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Abstract The presented work deals with nonlinear

dynamics of a three degree of freedom system with a

spherical pendulum and a damper of the fractional

type. Vibrations in the vicinity of the internal and

external resonance are considered. The system con-

sists of a block suspended from a linear spring and a

fractional damper, and a spherical pendulum sus-

pended from the block. The viscoelastic properties of

the damper are described using the Caputo fractional

derivative. The fractional derivative of an order of

0\a� 1 is assumed. The impact of a fractional order

derivative on the system with a spherical pendulum is

studied. Time histories, the internal and external

resonance, bifurcation diagrams, Poincaré maps and

the Lyapunov exponents have been calculated for

various orders of a fractional derivative. Chaotic

motion has been found for some system parameters.

Keywords Spherical pendulum � Fractional

damping � Nonlinear vibrations � Transient dynamics

analysis

1 Introduction

In this work, the nonlinear response of an autopara-

metric system of three degrees of freedom with a

spherical pendulum and a damper of the fractional

type is investigated. In previous works, the authors

studied autoparametric systems containing a spherical

pendulum with viscous and magnetorheological

damping. Sado and Bobrowska [1] investigated the

dynamic properties of the three degrees of freedom

autoparametric system with a spherical pendulum in

the vicinity of internal and external resonances. The

investigated system comprised a spherical pendulum

suspended from a mass block which was suspended

from a vertical linear spring and a viscous dashpot. In

that paper, the energy transfer between vibration

modes was studied. Sado et al. [2] investigated the

impact of initial conditions on the energy transfer

between vibration modes and the occurrence of

chaotic motion in the system. Sado and Freundlich

[3] examined a three degree of freedom system with a

spherical pendulum which was controlled by a mag-

netorheological damper. The examined system com-

prised a spherical pendulum suspended from a mass

block which was suspended from a vertical linear

spring and a magnetorheological damper. They stud-

ied the impact of magnetorheological damper proper-

ties on the system vibration in the neighborhood of

internal and external resonances. The authors showed

that apart from the regular behavior of the spherical
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pendulum, chaotic vibrations for all coordinates can

occur near the internal and external resonance areas.

In this paper, the damping described by the

fractional derivatives is analyzed. In the engineering

practice, the systems containing a spherical pendulum

can be used to model the dynamics of certain types of

structures, such as cranes [4–9], seismic isolators [10],

vibration absorbers [11–13], energy harvesters [14],

inertial sensors [15]. Thus the dynamics of systems

with a spherical pendulum is an interesting subject of

scientific research and have been analyzed in a number

of studies [7–9, 11, 13–26].

A brief overview of publications on pendulum

research can be found in the paper by Han et al. [16].

Various types of studies on spherical pendulum have

been conducted. The first type of studies concerns the

dynamics of the spherical pendulum subjected to

motion of the suspension point. Miles is probably the

first who studied stability of forced oscillations of a

spherical pendulum [17, 18]. He studied nonlinear

response of a lightly damped spherical pendulum

subjected to harmonic excitation in a horizontal plane.

Miles assumed linear damping of the pendulum. He

found that for sufficiently small damping the planar

harmonic motion is unstable over a major portion of

the resonant peak. Moreover, non-planar harmonic

motion is stable in a spectral neighborhood that

overlaps neighborhoods of both stable and unsta-

ble planar motions. Furthermore, no stable, harmonic

motion is possible in a finite neighborhood of the

natural frequency. Miles [19], Miles and Zou [20]

studied internal resonance of a slightly detuned

spherical pendulum.

Tritton [21], Kana and Douglas [22] experimentally

investigated system with a spherical pendulum. They

confirmed some theoretical results presented by Miles.

Gottlieb and Habib [24] studied experimentally non-

linear damping mechanisms that govern the dynamics

of the chaotic motion of a spherical pendulum. These

authors deduced that consistent modeling and valida-

tion of non-linear damping mechanisms are essential

for prediction of the spherical pendulum dynamics and

bounds for a chaotic response.

Náprstek and Fisher [11], Pospı́šil et al [25] studied

the pendulum vibration damper modeled as a spherical

pendulum. The pendulum was excited kinematically

by horizontal motion of the suspension point. Náprstek

and Fisher [11] performed analytical and numerical

analysis of the damping pendulum, whereas Pospı́šil

et al. [25] conducted experimental and numerical

investigations of such a pendulum.

Markeyev [23] studied the dynamics of an

undamped spherical pendulum subjected to the high-

frequency vertical harmonic oscillations of the sus-

pension point. He showed existence of two types of

motion when the pendulum performs high-frequency

oscillations close to conical motions. Leung and

Kuang [8] presented an analytical and numerical

analysis of a lightly damped spherical pendulum,

whose suspension point was harmonically excited in

both vertical and horizontal directions. They studied

the bifurcation behavior of the pendulum taking into

account third order terms in the amplitude in the

vicinity of the resonance.

Witkowski et al. [26] studied the dynamics of three

coupled conservative spherical pendulums, and

showed that linear modes allow us to compute the

nonlinear normal modes for increasing energy in the

system. They observed a pitchfork bifurcation in the

first mode, which causes the appearance of symmetry

broken periodic solution and destabilization of the

initial one. Additionally, they determined regions of

the energy transfer for the system analyzed.

The second type of studies concerns the dynamics

of structures with a spherical pendulum [4–11, 13–15].

Abdel-Rahman et al. [4] presented a survey of crane

models published in the literature, their classification

and discussion of their applications and limitations.

These authors analyzed the most widely used crane

model using the multiple scale method. They proposed

appropriate models and control criteria for various

cranes applications. Chin et al. [5, 6] studied the

dynamics of ship-mounted cranes modeled as an

elastic spherical pendulum. The authors studied sta-

bility of the solutions and dynamical behavior of the

pendulum in the region of one-to-one internal reso-

nance. In the paper by Ghigliazza and Holmes [7] the

study of the dynamics of a tower crane was presented.

A spherical pendulum in a non-inertial reference

frame was used as the crane model. The authors

analyzed two cases of motion: the linearly accelerating

support, and the support describing a circle at constant

speed. They determined integrability of the system and

regions of stability and bifurcations. Perig et al. [9]

proposed a three degree of freedom mathematical

model of a spherical pendulum attached to a crane

boom tip for uniform slewing motion of the crane.

They presented nonlinear and linearized mathematical
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models of the considered system. Next, they examined

the motion trajectories of the spherical pendulum

using numerical and experimental methods.

Tatemichi and Kawaguchi [10] described applica-

tion of a system of spherical pendulums as a seismic

isolator. They presented full-scale tests of a floor

isolated by a pendulum system and carried out

analytical studies of pendulum isolators used in high

buildings and space structures. Ikeda et al. [13]

investigated the vibration control of a towerlike

structure using a single spherical pendulum vibration

absorber. The structure was modeled as a spherical

pendulum suspended from a mass block with a

horizontal perpendicular system of springs and

dampers. The pendulum suspension point was har-

monically excited in horizontal plane. The authors

implemented coordinates enabled them to avoid the

non-integrability of the equations of motion due to a

singularity. They made analytical and experimental

analysis of the investigated system.

Xu and Tang [14] investigated dynamic behaviour

of a piezoelectric cantilever beam with a spherical

pendulum for multi-directional energy harvesting.

Allan and Townsend [15] studied an automatic

seatbelt inertial sensor comprised of a spherical

pendulum. They studied the motions of a spherical

pendulum to determine possible unintentional release

of the sensor during vehicle emergency maneuvers.

In recent years, fractional derivatives have been

increasingly used for modeling viscous damping

properties [27–38]. These derivatives have also begun

to be used to model damping in systems having

pendulums [39–41]. The use of fractional derivatives

is caused by the fact that they enable more accurate

modeling of the damping properties of materials

whose viscoelastic properties are weakly dependent

on frequency, therefore the use of the fractional order

derivatives makes it possible to model viscoelastic

material properties more accurately across a wide

frequency range [28–32]. A historical overview of the

development of fractional calculus in the mechanics of

solids was presented by Rossikhin [36], while a review

of publications devoted to the application of fractional

calculus in the dynamics of structure elements can be

found in a paper by Rossikhin and Shitikova [37].

However, the number of publications considering

damping described by a fractional derivative in the

systems with pendulums is limited. Rossikhin and

Shitikova [38] analyzed vibrations of two degree of

freedom system consisting of a plane pendulum

suspended from an element mass which was sus-

pended from a linear spring. The authors assumed that

the system vibrates in a viscous medium whose

damping properties were described by fractional

derivatives. Moreover, they assumed small finite

value amplitudes of vibrations and they used multiple

scales method to solve the problem. They examined

impact of damping modeled by a fractional derivative

on free damped vibrations and energy exchange in the

system.

Seredyńska and Hanyga [40] examined the effects of

fractional damping on vibrations of a planar, inextensible

and extensible pendulum. This analysis was an illustra-

tion of the proposed theory for solving nonlinear

differential equations with fractional damping. They

established the conditions of existence, uniqueness and

dissipativity for a certain class of nonlinear dynamical

systems including systems with fractional damping.

Hedrih [41] analyzed multi-pendulum systems with

fractional order creep elements. Parallel pendulums

were connected with creep elements described by

fractional order derivatives. The governing equations

of the system and its analytical solution for special

cases of the pendulum system were presented. The

vibration modes of the systems with one and two

pendulums having creep fractional elements were

studied. It was concluded that there is a mathematical

analogy in descriptions between multi-pendulum

systems and chain dynamical systems.

There are no publications devoted to systems

with spherical pendulums in which the damping is

described by a fractional derivative. The presented

model can be used to model the dynamics of

cranes with damping described using fractional

derivatives. The use of fractional derivatives allows

for a more accurate description of the damping

properties and dynamic behavior of the analyzed

system in a wide range of frequency, which is

important in an engineering practice. Therefore, in

the authors’ opinion, the impact of damping

described by a fractional derivative on the dynamic

behavior of the system with a spherical pendulum

should be analyzed, which is the purpose of this

research.
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2 Formulation of the problem

In this study, an impact of fractional damping on

dynamic properties of a coupled mechanical system

with a spherical pendulum is investigated. It is

assumed that the spherical pendulum is suspended

from the oscillator excited harmonically in the vertical

direction (Fig. 1). The oscillator consists a linear

spring and a damper of a fractional type. The position

of the oscillator of mass m1 is described by the

coordinate z1 and position of the pendulum of mass m2

and length l is described by the coordinates: z2; h;/.

The coordinate z is the vertical displacement of the

body of mass m1 measured from the static position of

equilibrium. The angle h is the angle between the

vertical axis and the deflection of the pendulum on the

plane xz. The angle / is the angle between the

deflections of the pendulum in the plane xz and the

pendulum. The body of mass m1 is subjected to the

harmonic vertical excitation assumed as

FðtÞ ¼ P � cosðmtÞ, where: P is the force amplitude, m
is the excitation frequency and t is time. The force

produced by the fractional damper is

CðtÞ ¼ ca
dazðtÞ
dta

ð1Þ

where C(t) is the force produced by a fractional

damper, z(t) is the displacement, ca is a damping

coefficient, da

dta is the Caputo fractional derivative of the

order a defined as [29, 35]

da

dta
f ðtÞ � Da

t ðf ðtÞÞ � _f
ðaÞðtÞ

� 1

Cðm� aÞ

Z t

0

dmf ðsÞ
dsm

ðt � sÞaþ1�m
ds

ð2Þ

where Cðm� aÞ is the Euler gamma function [35], m

is a positive integer number satisfying inequality

m� 1\a\m, and t[ 0.

The fractional derivative order is commonly

assumed to be in a range of 0\a� 1 for many real

materials [30, 31], and a ¼ 1:0 corresponds to integer

order derivative [35]. The Cartesian coordinates of the

mass m2 are

x2 ¼ lcos/sinh

y2 ¼ lsin/

z2 ¼ lcos/coshþ z1

z1 ¼ zþ zst

ð3Þ

where zst is the static deflection expressed as

zst ¼
ðm1 þ m2Þg

k
ð4Þ

where g is gravitational acceleration.

Calculating derivatives with respect to time of the

expressions in Eq. (3), the kinetic energy T of the

system is expressed as

T ¼ 1

2
_z2
1ðm1 þ m2Þ þ

1

2
m2l

2 _/
2 þ 1

2
m2l

2 _h
2
cos2/

� m2l _z1
_/sin/cosh� m2l _z1

_hcos/cosh

ð5Þ

The potential energy is expressed as

V ¼ �ðm1 þ m2Þz1g� m2glcos/coshþ
1

2
kðz1Þ2

ð6Þ

Assuming fractional dissipation function as D ¼
1
2
caðDa

t ðzÞÞ
2

[38], the equations of motion of the

system are as follows

Fig. 1 Schema of the system analyzed
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€zðm1 þ m2Þ � m2l€hcos/sinh� m2l €/sin/cosh

þ 2m2l _/ _hsin/sinh� ml
_h
2
cos/cosh

þ ca _z
ðaÞ þ kz ¼ F0cosmt

� m2l€zcos/sinhþ m2l
2€hcos2/� 2m2l _/ _hcos/sin/

þ m2glcos/sinh ¼ 0

� m2l€zsin/coshþ m2l
2 €/þ m2l

2 _h
2
cos/sin/

þ m2glsin/cos/ ¼ 0

ð7Þ

Next, introducing dimensionless time s ¼ x1t and

defining the following parameters

x2
1 ¼ k

m1 þ m2

; x2
2 ¼ g

l
; b ¼ x2

x1

; �z ¼ z

l
; l1 ¼ m

x1

c ¼ caxa
1

ðm1 þ m2Þx2
1

; a ¼ m2

m1 þ m2

; A1 ¼ F0

ðm1 þ m2Þx2
1l

ð8Þ

the Eq. (7) can be transformed into a dimensionless

form (where the overbars are omitted for convenience)

€z� a €/sin/cosh� a _/
2
cos/coshþ 2a _/ _hsin/sinh

� a€hcos/sinh� a _h
2
cos/coshþ c _zðaÞ þ z

¼ A1cosðl1sÞ
€hcos2/� €zcos/sinh ¼ 2 _h _/cos/sin/� b2cos/sinh

€/� €zsin/cos cos h ¼ � _h
2
cos/sin/� b2sin/cosh

ð9Þ

The equations above can be rewritten in the matrix

form

A€q ¼ d where

A ¼
1 � acos/sinh � asin/cosh

�cos/sinh cos2/ 0

�sin/cosh 0 1

2
64

3
75

€q ¼
€z
€h
€/

2
64

3
75 and d ¼

d1

d2

d3

2
64

3
75

ð10Þ

and the elements of vector d are

d1 ¼ A1cosðl1sÞ þ að _/2
cos/cosh� 2 _/ _hsin/sinh

þ _h
2
cos/coshÞ � c _zðaÞ � z

d2 ¼ 2 _h _/cos/sin/� b2cos/sinh

d3 ¼ � _h
2
cos/sin/� b2sin/cosh

ð11Þ

3 Numerical calculations and discussion

The derived equations of motion can be solved

numerically using well-known procedures [42–44].

The Adams–Bashforth–Moulton predictor–corrector

method [42, 43] is used to solve the Eqs (10). The term

on the right side of Eqs (10) with Caputo fractional

derivative is calculated numerically using the trape-

zoidal rule worked out by Diethelm et al [44] in a form

Da
t zN ¼ h�a

Cð2 � aÞ
XN
j¼1

aj;N zN�jþ1 � z1

� �" #
ð12Þ

where h is a time step and

aj;N ¼
1; if j ¼ 1

j1�a � 2ðj� 1Þ1�a þ ðj� 2Þ1�a; if 1\j\N � 1

ð1 � aÞN�a � N1�a þ ðN � 1Þ1�a; if j ¼ N

8><
>:

ð13Þ

The numerical calculations are performed using the

‘‘Matlab’’ package. Firstly, the effects of the order of

the fractional derivative a on the time histories of the

system are analyzed. The calculations are performed

for free and forced vibrations. Time histories of free

vibrations of coordinates z, h, /, are calculated for the

orders of the fractional derivative

a ¼ 0:25; 0:5; 0:75; 1:0. The calculations are per-

formed for the system parameters A1 ¼ 0:0,

c ¼ 0:001, a ¼ 0:5, b ¼ 0:5, and for the initial con-

ditions zð0Þ ¼ 0:1, hð0Þ ¼ /ð0Þ ¼ 0:005�,

_zð0Þ ¼ _hð0Þ ¼ _/ð0Þ ¼ 0. Exemplary time histories

for the order of the fractional derivative a ¼ 0:25 are

shown in Fig. 2. It can be seen from the time histories

that the energy transfer occurs between the modes of

vibration in a closed cycle (see Fig. 2).

The influence of the order of the fractional deriva-

tive a on damping coefficient c ¼ 0:001 is small. The

influence can be observed for higher values of the

damping parameter c. The comparison of time
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histories of free vibrations for the orders of the

fractional derivative a ¼ 0:25; 0:5; 0:75; 1:0, for coor-

dinate h and for the damping coefficients, c ¼ 0:002

and c ¼ 0:004 are presented in Figs. 3 and 4.

As can be seen from Figs. 3 and 4, the influence of

the order of the fractional derivative a on vibration is

more noticeable for higher values of the damping

coefficient c . It can be observed that an increase in the

order of the fractional derivative causes a decrease in

the vibration amplitudes and a faster decrease of

vibration amplitudes in time.

In the next stage, the impact of the order of the

fractional derivative a on the internal resonance is

studied. The internal resonance is calculated for the

system parameters A1 ¼ 0, a ¼ 0:5, and for the initial

conditions zð0Þ ¼ 0:1, hð0Þ ¼ /ð0Þ ¼ 0:005 �,

_zð0Þ ¼ _hð0Þ ¼ _/ð0Þ ¼ 0. The exemplary results for

the coordinate h and damping coefficient c ¼ 0:001

are shown in Fig. 5a, whereas for damping coefficient

c ¼ 0:004 are shown in Fig. 5b.

From the graphs shown in Fig. 5a, b, we can see

that the decrease in the derivative order increases the

maximum amplitude of the internal resonance. As can

be seen from Fig. 5a for small value of the damping

coefficient (c ¼ 0:001), the effect of the order of the

fractional derivative on the internal resonance is small.

For higher values of damping coefficient (c ¼ 0:004),

the effect of the order of the fractional derivative on

the internal resonance is significant.

In the case of the damping coefficient c ¼ 0:001

and the derivative order a ¼ 0:25, the maximum

amplitude occurs for b ¼ 0:492, while for the other of

the order of the fractional derivative the maximum

amplitude occurs for a ¼ 0:496 (see Fig. 5a). In the

case of the damping coefficient c ¼ 0:004 and the

derivative order a ¼ 0:25, the maximum amplitudes

Fig. 2 Time histories of free vibrations, zð0Þ ¼ 0:1, c ¼ 0:001,

a ¼ 0:5, b ¼ 0:5, A1 ¼ 0, a ¼ 0:25

Fig. 3 Comparison of time histories of free vibrations for

coordinate h, different values of a and for: zð0Þ ¼ 0:1,

c ¼ 0:002, a ¼ 0:5, b ¼ 0:5, A1 ¼ 0

Fig. 4 Comparison of time histories of free vibrations for

coordinate h, different values of a and for: zð0Þ ¼ 0:1,

c ¼ 0:004, a ¼ 0:5, b ¼ 0:5, A1 ¼ 0
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occur for b ¼ 0:498, while for the other of the orders

of the fractional derivative the maximum amplitude

occur for b ¼ 0:5 (see Fig. 5b).

Next, the impact of the order of the fractional

derivative a on the forced vibrations is studied. The

time histories for various vales of the damping

coefficient c are calculated. The time history for

coordinates z; h;/, and for A1 ¼ 0:001, c ¼ 0:001,

a ¼ 0:5, b ¼ 0:5, l1 ¼ 1:0, a ¼ 0:25 are shown in

Fig. 6.

The comparison of time histories of forced vibra-

tions for the orders of the fractional derivative a ¼
0:25; 0:5; 0:75; 1:0 for coordinate h and for the damp-

ing coefficient c ¼ 0:004 are presented in Fig. 7. It can

be observed that an increase in the order of the

Fig. 5 Internal resonance, coordinate h, A1 ¼ 0, a ¼ 0:5, and

for zð0Þ ¼ 0:1, a c ¼ 0:001, b c ¼ 0:004
Fig. 6 Time histories of forced vibrations for coordinates

z; h;/, and for A1 ¼ 0:001, c ¼ 0:001, a ¼ 0:5, b ¼ 0:5,

l1 ¼ 1:0, a ¼ 0:25

Fig. 7 Comparison of time histories of forced vibrations for

coordinate h, different values of a and for: A1 ¼ 0:001,

c ¼ 0:004, a ¼ 0:5, b ¼ 0:5
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bFig. 8 External resonance for coordinates z; h;/, and for

A1 ¼ 0:001, c ¼ 0:008, a ¼ 0:5, b ¼ 0:5

Fig. 9 Bifurcation diagrams versus excitation frequency l1 for

coordinates z; h;/, and for a ¼ 0:25, A1 ¼ 0:00292,

c ¼ 0:00015, b ¼ 0:5
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fractional derivative causes a decrease in the vibration

amplitudes and the time of the energy transfer is

changed.

In the vicinity of the internal resonance (b ¼ 0:5),

and for the same values of the derivative orders as

previously, the calculations of the external resonance

are performed. The calculations are made for the

system parameters A1 ¼ 0:001, c ¼ 0:008, a ¼ 0:5,

b ¼ 0:5, and the results are presented in Fig. 8. The

effect of the order of the fractional derivative on

external resonance is small for small damping coef-

ficients c. As can be seen in Fig. 8, an increase in the

order of fractional derivative causes a decrease in the

amplitude of the external resonance.

Next, the bifurcation diagrams are calculated for

selected orders of fractional derivative. The calcula-

tions are performed in the vicinity of the internal and

external resonances.The diagrams are calculated for

coordinates z; h;/ and the system parameters

A1 ¼ 0:00292, c ¼ 0:00015, b ¼ 0:5, where the bifur-

cation parameter is an excitation frequency l1. These

diagrams were calculated for the order of the fractional

derivative a ¼ 0:25; 0:5; 0:75; 1:0. The bifurcation

diagrams for the order of the fractional derivative a ¼
0:25 are shown in Fig. 9. It can be seen that irregular

vibrations occur for l1 between 0.95 and 1.05. These

diagrams show many sudden qualitative changes, that

is, many bifurcations in the chaotic attractor as well as

in the periodic orbits. Bifurcation diagrams for c ¼
0:00015 and other values of the order of the fractional

derivative are very similar to the bifurcation diagrams

in the case of the order of the fractional derivative a =

Fig. 10 Bifurcation diagrams versus excitation frequency l1

for coordinate z, and A1 ¼ 0:00292, c ¼ 0:004, b ¼ 0:5, a
a ¼ 0:25, b a ¼ 1:0

Fig. 11 Bifurcation diagrams versus excitation frequency l1

for coordinate h, and A1 ¼ 0:00292, c ¼ 0:004, b ¼ 0:5, a
a ¼ 0:25, b a ¼ 1:0
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0.25. Therefore for small values of the damping

coefficient, the effect of the order of the fractional

derivative on bifurcations diagrams is minor.

Then, in order to examine the effect of the order of

the fractional derivative on dynamics behavior of the

analyzed system, bifurcation diagrams were prepared

for larger damping coefficients (c ¼ 0:004). Bifurca-

tion diagrams for coordinates z; h;/ and the system

parameters A1 ¼ 0:00292, b ¼ 0:5, orders of the

fractional derivative a ¼ 0:25 and a ¼ 1:0 (integer

order) are presented: in Fig. 10. for coordinate z, in

Fig. 11 for coordinate h, and in Fig. 12 for coordinate

/. Comparing bifurcation diagrams shown in

Figs. 10, 11 and 12, the effect of the order of the

fractional derivative on bifurcations diagrams can be

observed. As can be seen, the amplitudes of vibration

for a ¼ 0:25 are significantly larger than for a ¼ 1:0.

Moreover, the range of occurrence of the irregular

vibration for coordinates h and / is between l1 =

0.995 and 1.009 for a ¼ 0:25, whereas for a ¼ 1:0, the

irregular vibrations occur in the range of l1 between

0.961 and 1.04. In addition to various types of regular

vibrations, we can also see irregular vibrations in the

bifurcation diagrams.

At every point of a bifurcation diagram, vibrations

should be analyzed in the phase space. In the presented

work, Poincaré maps and the largest Lyapunov

exponents for different orders of the fractional

derivative a are calculated. Exemplary Poincaré maps

for the system parameters A1 ¼ 0:00292,

c ¼ 0:00015, a ¼ 0:5, b ¼ 0:5, l1 ¼ 1:0, and orders

of the fractional derivative a ¼ 0:25 are presented in

Fig. 13 for coordinate z, in Fig. 14 for coordinate h
and in Fig. 15 for coordinate /.

As can be seen form Figs. 13, 14 and 15, the

Poincaré maps for coordinates z; h;/ trace the

‘‘strange attractors’’ and the largest Lyapunov expo-

nents are positive, therefore in this case, the response

is chaotic.

Fig. 12 Bifurcation diagrams versus excitation frequency l1

for coordinate /, and A1 ¼ 0:00292, c ¼ 0:004, b ¼ 0:5, a
a ¼ 0:25, b a ¼ 1:0

Fig. 13 a Poincaré map, b largest exponents of Lyapunov for

coordinate z, and for a ¼ 0:25, A1 ¼ 0:00292, c ¼ 0:00015,

a ¼ 0:5, b ¼ 0:5, mu1 ¼ 1:0
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4 Conclusions

In this paper, the dynamic behavior of the system with

a spherical pendulum and a damper whose viscous

properties are described by a fractional derivative is

analyzed. The derived equations of motion of the

system are solved numerically. The impact of the

order of the fractional derivative on time histories,

bifurcation diagrams and Poincaré maps is analyzed

for selected system parameters. Autoparametric sys-

tems are very sensitive to nonlinearities and damping.

The performed calculations show that use of the

fractional damping has an impact on the time histories

of the system. The influence of the order of the

fractional derivative a on vibrations is more consid-

erable for higher values of the damping coefficient c.

For some system parameters, when the order of the

fractional derivative increases, the vibration ampli-

tudes of the system response decrease. Additionally,

chaotic motion is found for some system parameters.

In the case of higher damping coefficients, the

calculations show qualitative differences between

the responses obtained for the system with damping

described by fractional and integer order derivatives.

Modeling of damping using fractional derivatives

allows for a more accurate description of the damping

properties of the analyzed system in a wider range of

frequency, which is important in an engineering

practice.
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Fig. 14 a Poincaré map, b largest exponents of Lyapunov for

coordinate h, and for a ¼ 0:25, A1 ¼ 0:00292, c ¼ 0:00015,

a ¼ 0:5, b ¼ 0:5, mu1 ¼ 1:0
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