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Abstract The paper deals with the study of effect of

gravity modulation on double-diffusive convection in

a dielectric liquid for the cases of rigid-rigid and free-

free boundaries. Using a modified Venezian approach,

expressions for the Rayleigh number and its correction

are determined. Fourier–Galerkin expansion is

employed for a weakly nonlinear stability analysis

and this results in a fifth-order Lorenz system that

retains the structure of the classical one in the limiting

case. A local nonlinear stability analysis using the

method of multiscales leads to the time-periodic

Ginzburg–Landau equation from the time-periodic

generalized Lorenz system and the numerical solution

of this simpler equation helps in quantifying unsteady

heat and mass transports. Influence of various non-

dimensional parameters (Lewis number, solutal Ray-

leigh number, electrical Rayleigh number and Prandtl

number), amplitude and frequency of gravity

modulation on onset of convection and heat and mass

transports is discussed. The study reveals that the

influence of gravity modulation is to stabilize the

system and enhance heat and mass transports. The

results from free-free boundaries are qualitatively

similar to that of rigid-rigid boundaries. Further, it is

shown that in the case of free-free boundaries the heat

and mass transports are less compared to those of

rigid-rigid boundaries.
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List of symbols

Latin symbols

A, B, C, L, M Amplitudes

D Electric displacement

E Electric field

E0 Root mean square value of the

electric field at the lower surface

g Acceleration due to gravity (0,0,-g)

h Depth of the fluid layer

Le Lewis number

Nu Nusselt number

P Dielectric polarisation

Pr Prandtl number
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Casilla 7 D, Arica, Chile

e-mail: ckanchana@academicos.uta.cl

123

Meccanica (2020) 55:2003–2019

https://doi.org/10.1007/s11012-020-01241-y(0123456789().,-volV)( 0123456789().,-volV)



p Pressure

q Velocity vector

RE Electrical Rayleigh number

RT Thermal Rayleigh number

RS Solutal Rayleigh number

T Temperature

Sh Sherwood number

S Solute concentration

t Time

Greek symbols

aT Thermal diffusivity in vertical direction

aS Solute diffusivity in vertical direction

ve Electric susceptibility

b1 Thermal expansion coefficient

b2 Coefficient of solute expansion

d Amplitude of gravity modulation

DS Solute difference across the fluid layer

r2
Laplacian operator ð¼ o2

ox2 þ o2

oy2 þ o2

oz2Þ
w Stream function

� Amplitude of convection

e0 Electric permittivity of free space

er Relative permittivity

X Frequency

jS wave number

l1 Reference viscosity

jT Effective thermal diffusivity in horizontal

direction

r Differential operator

U Electric scalar potential

W Dimensionless stream function

q0 Reference density

q Fluid density

Subscripts

c Critical value

b Basic value

Superscripts

� Dimensionless quantity

0 Perturbed quantity

Tr Transpose

1 Introduction

In a horizontal layer of a Newtonian liquid the

convective instability of a liquid owing to time-

dependent gravity is of practical significance. From an

application perspective the regulation of convection is

very important and thermogravitational vibration

which is also called gravity modulation or g-jitter is

now understood to be an efficient way of controlling

instabilities. Specifically, in the instance of smaller

scale gravity condition, for example, in space labs

even the vibrations of extremely small amplitudes are

observed to have a significant say on the threshold of

the convective flow and on the amount of heat

transport [1–3]. The time-dependent gravitational

field plays a very important role in the large-scale

convection of the atmosphere. Mechanical vibration is

also a known tool for enhancing the rate of heat

transfer and this has gained lot of consideration in the

past few years ([4–8] and references therein). For the

purpose of taking examples for situations involving

electric fields and fluids, we find that pumps, gener-

ators and image-processing devices come handy.

Oscillating water column devices placed in onshore

or in deeper waters offshore are examples pertaining to

double-diffusive systems in a dielectric fluid involving

time-periodic oscillations [9, 10]. In these practical

devices study on convection and heat and mass

transports are important and is the motivation for the

present problem.

It was Gershuni et al. [11] who first provided a

theoretical framework for studying the effect of time-

dependent sinusoidally modulated gravitational field

on thermoconvective instability using free boundaries.

A mechanical analogy for the gravity modulated

thermoconvective instability was reported by Gresho

and Sani [12]. The effect of sinusoidally modulated

gravity on the convective system for physically

realistic free-top and rigid-bottom boundaries was

investigated by Gresho and Sani [12]. The influence of

gravity modulation when one of the parameters of the

conduction state depends on time was reported by

Gershuni and Zhukhovitskii [13] who used time-

periodic oscillations. In addition to sinusoidal modu-

lation, the effect of randommodulation on the stability

of the system was reported by Biringen and Peltier

[14]. Venezian [15] performed a linear stability

analysis for a thermally modulated system using a

perturbation method and he reported an expression for

threshold which had in it the influence of gravity

modulation parameters. Siddheshwar [16] showed that

the gravity modulated convective system could have a

series solution of the Ginzburg–Landau equation with
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a time-periodic coefficient. Recently, Siddheshwar

and Kanchana [17] and Siddheshwar and Meenakshi

[18] studied effect of three different wave-forms of

gravity modulation on Rayleigh-Bénard convective

system in nanoliquids. An ultimate conclusion from

these aforementioned works is that the effect of

gravity modulation is to regulate onset of convection

and heat transfer.

Controlling thermal convection and regulating heat

transfer in a system having a dielectric liquid as a

working medium is also a problem of utmost impor-

tance. In literature, thermal convective system in a

dielectric liquid is called electro-convection (EC) and

this problem can throw light on many engineering

applications. Turnbull [19] showed that in the system

of electro-convection stationary convection is pre-

ferred mode of onset. There are many other works that

are deal with dielectric liquids [20–28] under different

circumstances. The stabilizing influence of gravity

modulation in a dielectric liquid was reported by

Siddheshwar and Revathi [29].

A double-diffusive convection is one that describes

a form of convection that is driven by the presence of

two different substances which have different rates of

diffusion. An example of double-diffusive convection

is heat and salt in water. The sources of this field of

study are in oceanography, yet its applications are in

the fields such as growing crystals, convection in the

sun and the dynamics of magma chambers. The main

point to consider this type of instability is that heat

diffuses into water faster than salt. Two different types

of fluid motions that exists are ‘‘diffusive’’ type and

‘‘finger’’ type depending on whether the component

with the highest diffusivity has a stratification that is

stable or unstable. These two components affect the

density stratification in opposite senses. This means

that convection may occur even though overall net

density is stably stratified. Many interesting convec-

tive phenomena occur when such two components of

different diffusivities are present in a fluid layer.

Situations as these are not possible in a single-

component fluid.

An excellent review of the studies related to

double-diffusive convection has been reported by

Turner [30–32], Huppert and Turner [33] and Platten

and Legros [34]. Yu et al. [35] studied the effect of

gravity modulation on the stability of a horizontal

double-diffusive Newtonian fluid layer heated from

below and showed that the gravity modulation

destabilizes the system slightly when solutal Rayleigh

number is increased at the onset. In literature there are

many other works that deal with effect of gravity

modulation on double-diffusive convection in New-

tonian liquid ([36, 37] and references therein). There is

no such study involving a two-component dielectric

liquid. A literature survey shows that the works on

convection in dielectric liquids involve problems

mainly of Rayleigh–Benard thermoconvection with

no modulation of any sort. These invariably consider

the artificial free boundaries and not the realistic rigid

boundaries.

In this paper we consider double-diffusive convec-

tion in a dielectric liquid in the presence of time-

periodic gravity modulation. Diffusive type of fluid

motion is assumed and hence the highest diffusivity

(solutal) has a stratification that is stable. It is to be

mentioned here that the finger type of fluid motion that

results in a destabilizing density profile is excluded in

the present study. Further, the study of sub-harmonic

is excluded in the present paper. The primary motto of

the present paper is to study the impact of time-

periodic oscillations of the Rayleigh-Bénard configu-

ration on heat and mass transports in a two-component

dielectric liquid using linear, weakly-nonlinear and

local-nonlinear stability analyses. We first derive the

generalized Lorenz model using a weakly nonlinear

stability analysis. Using a linearized version of this

equation a linear stability analysis is made and

threshold Rayleigh number is determined in the

modulated problem. The analytically-intractable gen-

eralized Lorenz model is then reduced to the analyt-

ically-intractable Ginzburg–Landau equation using a

local nonlinear analysis. Focusing on stationary con-

vection and using the numerical solution of this

simpler non-autonomous equation (compared to the

non-autonomous generalized Lorenz model) the

impact of gravity modulation on heat and mass

transports is studied for the cases of free-free and

rigid-rigid boundaries.

2 Mathematical formulation

We consider two infinite horizontal and parallel planes

at z ¼ � h
2
and z ¼ h

2
and between these two planes an

electrically conducting liquid of depth, h, is confined.

We have taken Cartesian coordinates with z-axis
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vertically upwards and the origin at the center of the

layer. The layer is heated and salted from below to

maintain a constant temperature gradient, DT , and a

constant solutal gradient, DS, across the layer. The

infinite extent horizontal layer is subjected to time-

periodic gravity-aligned oscillations, and thus the

gravity term has an additional time-dependent term,

g0ðd;X; tÞ, where d is the amplitude,X is the frequency

and t is the time. The paper is restricted to low

frequency gravity modulation. The objective of the

paper is to study the influence of the frequency and the

amplitude on gravity modulation on the stability of

convection and heat and mass transports of the double-

diffusive system in a dielectric liquid. The physical

arrangement of the problemwith gravity modulation is

shown in Fig. 1.

For the study of stationary convection in an

dielectric liquid with gravity modulation the dimen-

sional governing equations are

r � q ¼ 0; ð1Þ

q0
oq

ot
þ ðq � rÞq

� �
¼ �rp � q½gþ g0ðd;X; tÞ�k̂

þ ðP � rÞEþ lr2q;

ð2Þ

oT

ot
þ ðq � rÞT ¼ aTr2T ; ð3Þ

oS

ot
þ ðq � rÞS ¼ aSr2S; ð4Þ

where q represents the density and using the Boussi-

nesq approximation this is written as:

q ¼ q0 1� b1ðT � T0Þ þ b2ðS� S0Þ½ �: ð5Þ

The electrical field equations for a dielectric liquid

under an AC electric field are

r� E ¼ 0; r � D ¼ 0; ð6Þ

where

D ¼ Pþ e0E; P

¼ e0Eðer � 1Þ and er ¼ e0r � ðT � T0Þe;
ð7Þ

In the Eqs. (1)–(7) the physical quantities that are

mentioned have their definition as given in the

nomenclature. The electrical field, E, is assumed to

be in sufficiently high oscillation rate and this leads to

the body force of free charges in the liquid unimpor-

tant. It is convenient to write e0r in terms of the electric

susceptibility, ve, as e
0
r ¼ ð1þ veÞ so that P ¼ e0veE

when e ¼ 0. Thus, in Eq. (7), we replace e0r by

ð1þ veÞ. In the paper we consider a two-dimensional

analysis in the xz� plane and hence the physical

quantities are independent of y-coordinate. It is thus

imperative that we are limiting ourselves to the study

of longitudinal rolls as a preferred pattern at onset.

The governing equations (1)–(7) are subjected to

the following boundary conditions in the basic state:

Case 1: Stress-free, isothermal and iso-solutal

concentration boundary condition

Fig. 1 Physical configuration of the problem
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ðu;wÞ ¼ ð0; 0Þ; ixz ¼ 0; T ¼ T0 þ DT; S ¼ S0 þ DS at z ¼ � h

2

ðu;wÞ ¼ ð0; 0Þ; ixz ¼ 0; T ¼ T0; S ¼ S0 at z ¼ h

2

9>>=
>>;
;

ð8Þ

1 Rigid, isothermal and iso-solutal concen-

tration boundary condition

ðu;wÞ ¼ ð0; 0Þ; ou
ox

¼ 0;
ow

oz
¼ 0;T ¼ T0 þ DT;

S ¼ S0 þ DS at z ¼ � h

2

ðu;wÞ ¼ ð0; 0Þ; ou
ox

¼ 0;
ow

oz
¼ 0;T ¼ T0; S ¼ S0 at z ¼ h

2

9>>>>>>>=
>>>>>>>;
;

ð9Þ

where u and w are the x- and z- components of velocity

vector, q, and ixz ¼ l
ou

oz
þ ow

ox

� �
. Coming to the

boundary condition on the electrical field, it is

assumed that the normal component of the electric

displacement, D, and the tangential component of the

electric field, E, are continuous across the boundaries.

At the basic state the components of velocity,

pressure, temperature, solutal concentration, polariza-

tion and electric field are considered to be:

qb ¼ ð0; 0Þ; p ¼ ðpbðxÞ; pbðzÞÞ; T ¼ ð0;TbðzÞÞ; S ¼ ð0; SbðzÞÞ

P ¼ ð0;PbðzÞÞ; E ¼ ð0;EbðzÞÞ

)
;

ð10Þ

Substituting Eq. (10) into the governing equations (1)–

(7) and using the temperature and concentration

boundary conditions, we get the following quiescent

state solution:

qb ¼ 0; pbðzÞ ¼ �q0g 1� b1DT
1

2
� z

h

� �
þ DSb2

1

2
� z

h

� �� �
zþ c;

TbðzÞ ¼ T0 þ DT
1

2
� z

h

� �
; SbðzÞ ¼ S0 þ DS

1

2
� z

h

� �
;

Pb ¼ 1� 1

ð1þ veÞ þ
1

2
� z

h

� �
DT þ 1

2
� z

h

� �
DS

2
664

3
775ð1þ veÞe0E0k̂;

Eb ¼
ð1þ veÞE0

ð1þ veÞ þ e
1

2
� z

h

� �
DT þ e

1

2
� z

h

� �
DS

2
664

3
775k̂

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

;

ð11Þ

where c is an integration constant.

We superpose finite-amplitude perturbations on the

basic state in the form:

q ¼ qb þ ðu0ðt; x; zÞ;w0ðt; x; zÞÞ; p ¼ pbðx; zÞ þ p0ðt; x; zÞ;

T ¼ TbðzÞ þ T 0ðt; x; zÞ; S ¼ SbðzÞ þ Sðt; x; zÞ0;

P ¼ PbðzÞ þ ðP0
1ðt; x; zÞ;P0

3ðt; x; zÞÞ; E ¼ EbðzÞ þ ðE0
1ðt; x; zÞ;E0

3ðt; x; zÞÞ

9>>=
>>;
:

ð12Þ

Using Eq. (12) and (7) becomes

P0
1 ¼ e0veE

0
1 � ee0T

0E0
1; P0

3 ¼ e0veE
0
3 � ee0

T 0E0
0 � ee0T

0E0
3:

ð13Þ

Here it is assumed that eDT � ð1þ veÞ.
Substituting Eq. (12) into the governing equations

(1)–(7) and using the basic state solution (11), we get

the governing equations concerning perturbations.

Introducing the stream function, w0, as

u0 ¼ � ow0

oz
; w0 ¼ ow0

ox
; ð14Þ

and the perturbed electric potential, U0, as

E0 ¼ rU0 ð15Þ

into the resulting governing equations, eliminating

pressure term in the linear momentum equation and

non-dimensionalizing the equations using the follow-

ing definition:

x�; z�ð Þ ¼ x

h
;
z

h

� �
; W� ¼ w0

aT
; t� ¼ aT t

h2
;

U� ¼ ð1þ veÞ
eE0DTh

U0; T� ¼ T 0

DT
; S� ¼ S0

DS
;

ð16Þ

we get the governing equations in the dimensionless

form as

1

Pr

o

ot
ðr2WÞ ¼½Rð1þ gmÞ þ RE�

oT

ox
� Rsð1þ gmÞ

oS

ox

� RE
o2U
oxoz

þr4W� REJ T ;
oU
oz

� �
;

ð17Þ

oT

ot
¼r2T þ oW

ox
� JðW; TÞ; ð18Þ

oS

ot
¼ 1

Le
r2Sþ oW

ox
� JðW; SÞ; ð19Þ
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r2Uþ oT

oz
¼0; ð20Þ

where Pr ¼ l
q0aT

is the Prandtl number, R ¼ b1q0gDTh
3

laT
is

the thermal Rayleigh number, RE ¼ e0ðE0eDThÞ2
laT ð1þveÞ

is the

electrical Rayleigh number, RS ¼ b2q0gDSh
3

laT
is the

solutal Rayleigh number, Le ¼ aT
aS
is the Lewis number

and gm ¼ g0ðd;X; tÞ
g

.

In writing the momentum equation (17) we have

neglected the term (q � rq) by assuming the small-

scale convective motion. In the paper we have

considered the trigonometric sine wave type of gravity

modulation with small amplitude, d, and hence we

take gmðtÞ ¼ d sinðXtÞ.
The boundary conditions now take the form:

Case 1: Stress-free, isothermal and iso-soluatal

concentration boundary condition

W ¼ o2W
oz2

¼ T ¼ S ¼ oU
oz

¼ 0 at z ¼ � 1

2
:

ð21Þ

1 Rigid, isothermal and iso-soluatal con-

centration boundary condition

W ¼ oW
oz

¼ T ¼ S ¼ oU
oz

¼ 0 at z ¼ � 1

2
:

ð22Þ

It is also assumed to have periodicity in the x-direction

which leads to the following periodicity condition:

W x� 2p
jc

; z; t

� �
¼ W x; z; tð Þ

T x� 2p
jc

; z; t

� �
¼ T x; z; tð Þ

S x� 2p
jc

; z; t

� �
¼ S x; z; tð Þ

U x� 2p
jc

; z; t

� �
¼ U x; z; tð Þ

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ð23Þ

where jc is the critical wave number of the convecting

cell and is determined using the linear stability

analysis.

2.1 Weakly nonlinear stability analysis—

derivation of the generalized Lorenz system

Consider the following minimal mode Fourier–

Galerkin expansions to describe the nonlinear inter-

action of the stream function, temperature, solutal and

electrical potential:

W ¼
ffiffiffi
2

p
g2

pj
AðtÞ sinðjcxÞ f1ðzÞ; ð24Þ

T ¼
ffiffiffi
2

p

p
BðtÞ cosðjcxÞ f2ðzÞ �

1

p
CðtÞ f3ðzÞ; ð25Þ

S ¼
ffiffiffi
2

p

p
LðtÞ cosðjcxÞ f2ðzÞ þ

1

p
MðtÞ f3ðzÞ; ð26Þ

U ¼I1 cosðjcxÞ Df2ðzÞ þ I2 Df3ðzÞ; ð27Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ p2

p
, D ¼ d

dz
, f2ðzÞ ¼ sin pzþ p

2

� �
and f3ðzÞ ¼ sinð2pzþ pÞ.

The choice of f1ðzÞ depends on the velocity

boundary condition.

(i) For free boundaries, f1ðzÞ ¼ sin pzþ p
2

� �
and

(ii) For rigid boundaries, f1ðzÞ ¼
coshðl1zÞ
cosh

l1
2

	 
 �

cosðl1zÞ
cos

l1
2

	 
 where l1 ¼ 4:73004074 .

Substituting Eqs. (24)–(27) into the governing equa-

tions (17)–(20) and using the orthogonality condition

with eigenfunctions, we get the following non-au-

tonomous system of equations called as the general-

ized Lorenz model:

dA

ds
¼Pr

p1
�p2Aþ rp3ð1þ gmÞB� rSp3ð1þ gmÞL½

þ rEb1p4B� rEb1p5BC�;
ð28Þ

dB

ds
¼ 1

p6
p7A� p8B� p9AC½ �; ð29Þ

dC

ds
¼ 1

p10
�p11b2C þ p12AB½ �; ð30Þ
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dL

ds
¼ 1

p6
p7A� p8

Le
Lþ p9AM

h i
; ð31Þ

dM

ds
¼ 1

p10
� p11

Le
b2M � p12AL

h i
; ð32Þ

where s ¼ g2t, b1 ¼
g2

j2c
and b2 ¼

4p2

g2
.

The coefficients, pi’s are given by

p1 ¼ \� j2cf
2
1 þ f1D

2f1[ ; p2 ¼ � 1

g2
\j4c f

2
1 � 2j2cf1D

2f1 þ f1D
4f1 [ ;

p3 ¼ �g2\f1f2[ ; p4 ¼ � g2

b1
\f1f2 [ � \f1ðDf2Þ2D2f2 [

\� j2cðDf2Þ
2 þ Df2D3f3 [

" #
;

p5 ¼
g2

pb1

\f1f2ðDf3Þ2D3f3[
\Df3D3f3 [

� \f1ðDf2Þ2D2f2Df3 [
\� j2cðDf2Þ

2 þ Df2D3f2 [

" #
;

p6 ¼ g2\f 22 [ ; p7 ¼ g2\f1f2[ ; p8 ¼ �\� j2cf
2
2 þ f2D

2f2 [ ;

p9 ¼ � g2

p
\f1f2Df3 [ ; p10 ¼ g2\f 23 [ ; p11 ¼ � 1

b2
\f3D

2f3[ ;

p12 ¼
2g2

p
\f1f3Df1 [ þ\ sec2ðjcxÞ f1f3Df2 [
� �

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð33Þ

We first use the linearized version of the generalized

Lorenz model (28)–(32) in making a linear stability

analysis and then use the full system (28)–(32) to make

a local nonlinear analysis with the sole aim of

obtaining a numerical solution of a first-order equation

rather the fifth-order one of the generalized Lorenz

model.

2.2 Linear stability analysis—expressions

for the critical Rayleigh number and its

correction using the modified Venezian

approach

Expressions for the critical Rayleigh number and its

correction are determined by performing a linear

stability analysis. The linear stability analysis involves

infinitesimal amplitudes and hence the nonlinear terms

in the Eqs. (28)–(32) are neglected. This gives us the

following system of equations:

dA

ds
¼ Pr

p1
�p2Aþ p3rð1þ gmðsÞÞB
h

� p3rSð1þ gmðsÞÞLþ p4b1rEB
i
;

ð34Þ

dB

ds
¼ 1

p6
p7A� p8B½ �; ð35Þ

dL

ds
¼ 1

p6
p7A� p8

Le
L

h i
: ð36Þ

The over line on gm denotes the time-average in

0;
2p
X

� �
.

The Venezian [15] approach involved a linear

stability analysis using the system of partial differen-

tial equations as in Eqs. (17)–(20). We use a modified

approach on the linearized Lorenz model (28)–(32).

Following the modified Venezian [17] approach, we

assume the gravity modulation to be of first-order in �1
and so we expand the amplitudes A, B and L, and the

scaled thermal Rayleigh number, r, of Eqs. (34)–(36)

in terms of �1 as shown below:

A ¼ A0 þ �1A1 þ �21A2 þ � � � ;

B ¼ B0 þ �1B1 þ �21B2 þ � � � ;

L ¼ L0 þ �1L1 þ �21L2 þ � � � ;

r ¼ r0 þ �21r2 þ �41r4 þ � � � ;

9>>>>>>=
>>>>>>;

ð37Þ

Substituting Eq. (37) into Eqs. (34)–(36), we get a

system of equations involving �1 and its higher

powers. Equating terms independent of �1 on either

side of the resulting equations, we get

IV0 ¼ 0; ð38Þ

where

I ¼

� p2
p1

þ 1

Pr

d

ds

� �
r0
p3
p1

þ rEb1
p4
p1

� rS
p3
p1

p7
p6

� p8
p6

þ d

ds

� �
0

p7
p6

0 � p8
p6

þ 1

Le

d

ds

� �

2
66666664

3
77777775
and

V0 ¼½A0; B0; L0�Tr:

At the marginal stability the time derivative does not

appear leading to the following solution to Eq. (38):

V0 ¼ A0;
p7
p8

A0;
p7
p8

1

Le
A0

� �Tr
: ð39Þ

The condition for the occurrence of the above solution

is

r0 ¼
p2p8
p3p7

þ rSLe�
p4
p3

b1rE: ð40Þ

The above Eq. (40) is the expression for the critical

Rayleigh number of the non-modulated system.

On equating terms involving �1 on either side of the

Eqs. (34)–(36) and also substituting (37) in them, we

get
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IV1 ¼ ½N1; 0; 0�; ð41Þ

where V1 ¼ ½A1; B1; L1�Tr and N1 ¼ � p3
p1

gmðsÞ
ðr0B0 � rSL0Þ.

To determine V1 we note that time variations occur

as e�iXs and hence IðsÞ now becomes:

IðXÞ ¼

� p2
p1

þ 1

Pr
iX

� �
r0
p3
p1

þ rEb1
p4
p1

� rS
p3
p1

p7
p6

� p8
p6

þ iX

� �
0

p7
p6

0 � p8
p6

þ 1

Le
iX

� �

2
66666664

3
77777775
:

ð42Þ

Using column operations one can easily show that I is

self-adjoint. Solving Eq. (41) using the zeroth-order

solution (39) and the matrix (42), we get

A1 ¼
1

L
p3p7
p8

Pr
rS
Le

� r0

� �
gm A0;

B1 ¼
p7

p8 þ iXp6

� �
A1;

L1 ¼
p7Le

p8 þ iXp6Le

� �
A1

9>>>>>>>>=
>>>>>>>>;
; ð43Þ

where

L ¼ � p2 þ
p1
Pr

iX
� �

þ p7ðp3r0 þ p4rEb1Þ
p8 þ iXp6

� p3p7rSLe

p8 þ iXp6Le
:

ð44Þ

Using the zeroth- and first-order solutions, we deter-

mine the correction Rayleigh number, r2. To do so we

equate the order of �21 on either side of the Eqs. (34)–

(36) after substituting (37), we get

IV2 ¼ ½N2; 0; 0�; ð45Þ

where V2 ¼ ½A2; B2; L2�Tr and N2 ¼ � p3
p1

r2B0 þ gm½
ðr0B1 � rSL1Þ�.

In order to obtain the expression for the correction

Rayleigh number we make use of the following

theorem (the Fredholm-solvability condition):

Theorem 1 Consider IV2 ¼ ½N2; 0; 0� on the

interval � 1
2

1
2

� �
subject to A2ð0Þ ¼ B2ð0Þ ¼ L2ð0Þ ¼

0 then there exist a solution to the non-homogeneous

system (45) provided there exist a non-trivial solution

to IV0 ¼ 0 and the following condition is true

N2Â0 ¼ 0; ð46Þ

where Â0 is the solution of the self-adjoint system of

Eq. (39).

Substituting N2 into the Eq. (46) and rearranging,

we get the expression for the scaled correction

Rayleigh number as:

r2 ¼p3p8Pr r0 �
rS
Le

� �
gm

Re
1

S
r0

p8 þ iXp6
� rSLe

p8 þ iXp6Le

� �� �
;

ð47Þ

where Re means the real part.

2.3 Local nonlinear stability analysis—derivation

of the Ginzburg–Landau equation

from the generalized Lorenz system

We now derive the one-dimensional Ginzburg–Lan-

dau amplitude equation from the fifth-order general-

ized Lorenz system (28)–(32) by using the method of

multiscales ([38], [39]). To do so we assume

(a) A small time-scale, i.e., s1 ¼ �22s,
(b) Gravity modulation to be of order �22 and

(c) The following regular perturbation expansion

for amplitudes and scaled thermal Rayleigh

number:

A ¼�2A1 þ �22A2 þ �32A3. . .;

B ¼�2B1 þ �22B2 þ �32B3. . .;

C ¼�2C1 þ �22C2 þ �32C3. . .;

L ¼�2L1 þ �22L2 þ �32L3. . .;

M ¼�2M1 þ �22M2 þ �32M3. . .;

r ¼r0 þ �22r2 þ �42r4 þ � � �

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð48Þ

where �2 is a small amplitude which is different from

�1 and concerns finite amplitude convection.

Using the above small time scale, small amplitudes

and Eq. (48) in Eqs. (28)–(32), we arrive at the system

of equations involving amplitude, �2. Equating the like

powers of �2 on either side of the resulting equations,

we get the following system of homogeneous/non-

homogeneous equations at various orders:
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At

o(�2):
JW1 ¼ 0; ð49Þ

where

J ¼

�p2 ðp3r0 þ p4b1rEÞ 0 � rSp3 0

p7 � p8 0 0 0

0 0 p11b2 0 0

p7 0 0 � p8
Le

0

0 0 0 0 � p11
Le

b2

2
666666664

3
777777775
and

W1 ¼½A1; B1; C1; L1; M1�Tr:

At

o(�22):
JW2 ¼ ½0; 0; N23; 0; N25�Tr; ð50Þ

where

W2 ¼½A2; B2; C2; L2; M2�Tr;
N23 ¼� p12A1B1 and N25 ¼ p12A1L1:

ð51Þ

At

o(�32):
JW3 ¼ ½N31; N32; 0; N34; 0�Tr; ð52Þ

where

W3 ¼ ½A3; B3; C3; L3; M3�Tr;

N31 ¼
p1
Pr

dA

ds1
� p3 r2B1 � gmðr0B1 � rSL1Þ½ �;

N32 ¼ p6
dB1

ds1
þ p9A1C2;

N34 ¼ p6
dL1
ds1

� p9A1M2

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð53Þ

On solving systems (48) and (50), we get the

following solutions:

W1 ¼ A1;
p7
p8

A1; 0;
p7
p8

LeA1; 0

� �Tr
;

W2 ¼ 0; 0;
p7p12
p8p11

1

b2
A2
1; 0;

p7p12
p8p11

1

b2
Le2A2

1

� �Tr

9>>>>=
>>>>;
:

ð54Þ

Here A1 corresponds to the linear convective mode at

threshold whereas A2 concerns the nonlinear convec-

tive mode and hence has to be zero.

In order to determine the amplitude, A1, we use the

aforementioned Theorem 1 which leads to the fol-

lowing condition for the occurrence of the solution of

Eq. (52):

N31Â1 þ N32B̂1 þ N34L̂1 ¼ 0; ð55Þ

where Â1 ¼ 1; B̂1 ¼
1

p8
ðr0p3 þ p4rEb1Þ and L̂1 ¼

� p3
p8

rSLe are the solution of the self-adjoint system

of Eq. (49).

Using Eqs. (54) and (55), we get the Ginzburg–

Landau equation in the form:

dA1

ds1
¼ Q1

Q3

A1 �
Q2

Q3

A3
1; ð56Þ

where

Q1 ¼
p3p7
p8

Pr r2 þ gmðr0 � rSLeÞ½ �;

Q2 ¼
p7p9p12
p28p11

1

b2
Pr½p3ðr0 � rSLe

3Þ þ p4rEb1�;

Q3 ¼ p1 þ
p6p7
p28

Pr½p3ðr0 � rSLe
2Þ þ p4rEb1�

9>>>>>>>=
>>>>>>>;
;

ð57Þ

where r0 and r2 are given by Eqs. (40) and (47). The

numerical solution of the Ginzburg–Landau equation

(56) with a time-periodic coefficient is obtained using

the initial condition A1ð0Þ ¼ 0:5 and this solution is

used to quantify the heat and mass transports in the

system.

3 Estimation of heat and mass transports

at the lower boundary

The heat and mass transports are quantified using the

Nusselt and Sherwood numbers respectively. The

horizontally-averaged Nusselt (Nu) and Sherwood

(Sh) numbers for the stationary double-diffusive

convection are given as:

Nuðs1Þ ¼ 1þ

R 2p
jc
0

oT

oz

� �
dx

R 2p
jc
0

dTb
dz

� �
dx

2
664

3
775
z¼�

1

2

and

Shðs1Þ ¼ 1þ

R 2p
jc
0

oS

oz

� �
dx

R 2p
jc
0

dSb
dz

� �
dx

2
664

3
775
z¼�

1

2

:

ð58Þ

Substituting the non-dimensional form of the basic

state solution of temperature and solute from Eq. (11),

and the Eqs. (25), (26) and (54) in Eq. (58), we get
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Nuðs1Þ ¼ 1þ p7p12
p8p11

� �
2�22
b2

A2
1 and

Shðs1Þ ¼ 1þ Le2½Nuðs1Þ � 1�:
ð59Þ

4 Results and discussion

The focus of the paper is on studying the influence of

gravity modulation, second diffusing component, AC

electric field and the effect of free and rigid boundaries

on

(i) Onset of convection,

(ii) Heat transport and

(iii) Mass transport.

The modified Venezian approach [17] is used to

perform a linear stability analysis and expressions for

the threshold values of the scaled thermal Rayleigh

number and its correction are arrived at. Using these

expressions the combined effect of parameters arising

from gravity modulation and those arising due to the

dielectric nature of the liquid are discussed in the

paper for both free and rigid boundaries. Fourier–

Galerkin expansion is used to derive the fifth-order

generalized Lorenz system. The method of multiscales

is employed to derive the non-autonomous Ginzburg–

Landau equation from the fifth-order, non-au-

tonomous generalized Lorenz system. We note that

both the systems are non-autonomous due to the

presence of a time-periodic coefficient but the proce-

dure to obtain the numerical solution of the former one

is much simpler. The solution of the Ginzburg-Landau

model is used in quantifying the heat and mass

transports in terms of the Nusselt and the Sherwood

numbers.

We now present the results and their discussion

under two headings: (a) results from linear theory and

(b) results from nonlinear theory.

4.1 Results from linear stability analysis

Equations (40) and (47) represent respectively, the

expressions for the scaled thermal Rayleigh number

and its correction. It is clear from these expressions

that the influence of gravity modulation comes only

through the correction Rayleigh number. Using these

two equations one can write down the expression for

the thermal Rayleigh number as

RT ¼ g6

j2
ðr0 þ �21r2Þ: ð60Þ

Minimizing the above expression with respect to wave

number, j, we get the critical thermal Rayleigh

number as a function of RS, RE, Le, Pr, d and X.
Tables 1 and 2 respectively document values of the

critical wave number and the thermal Rayleigh

number for different values of the aforementioned

parameters in the absence and presence of gravity

modulation.

The values of the thermal Rayleigh and wave

numbers corresponding to parameter values Le ¼
RS ¼ RE ¼ 0 denote that of the classical Rayleigh-

Bénard convection in a Newtonian liquid [34] (single-

component thermo-convection). Thus, in the limiting

case, i.e., classical Rayleigh-Bénard convection in a

Newtonian liquid, the values of the critical thermal

Rayleigh number coincide with the values reported by

Siddheshwar et al. [40] and Kanchana et al. [41] for

free-isothermal and rigid-isothermal boundary condi-

tions. Further, it is obvious from these tables that in the

presence/absence of gravity modulation and in the

limiting case, the following result is true:

ðRTÞFFc \ðRTÞRRc ; ð61Þ

where FF and RR denote the free and rigid boundaries

respectively.

From the Tables 1 and 2 it is apparent that the effect

of increasing Lewis and solutal Rayleigh numbers is to

stabilize the system irrespective of the boundaries

being rigid or free. In the double-diffusive system,

increase in Lewis number essentially means that the

thermal diffusivity dominates over solutal diffusivity

results in a delay in the onset of convection. Solutal

Rayleigh number concerns the buoyancy force and the

dissipative terms. Increase in solutal Rayleigh number

means the buoyancy force is less vigorous and thus a

dominant viscous force and hence the system

approaches stability.

The nondimensional parameters RE and Pr charac-

terize liquid properties and the effect of electrical field

is characterized by electrical Rayleigh number, RE .

The Tables 1 and 2 clearly show that the effect of an

increase in the strength of the AC electric liquid is to

promote early onset of convection. As we notice from
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Tables 1 and 2 there is no significant influence of Pr

on onset of modulated/non-modulated convection.

As far as gravity modulation is concerned, on

comparing the values of the critical Rayleigh numbers

between the Tables 1 and 2 (wherein Table 1 corre-

sponds to no modulation case and Table 2 corresponds

to problem with gravity modulation) it is clear that

there is a slight forward shift in threshold value due to

gravity modulation. Thus, the present study essentially

reiterates the findings of the experimental and numer-

ical works of Gresho and Sani [12], Biringen and

Peltier [14] and Yu et al. [35]. It is to be noted that the

influence of the gravity modulation is seen only as a

positive correction to the thermal Rayleigh number

and appears thus as a forward shift in the critical

Rayleigh number.

This result essentially means that the influence of

modulation is to suppress the double-diffusive electro-

convection. In some applications which involve the

fluid flow and electric field (cases of water column

devices and image processing devices) one can

suppress the convection by imposing gravity modula-

tion. However, the values of amplitude and the

frequency of modulation play a greater role in the

further suppressing convection and the same is

discussed using Figs. 2 and 3.

The influence of frequency of gravity modulation

can be explained using the plots pertaining to the

critical scaled correction Rayleigh number versus the

frequency of modulation for different values of the

parameters Le, RS, RE, d and Pr (see Figs. 2 and 3). It

is clear from these figures that the effect of increasing

RE is to enhance convection whereas the effect of

increasing Le, RS and d is to suppress convection.

Tuning of amplitude (increase) and frequency (de-

crease) increases the critical Rayleigh number leading

to further suppression of double diffusive electro-

convection. Thus, gravity modulation can be consid-

ered as a regulating mechanism in the double-diffusive

electro-convective system.

From Figs. 2 and 3 it is apparent that though the

critical thermal Rayleigh number is large for rigid

boundaries compared to that for free boundaries (see

Eq. (61)), the scaled correction Rayleigh number is

small for rigid boundaries. This is because the gravity

modulation significantly influences the boundaries and

as we have mentioned earlier it is only in the

correction Rayleigh number that the influence of

gravity modulation appears. The magnitude of the

scaled, correction Rayleigh number is, however, small

compared to the scaled, critical Rayleigh number of

the non-modulated system obtained using the

Table 1 Values of the critical wave and thermal Rayleigh

numbers for different values of parameters for both free and

rigid isothermal boundaries in the absence of gravity

modulation(d ¼ 0)

Le RS RE Pr Free boundaries Rigid boundaries

jc ðRT Þc jc ðRT Þc

0 0 0 10 2.22144 657.511 3.09755 1728.38

2 20 50 10 2.24989 680.703 3.11306 1743.67

2.5 2.24989 690.703 3.11306 1753.67

2.8 2.24989 696.703 3.11306 1759.67

2 20 50 10 2.24989 680.703 3.11306 1743.67

30 2.24989 720.703 3.11306 1783.67

40 2.24989 760.703 3.11306 1823.67

2 20 50 10 2.24989 680.703 3.11306 1743.67

100 2.27889 663.609 3.12858 1718.84

200 2.30841 646.224 3.1441 1693.88

2 20 50 6 2.24989 680.703 3.11306 1743.67

8 2.24989 680.703 3.11306 1743.67

10 2.24989 680.703 3.11306 1743.67

Table 2 Values of the critical wave and thermal Rayleigh

numbers for different values of parameters for both free and

rigid isothermal boundaries in the presence of gravity modu-

lation (d ¼ 0:1)

Le RS RE Pr Free boundaries Rigid boundaries

j ðRT Þc j ðRT Þc

2 20 50 10 2.24989 680.705 3.11306 1743.68

2.5 2.24989 690.705 3.11306 1753.68

2.8 2.24989 696.705 3.11306 1759.68

2 20 50 10 2.24989 680.705 3.11306 1743.68

30 2.24989 720.705 3.11306 1783.68

40 2.24989 760.705 3.11306 1823.68

2 20 50 10 2.24989 680.705 3.11306 1743.68

100 2.27889 663.61 3.12858 1718.84

200 2.30841 646.226 3.1441 1693.88

2 20 50 6 2.24989 690.705 3.11306 1743.68

8 2.24989 690.705 3.11306 1743.68

10 2.24989 690.705 3.11306 1743.68
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fundamental mode and hence the to-be-expected result

of (61).

The influences of Le, RS, RE on the scaled

correction Rayleigh number are similar to their

influence on the critical Rayleigh number obtained

by the fundamental mode. The effect of increasing

amplitude/frequency of gravity modulation is to

increase/decrease the correction Rayleigh number.

The effect of Pr on the onset of convection comes

through only the correction Rayleigh number. From

(3) it is clear that as we increase Pr, the critical scaled

correction Rayleigh number decreases. Since the

magnitude of correction Rayleigh number is very

small compared to the Rayleigh number obtained

using the normal mode, it must be said that the overall

effect of Pr on onset is quite negligible.

4.2 Results from weakly-nonlinear/local-

nonlinear stability analyses

Nusselt and Sherwood numbers are used to study heat

and mass transports of the double-diffusive system in a

dielectric liquid. Figures 4 and 5 concerning heat

transport. It is evident from the Fig. 4 that the effect of

increasing Le and RS is to enhance heat transport

whereas the effect of increasing RE is to diminish the

same. Though we notice that an increase in Pr is to

increase the Nusselt number at short time, at large

times its influence is negligible.

As we mentioned earlier, Lewis number represents

the relative magnitude of thermal diffusivity and mass

diffusivity which are essentially the properties of the

two-component dielectric liquid. A value of Lewis

number greater than unity means that thermal diffu-

sion dominates over solutal diffusion and hence results

in an enhanced heat transfer situation.

A similar explanation can be provided for the

observed influence of the buoyancy force due to solute

on the heat transport. The effect of increase in the

electrical Rayleigh number is to diminish the heat

transport. Influence of amplitude of gravity modula-

tion on convection can be studied using Fig. 5. It is

clear from the Fig. 5 that the effect of increase in the

amplitude of modulation is to decrease the Nusselt

number and thereby to diminish the heat transport.

As far as boundary condition is concerned it is

observed from Figs. 4 and 5 that

Nuðs1ÞFF [Nuðs1ÞRR; ð62Þ

irrespective of gravity modulation being present or

absent. The above result is in concurrence with the

result mentioned in (61). We may summarize the

results by saying that the parameters’ influence on

onset of convection and heat transport is unaltered by

gravity modulation and boundary condition.

From the expression of the Sherwood number in

Eq. (59), it is clear that the Sherwood number is always

bFig. 2 Plots of critical scaled correction Rayleigh number

versus frequency of modulation for different values of Le, RS,RE

and d and for fixed values Le ¼ 2, RS ¼ 20, RE ¼ 50, Pr ¼ 10,

d ¼ 0:1, X ¼ 10 and A0 ¼ 0:5

Fig. 3 Plots of critical scaled correction Rayleigh number versus frequency of modulation for different values of Pr and for fixed values
Le ¼ 2, RS ¼ 20, RE ¼ 50, Pr ¼ 10, d ¼ 0:1, X ¼ 10 and A0 ¼ 0:5
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greater than the Nusselt number. Computation also

shows that the influence of non-dimensional param-

eters/gravity modulation/boundaries on the Sherwood

number is similar to their influence on the Nusselt

number and hence the plots pertaining to Sherwood

number are omitted in the paper due to redundance.

5 Conclusion

Based on the results and their discussion, we have the

following conclusion to make:

1 The study of onset of double-diffusive convection

and heat and mass transports using free boundaries

is qualitatively similar to that using rigid

boundaries.

2 The influence of gravity modulation has less

impact on the Rayleigh number compared to that

on the heat and mass transports.

3 The effect of increase in the values of Le and RS is

to stabilize the system whereas the effect of

increase in RE is to destabilize it.

4 The effect of increase in the value of the amplitude

of modulation is to stabilize the system whereas

the effect of increase in frequency of modulation is

to destabilize it.

5 The effect of increase in the values of Le and RS is

to enhance heat and mass transports whereas the

effect of increase in RE is to diminish the same.

6 Pr has negligible influence on onset of convection

as well as on heat and mass transports.

7 The effect of increase in values of amplitude of

modulation is to diminish the heat and mass

transports.
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bFig. 4 Plots of Nusselt number versus time for different values
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Fig. 5 Plots of Nusselt number versus time for different values of d and fixed values of parameters as taken in the other plots
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