bifurcation analysis was used to identify

the complex nonlinear behaviors such as periodic,

period-doubling and quasi-periodic. Therefore, it is

necessary to take into account the effect of rigid

Table 2 Rotor dimensions

and parameters for analysis

with MR bearings

Property Symbol Value Unit

Shaft diameter Ds 63:5� 10�3 [m]

Shaft length Ls 0.2 [m]

Disk mass md 98 [kg]

Disk diameter Dd 0.4 [m]

Disk length Ld 0.1 [m]

Unbalance mass mu 0.05 [kg]

Eccentricity of unbalance e 0.1 [m]

Journal diameter Db 66:7� 10�3 [m]

Journal length Lb 100:0� 10�3 [m]

Radial clearance c 0:01� 10�3 [m]

MR Newtonian viscosity lf 0.09 [Pa s]

Number of turns in the wire coil N 570 [–]

Fig. 9 Waterfall diagram with no current applied Nonlinear effects
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Fig. 10 Run-up frequency response with no current applied Nonlinear effects

Fig. 11 Time response for the node 4 (I ¼ 1:0A and 800 rpm)

Fig. 12 Detail of the nonlinear transient response for the node 4 (I ¼ 1:0A and 800 rpm)
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coupling misalignment on the reaction forces of the

bearings, considering that these forces are changing

owing to the rotation of the shaft, i.e. to the orientation

of the misalignment with respect to the phase

reference.

When supported by MR squeeze film journal

bearings the rotor was analyzed for unbalance forces.

Without the electric current the cascading diagrams

show the critical speed at 1600 rpm and the emergence

of whip instability at 3200 rpm. The presence of

gravity acceleration delays the onset of fluid-induced

instability. In the sequence the electromagnetic induc-

tion in the MR squeeze film bearings demonstrate the

systematic reduction of the displacement amplitudes.

Also the shape of the orbits is no longer elliptical as in

the current-free case, but circumferential after the

actuation of electric currents. The higher the applied

electric current the lower are the displacement ampli-

tudes as well as the orbits shape become more

circumferential. This behavior is noted in the exper-

imental results obtained by Wang, Meng and Hahn

[22]. Finally, the simulation of the run-up in this work

shows that current of 1.0 A provides an increase in

critical rotation to 33.3 Hz and a reduction in response

amplitudes. Furthermore, this phenomena can be

observed in the simulations performed by Zapomel

and Ferfecki [21].

Fig. 13 Stationary orbits for the node 4 (800 rpm)

Fig. 14 Run-up frequency response with I ¼ 1:0A
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