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Abstract In this paper we carry out an in-depth

experimental and numerical investigation of a vibro-

impact rig with a two-sided constraint and an external

excitation given by a rectangular waveform. The rig,

presenting forward and backward drifts, consists of an

inner vibrating shaft intermittently impacting with its

holding frame. Our interests focus on the multistability

and the bifurcation structure observed in the system

under two different contacting surfaces. For this

purpose, we propose a mathematical model describing

the rig dynamics and perform a detailed bifurcation

analysis via path-following methods for nonsmooth

dynamical systems, using the continuation platform

COCO. Our study shows that multistability is pro-

duced by the interplay between two fold bifurcations,

which give rise to hysteresis in the system. The

investigation also reveals the presence of period-

doubling bifurcations of limit cycles, which in turn are

responsible for the creation of period-2 solutions for

which the rig reverses its direction of progression.

Furthermore, our study considers a two-parameter

bifurcation analysis focusing on directional control,

using the period of external excitation and the duty

cycle of the rectangular waveform as the main control

parameters.

Keywords Vibro-impact � Nonsmooth dynamical

system � Multistability � Numerical continuation �
Experiment

1 Introduction

Vibrating systems exhibiting impacts and friction are

very common in engineering applications, such as

ground moling [1], percussive drilling [2], for which

impacting behaviour is a part of the original design, or

gearboxes [3], bearings, and rotor systems [4], which

may be the result of component wear or asymmetry

during system operation. The vibro-impact system to

be studied in this paper, the so-called vibro-impact
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capsule [5], is a self-propelled mechanism under

internal harmonic excitation, moving rectilinearly

when overcoming environmental resistance. It has

abundant coexisting attractors, including both chaotic

and periodic solutions caused by the near-grazing

dynamics of its internal impacts or low speed

progression under nonlinear frictional environment

[6]. Among these attractors, only few of them are

useful from motion control or energy saving points of

view. Hence, the study of controlling the capsule

system involves addressing several key research

issues, such as annihilation of multiple undesired

attractors, basin hopping protection, attractor switch-

ing, and chaos control. These types of dynamical

responses are typical in multistable vibro-impact

systems, such as the one considered in the present

paper, due to which a combination of theoretical and

experimental approaches will be used for the inves-

tigation in this work.

Control of multistable systems has received con-

siderable attention from the research community in the

past few decades [7]. Multistability occurs when a

system presents two or more coexisting attractors, and

such a phenomenon can be found in many applica-

tions. According to the review [7], most of the studies

in control of multistability are for optics, and there are

very few works related to engineering multistability.

From an engineering perspective, there are two major

issues related to multistability. On the one hand, the

performance of multistable systems can be easily

altered with changing its control parameters. Exam-

ples of such systems range from drilling machinery [8]

and milling processes [9] to gearboxes [3]. For these

systems, maintaining some desired states can greatly

improve their performance. On the other hand, some

coexisting attractors may correspond to the states

causing costly failure, e.g. rotor-stator impacts in an

unbalanced rotor [10] or stick-slip oscillations in oil

and gas drilling [11], due to which avoiding such states

becomes crucial. Consequently, the issues described

above will be driven to a large extent by the

investigation presented in this work, with special

focus on multistability phenomena in the considered

capsule system and how this is affected by the control

parameters, both from an experimental and numerical

perspective.

Experimental studies for vibro-impact systems

have been rather limited in the literature. Previous

experimental studies have mainly focused on impact

oscillators [12–14], in which typically has an oscillat-

ing mass making intermittent contact with a single

obstacle, without considering further nonlinear

effects, such as friction. In [15], anisotropic friction

was adopted in the impact-free shell robot for planar

locomotion. Duong et al. [16] developed a two-sided

bidirectional drifting oscillator, but experimental

results showed forward progression only. In [17],

Nguyen et al. studied both theoretically and experi-

mentally a vibro-impact moling rig for underground

pipe installation, where both impacts and friction were

considered. In the present work, we will introduce an

experimental rig where all aspects mentioned above

will be investigated, including two-sided impacting

motion and complex progression patterns in both

directions, forward and backward. By using this novel

experimental rig, we will also investigate near-grazing

dynamics and friction-induced oscillations under

parameter-variations, and compare the experimental

observations with some of the theoretical predictions

obtained in this work.

The idea of vibro-impact self-propulsion for the

capsule system was inspired by the high frequency

vibro-impact drilling [8, 18], where a linear actuator

impacts upon a drilling rod transferring the potential

energy into the kinetic energy of the drill-bit [19].

Capsule’s research work was initiated by mathemat-

ically modelling a vibro-impact capsule with one-

sided constraint [5] where a fundamental understand-

ing of its dynamics was provided. Then the dynamics

of the model was studied by using different friction

models in [20], and revealed that the Coulomb friction

model was fair for relatively large mass ratio of the

system. Experimental verification of the model was

carried out in [21] by using a proof-of-concept

experimental rig which was 170 mm in length and

60 mm in width. It is worth noting that the experi-

mental rig studied in this paper is 42 mm in length,

19.4 mm in diameter and with two-sided constraints,

while the standard-sized capsule for gastrointestinal

endoscopy is 26 mm in length and 11 mm in diameter

[22]. The reason of using the present dimension in this

study is that the dynamical response of the system, e.g.

the acceleration of the inner mass and the displace-

ment of the capsule, can be properly measured at this

scale, so analysis becomes easier. Thereafter, forward

and backward motion control of the capsule system

was studied in [23] by using a position feedback

control method, and optimisation of the system was
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considered from the viewpoint of an engineering

application by using computational fluid dynamics

simulation [24]. Páez Chávez et al. studied the

directional control and energy consumption of the

capsule system by means of path-following techniques

[25]. A typical period-1 trajectory was followed for

maximizing the rate of progression, and it was found

that the capsule achieved its maximal rate when it

oscillated without sticking phases. Selection of mul-

tistability in the capsule system for directional control

was considered in [6], and the MATLAB-based

numerical platform COCO, which supported the

continuation and bifurcation detection of periodic

orbits of non-smooth dynamical systems, was

employed to study the robustness of the proposed

control method. In [26], the concept of the vibro-

impact self-propulsion was implemented on a capsule

prototype which was driven by a push-type solenoid

with a periodically excited rod, and the prototype was

successfully tested in a fluid pipe in [27]. Later on,

capsule’s dynamics in the small intestine was studied

in [28], and a standard-sized capsule prototype for

endoscopy was developed in [29]. For the capsule with

two-sided constraints, Yan et al. studied its dynamics

and compared it with the capsule with one-sided

constraint [30]. In [31], an experimental rig of the

capsule with two-sided constraints was studied

through mathematical modelling and verification.

However, the bifurcations in the dynamics of the rig

was still not fully investigated. Therefore, in this

paper, we will carry out a bifurcation analysis for the

same experimental rig, particularly focusing on its

bistability and directional control.

To gain a deeper understanding of the dynamical

response of the capsule model we will employ path-

following (continuation) methods for nonsmooth

dynamical systems, implemented via the continuation

platform COCO [32]. COCO (abbreviated form of

Computational Continuation Core) is a MATLAB-

based analysis and development platform for the

numerical treatment of continuation problems. The

software provides the users with a set of toolboxes that

covers, to a good extent, the functionality of available

continuation packages, such as AUTO [33] and

MATCONT [34]. In our investigation, we will employ

the COCO-toolbox ‘hspo’ to analyze the bifurcation

structure of the model, which will reveal the presence

of certain dynamical phenomena such as multistability

and hysteresis. For this purpose, we will introduce a

mathematical formulation for the model that will

allow us to clearly identify all possible operation

modes (18 in total), which poses certain difficulties for

the numerical continuation analysis due to the system

complexity.

The novelty of the present work is to employ path-

following methods for analysing the complex dynam-

ics of a nonsmooth dynamical system involving two

nonlinearities, i.e. impact and friction, while the work

studied in [31] only concentrates on model verification

and optimisation in terms of progression speed and

energy efficiency. Furthermore, it is worth noting that

bifurcation analysis of the nonsmooth systems

encoutering both nonlinearities using path-following

methods is limited in the literature, and experimental

studies are even rare. The rest of this paper is

organized as follows. Section 2 presents the system’s

main components and the experimental apparatus of

the capsule rig. In Sect. 3, the vibro-impact capsule is

formulated as a piecewise-smooth dynamical system

for the path-following analysis via COCO. Then a

detailed bifurcation analysis of the system is carried

out in Sect. 4, followed by a further experimental

investigation in Sect. 5. Finally, the paper finishes

with some discussions and concluding remarks, given

in Sect. 6.

2 Experimental apparatus

2.1 Experimental set-up

The experimental apparatus of the vibro-impact cap-

sule system with a two-sided constraint is presented in

Fig. 1a, where a solenoid is mounted inside a capsule

with the coil fixed to the inner surface of the capsule

and the shaft acting as an inner vibrating mass excited

by an on-off rectangular waveform signal. The shaft is

connected with the coil via a pre-compressed helical

spring at one end, and a nylon nut and an iron washer

are fixed on the other end of the shaft. When the coil is

powered on, the shaft moves forward and compresses

the spring. Impact will occur when the washer hits the

front constraint. When the coil is switched off, the

shaft moves backward due to the elastic force provided

by the compressed spring. The secondary impact will

happen when the nut hits the coil, i.e. the back

constraint of the experimental rig. The capsule will

drift forward or backward when the interaction force
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between the capsule and the shaft exceeds the

environmental resistance. A linear variable differen-

tial transformer (LVDT) is attached to the capsule, and

an accelerometer is fixed to the shaft, measuring the

capsule displacement and the acceleration of the shaft,

respectively. As shown in Fig. 1b, both shaft acceler-

ation and capsule displacement are collected by a data

acquisition card through a graphic user interface

(GUI) in LabView with the sampling frequency of 1

kHz. The GUI also sends command (CMD) to a signal

generator to control the solenoid drive circuit by using

the pulse-width modulation (PWM) signal, charac-

terised by the amplitude Pd, frequency f and duty cycle

ratio D. Here, the duty cycle ratio is the fraction of one

period (1/f) in which the on-off rectangular waveform

signal is active. For more detailed description of the

experimental set-up, interested readers can refer to

[31].

2.2 Samples of periodic motion

In order to study the capsule’s dynamics under various

friction environments, two different contacting sur-

faces, an aluminium bench and a cut-open synthetic

small intestine, were used for experimental testing.

Two samples of the obtained periodic time histories

testing on the aluminium bench are presented in

Fig. 2, where the signals of the excitation force, shaft

acceleration and capsule displacement are shown. As

can be seen from Fig. 2a, the capsule has an average

forward progression, and both front and back impacts

are encountered leading to forward and backward

motion of the capsule in every period, respectively. It

can be observed that the front impacts occur at the end

of the interval when the excitation force is switched

on, and the back impacts take place when the

excitation is off and the shaft is pushed back to its

original position by the pre-compressed spring. An

average backward progression was presented in

Fig. 2b, since the excitation force is insufficient to

produce a front impact, and only back impacts are

produced.

3 Mathematical modelling and its formulation

in COCO

3.1 Equations of motion

The physical model of the experimental rig is

presented in Fig. 3, where k1 and c represent the

stiffness of the helical spring connecting the shaft and

the capsule and the damping coefficient of the energy

dissipation led by the relative speed between the

capsule and the shaft, respectively. The secondary

spring with stiffness k2 and the tertiary spring with

Fig. 1 a Photograph and b schematics of the experimental

apparatus. A solenoid is mounted inside a capsule with the coil

fixed to the inner surface of the capsule and the shaft acting as an

inner vibrating mass excited by an on-off rectangular waveform

signal. The shaft is connected with the coil via a pre-compressed

helical spring at one end, and a nylon nut and an iron washer are

fixed on the other end of the shaft. Impact will occur when the

washer hits either the front or the back constraint. A linear

variable differential transformer (LVDT) is attached to the

capsule, and an accelerometer is fixed to the shaft, measuring the

capsule displacement and the acceleration of the shaft,

respectively. Both shaft acceleration and capsule displacement

are collected by a data acquisition card through a graphic user

interface (GUI) in LabView with the sampling frequency of 1

kHz. The GUI also sends command (CMD) to a signal generator

to control the solenoid drive circuit by using the pulse-width

modulation (PWM) signal [31]
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stiffness k3 represent front and back constraints,

respectively, against which front and back impacts

occur. The pre-compressed displacement of the helical

spring is G1, the gap between the shaft and the front

constraint is G2, and the gap between the shaft and the

back constraint is G3. Mc and Mm are the masses of the

capsule (including the mass of the LVDT rod) and the

shaft (including the mass of the accelerometer),

respectively. Xc is the displacement of the capsule,

and Xm is the displacement of the shaft. The friction

between the capsule and its supporting surface is

modelled as Coulomb friction with the friction

coefficient l, which will be adjusted depending on

the considered surface.

The considered system operates in bidirectional

stick-slip phases which contain the following four

modes [31]: stationary capsule without contact, mov-

ing capsule without contact, stationary capsule with

contact and moving capsule with contact. All these

modes can be modelled via the following equations of

motion

Mm
€Xm ¼ Fi;

Mc
€Xc ¼ �Fi þ Ff ;

(
ð1Þ

where the interaction force acting on the shaft, Fi, can

be written as

Fi ¼
Fe � F1 � cVr � F3; Xr � � G3;

Fe � F1 � cVr; � G3 �Xr �G2;

Fe � F1 � cVr � F2; Xr �G2:

8><
>: ð2Þ

Here, Xr ¼ Xm � Xc and Vr ¼ Vm � Vc represent the

relative displacement and velocity between the shaft

and the capsule, F1 ¼ k1ðXr þ G1Þ, F2 ¼ k2ðXr � G2Þ,
F3 ¼ k3ðXr þ G3Þ represent the interaction forces for

the helical spring, front and back impacts, respec-

tively. The external excitation, Fe, is a rectangular

waveform signal, given by

(a) (b)

Fig. 2 Samples of the recorded experimental time histories: a
forward progression at Pd ¼ 282:6 mN, f ¼ 9 Hz and D ¼ 0:2,

and b backward progression at Pd ¼ 100:8 mN, f ¼ 9 Hz and

D ¼ 0:5. Grey and blank areas indicate that the excitation is on

and off, respectively

Fig. 3 Physical model of the vibro-impact experimental rig
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FeðtÞ ¼
Pd; t 2 ½nT; nT þ DT �;
0; t 2 ðnT þ DT ; nT þ TÞ;

�
ð3Þ

where n is the period number, Pd, f ¼ 1
T and D 2 ð0; 1Þ

are the amplitude, frequency and duty cycle ratio of

the signal, respectively.

Since in our experimental setup the contacting

surfaces for both the aluminium and the small intestine

are smooth, friction models involving Stribeck and

low-speed effects were not considered. Therefore, in

the capsule model we assume the following Coulomb

friction law

Ff ¼
�signðVcÞPf ; Vc 6¼ 0;

signðFiÞPf ; Vc ¼ 0; jFij �Pf ;

Fi; Vc ¼ 0; jFij �Pf ;

8><
>: ð4Þ

where Pf ¼ lðMm þMcÞg is the static friction of the

prototype, and g is the gravitational acceleration.

3.2 Parameter identification

The values of Mm and Mc were simply measured by

weighting each element and kept constant throughout

the experiments. For the coefficients k1, k2, k3 and c,

they were identified by matching numerical simulation

with each experimental run, and then averaging all the

values of these coefficients. Identification of friction

coefficient l between the capsule and the supporting

surface was carried out by lifting one side of the

supporting surface slowly until the stationary capsule

started to move. In this way, the friction coefficient

was determined by the angle of the surface slope at

that moment. Finally, the identified physical param-

eters of the vibro-impact experimental rig are given in

Table 1.

3.3 Mathematical formulation in COCO

For the numerical analysis of the capsule system (1), it

is convenient to consider the following nondimen-

sional parameters and variables:

X0 ¼
ffiffiffiffiffiffiffi
k1

Mm

r
; s ¼ X0t; eT ¼ X0T ; n ¼ c

2MmX0

; a ¼ Pd

Pf

;

xm ¼ k1

Pf

Xm; xc ¼
k1

Pf

Xc; g1 ¼ k1

Pf

G1; g2 ¼ k1

Pf

G2; g3 ¼ k1

Pf

G3;

c ¼ Mc

Mm

; j2 ¼ k2

k1

; j3 ¼ k3

k1

:

ð5Þ

In what follows, we will denote by z ¼
ðvm; xr; vr; sÞT 2 R 4 and k ¼
ð eT ;D; a; c; j2; j3; n; g1; g2; g3Þ 2 R þð Þ7� R þ

0

� �3
the

state variables and parameters of the system, respec-

tively, where R þ
0 stands for the set of nonnegative

numbers. In this framework, the capsule motion can be

described by the equation (cf. (1))

z0 ¼

afe � f0 � Hk2
f2 � Hk3

f3

vr

afe � f0 � Hk2
f2 � Hk3

f3 þ
1

c
jHvelj afe � f0 � Hk2

f2 � Hk3
f3 þ Hvelð Þ

1

0
BBBBB@

1
CCCCCA

¼ fCAPðz; k;Hk2
;Hk3

;Hvel; feÞ;

ð6Þ

where the prime symbol denotes derivative

with respect to the nondimensional time s
and f0 ¼ ðxr þ g1Þ þ 2nvr, f2 ¼ j2ðxr � g2Þ,
f3 ¼ j3ðxr þ g3Þ, while xr ¼ xm � xc and vr ¼ vm �
vc represent the (nondimensional) mass displacement

and velocity relative to those of the capsule, respec-

tively. Note that system (6) does not include an

equation describing explicitly the capsule motion.

This motion, however, can be recovered from system

(6) via

xcðsÞ ¼ x�c þ
Zs

0

vcðgÞ dg ¼ x�c þ
Zs

0

ðvmðgÞ � vrðgÞÞ dg;

where x�c 2 R represents the position of the capsule at

t ¼ 0. By using this formula, we introduce the quantity

Table 1 Identified parameters of the vibro-impact experi-

mental rig

Parameters Unit Aluminium Intestine

Mc g 82.42 82.42

Mm g 15.2 15.2

l - 0.3117 0.2771

G1 mm 0 0

G2 mm 3.4 3.4

G3 mm 0 0

k1 kN=m 0.04 0.052

k2 kN=m 16.35 20.91

k3 kN=m 12.27 15.68

c Ns=m 0.53 0.87
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eVavg :¼ 1eT ðxcð eT Þ � xcð0ÞÞ;

which gives the (nondimensional) average velocity

per period of the capsule. According to formulae (5),

the dimensional average velocity will be then given by

Vavg ¼ X0Pf
eVavg=k1. Its sign indicates whether the

capsule moves forwards (Vavg [ 0) or backwards

(Vavg\0).

In model (6), s is an additional variable used to

embed the time into the state space. This variable will

be kept within the interval ½0; eT � according to the reset

scheme

sðsþÞ ¼ sðs�Þ � eT ; whenever sðsÞ ¼ eT : ð7Þ

Furthermore, the symbols Hk2
,Hk3

, Hvel, and fe are

discrete variables defining the operation modes of the

system, according to the rules

Hk2
¼

1; xr � g2 � 0; (contact with k2) ;

0; xr � g2\0; (no contact) ;

�
ð8Þ

Hk3
¼

1; xr þ g3 � 0; (contact with k3) ;

0; xr � g3 [ 0; (no contact) ;

�
ð9Þ

fe ¼
1; 0� s\D eT ; (forcing on) ;

0; D eT � s\ eT ; (forcing off) :

(
ð11Þ

Note that in the expressions above, the term fmc ¼
afe � f0 � Hk2

f2 � Hk3
f3 represents the force acting on

the capsule from the internal mass. Therefore, if the

capsule is stationary, whenever the force fmc becomes

smaller than �1 or larger than 1, the capsule will move

forward or backward, respectively. For the numerical

implementation, the discrete variables defined in (8)–

(11) will be used to identify the specific operation

mode of the capsule. Every operation mode will be

associated to a triple R;D;Hf g, where R 2

NC ; Ck2 ; Ck3f g (no contact, contact with k2,

contact with k3), D 2 Vc0 ; Vcp ; Vcnf g (capsule

stationary, forward motion, backward motion) and

H 2 ON ; OFFf g (forcing on, forcing off). For

instance, the operation mode Ck2 ; Vcp ; OFFf g
means that the capsule is moving forward with the

internal mass in contact with the spring k2 and the

external forcing is off (i.e. fe ¼ 0). In this way, the

capsule system can operate under 18 different modes,

as listed in Table 2.

4 Bifurcation analysis of the capsule system

In this section we will carry out a numerical contin-

uation study of the periodic response of the capsule

system (1), via the continuation platform COCO [32].

To this end, we will employ the mathematical

formulation introduced in the previous section, see

Eqs. (6)–(11). Although the model is formulated using

nondimensional parameters and variables, the numer-

ical results will be presented in dimensions so as to

compare the predictions with the experimental

observations.

4.1 Multistability

The first scenario was carried out on the aluminium

bench under the variation of excitation period, which

is presented in Fig. 4. The excitation period in

experiment was varied from 50 to 200 ms, and both

stationary and forward motions were observed. For

numerical simulation, these two motions coexist when

the excitation period is small (grey area), and the

response for the stationary motion disappears as the

excitation period increases, where the system becomes

monostable. Additional windows demonstrate the

time histories of shaft acceleration and capsule

Hvel ¼
0; vc ¼ 0 and jafe � f0 � Hk2

f2 � Hk3
f3j � 1; (capsule stationary) ;

1; vc [ 0 or vc ¼ 0 and afe � f0 � Hk2
f2 � Hk3

f3\� 1ð Þ; (forward motion) ;

�1; vc\0 or vc ¼ 0 and afe � f0 � Hk2
f2 � Hk3

f3 [ 1ð Þ; (backward motion) ;

8><
>: ð10Þ
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Table 2 Operation modes

of the capsule system and

the corresponding values of

the discrete variables Hk2
,

Hk3
, Hvel and fe defined in

(8)–(11)

Operation mode Hk2
Hk3

Hvel fe Operation mode Hk2
Hk3

Hvel fe

NC ; Vc0 ; OFFf g 0 0 0 0 Ck2 ; Vcp ; ONf g 1 0 1 1

NC ; Vc0 ; ONf g 0 0 0 1 Ck2 ; Vcn ; OFFf g 1 0 -1 0

NC ; Vcp ; OFFf g 0 0 1 0 Ck2 ; Vcn ; ONf g 1 0 -1 1

NC ; Vcp ; ONf g 0 0 1 1 Ck3 ; Vc0 ; OFFf g 0 1 0 0

NC ; Vcn ; OFFf g 0 0 -1 0 Ck3 ; Vc0 ; ONf g 0 1 0 1

NC ; Vcn ; ONf g 0 0 -1 1 Ck3 ; Vcp ; OFFf g 0 1 1 0

Ck2 ; Vc0 ; OFFf g 1 0 0 0 Ck3 ; Vcp ; ONf g 0 1 1 1

Ck2 ; Vc0 ; ONf g 1 0 0 1 Ck3 ; Vcn ; OFFf g 0 1 -1 0

Ck2 ; Vcp ; OFFf g 1 0 1 0 Ck3 ; Vcn ; ONf g 0 1 -1 1

Fig. 4 Average speeds of the experimental rig on the

aluminium bench under different excitation periods for Pd ¼
183:3 mN and D ¼ 0:5, obtained by numerical simulation (blue

and red dots) and experiment (green triangles). The grey area

indicates the region of multistability of the rig, where two

stable solutions, Attractor 1 (blue dots) and Attractor 2 (red

dots), coexist. The upper panels depict the time histories of shaft

acceleration and capsule displacement for T ¼ 62:5 ms and 76.9

ms, as indicated by the arrows. (Color figure online)
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displacement at T ¼ 62:5 ms and 76.9 ms, where

Attractor 1 (red lines) has no impact and no progres-

sion, and coexists with Attractor 2 (blue lines), which

has both front and back impacts and an average

forward progression. Time histories of experimental

results were plotted in green lines, which are consis-

tent with the numerical simulation. The small dis-

crepancy in capsule displacement could be due to

measurement inaccuracies, such as friction coefficient

and the intrinsic errors in the parameter estimation.

To take a deeper insight into this multistable region,

we will carry out the numerical continuation of the

periodic response of the capsule system with respect to

excitation period T. The result is shown in Fig. 5a and

the blow-up given in panel (b). The vertical axis Tc

shows the total time the mass is in contact with the

constraints, i.e. the springs k2 or k3. It should be noted

that there is a difference, 10.9 mN, between the

amplitude of excitation Pd used in experiment (Fig. 4)

and the one used for numerical continuation (Fig. 5).

Since the experiment involved a lot of noise, an

averaged Pd was used in Fig. 4, while we found that

the amplitude Pd used for numerical continuation can

better reveal the bifurcations in the system, so was

adopted. However, such a difference can be consid-

ered as minor for comparing experimental and

numerical studies in general. From the bifurcation

diagram it can be seen that if the period is small, then

the internal mass will oscillate without touching the

constraints, see for instance the (stable) solution

plotted in Fig. 5e. According to the operation modes

defined in the previous section, this solution operates

(e)(d)c)

(b)(a)

GR1
F1

GR3

F2

F3
GR2
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m
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]
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m
/s

]

V r
[m

m
/s

]

Xr [mm]Xr [mm]Xr [mm]

Solution at P1 Solution at P2 Solution at P3
(

Fig. 5 a Numerical continuation of the periodic response of the

capsule system (1) on the aluminium bench with respect to the

excitation period T, computed for Pd ¼ 172:4 mN and D ¼ 0:5,

and the parameter values given in Table 1. The vertical axis Tc

shows the total time the mass is in contact with the constraints.

The points Fi and GRi represent fold and grazing bifurcations of

limit cycles, while the labels Pi denote test points along the

bifurcation diagram at T ¼ 72:2 ms. Dashed and solid lines

represent unstable and stable solutions, respectively. The closed

curve D1–D2 shows schematically a hysteresis loop of the

system. b Blow-up of the boxed region shown in panel a. Panels

c–e depict phase plots of three coexisting attractors computed

for T ¼ 72:2 ms. Here, the vertical red lines stand for the impact

boundaries Xr ¼ 0 mm and Xr ¼ 3:4 mm
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under the following cyclic sequence

NC ; Vc0 ; OFFf g, NC ; Vc0 ; ONf g, see

Table 2. As the period of excitation is increased, the

resulting periodic orbit becomes closer and closer to

the constraint given by the spring k2, until a grazing

solution is found at T 	 72:3409 ms (GR1, see

Fig. 7c). From this point on, the capsule system

presents stable periodic solutions making intermittent

contact with the spring k2. However, the stability of

these solutions is lost at T 	 72:3468 ms, where the

system undergoes a fold bifurcation of limit cycles

(F1). Here, a branch of impacting unstable solutions is

born, along which a grazing bifurcation GR3 is

detected (T 	 72:2450 ms). At this point, the capsule

leaves its stationary regime and starts moving forward.

As the period decreases, another fold bifurcation (F3)

is found for T 	 72:1802 ms, where the periodic

solution becomes stable. From this point a branch of

stable periodic solutions impacting the constraint k2

emanates, until a grazing bifurcation GR2 is detected

(T 	 72:7958 ms). Here, the resulting periodic solu-

tion makes grazing contact with the other spring k3, as

shown in Fig. 7d. Very close to this point, a fold

bifurcation is detected (not shown in the diagram)

where the periodic orbit loses stability, hence giving

rise to a larger branch of unstable solutions. This

branch, however, terminates at the point labeled F2

(T 	 57:2925 ms), where another fold bifurcation

takes place. From this point onwards, the resulting

periodic solutions are stable and remain so for larger

values of the excitation period T. Fig. 7a depicts the

same bifurcation diagram, but this time showing the

average capsule velocity on the vertical axis.

Another important feature of the bifurcation dia-

gram discussed above is the interplay between the fold

bifurcations F1 and F2, which gives rise to hysteresis

in the system, schematically represented by the closed

curve D1–D2 plotted in Fig. 5a. As a result, we can

determine a parameter window T 2 ½57:30; 72:34�
where the system exhibits coexisting attractors. In

particular, due to the geometry of the resulting

bifurcation curves, we find a smaller window defined

by the bifurcation points F3 and F1 (approximately

[72.18, 72.34]) where the system presents three coex-

isting attractors, see for instance Fig. 5, panels (c)–(e).

Basins of attraction of these three coexisting attractors

computed at T ¼ 72:2 ms are plotted in Fig. 6a, where

the blue dot with yellow basin represents P1 response

with front and back impacts, the green dot with orange

basin represents P2 response with front impact, and the

red dot with grey basin denotes the near-grazing

response P3. Figure 6b presents the basin evolution

for these attractors computed at T ¼ 72:6 ms, where

the basin of the near-grazing response disappears and

the basin of the response with front impact shrinks. As

the excitation period increases, the basin of the

response with front impact disappears completely,

and the system becomes monostable. It should be

noted that since the full dimension of the system is

greater than two, Fig. 6 presents the projections of

basins of attractions on the phase plane of the relative

displacement and velocity between the shaft and the

capsule. In our simulation, capsule’s displacement and

velocity were set to zero, and shaft’s displacement and

velocity were varied for basin computation. If cap-

sule’s displacement and velocity are changed, it will

not affect the obtained basins, since they were

computed using the relative displacement and velocity

between the shaft and the capsule.

The phenomenon of multistability can be further

investigated by performing a two-parameter continu-

ation of the bifurcation points F1 and F2 found before,

using the excitation period T and the duty cycle D. The

result is shown in Fig. 7b. In this picture, the red and

black curves give the two-parameter continuation of

the fold points F1 and F2, respectively. These curves

define a region in the parameter space (in gray)

denoting combinations of T and D producing multi-

stability in the system. In particular, these curves

allows a classification of the system behavior in terms

of multistability and capsule average motion, see the

regions given in Fig. 7b.

4.2 Period-doubling bifurcation

The second scenario for the comparison between

experiment and numerical simulation is shown in

Fig. 8, where the duty cycle D is the main control

parameter. It can be seen from Fig. 8a that the capsule

has a period-1 backward motion at D ¼ 0:3, while for

D ¼ 0:4 the system presents a period-2 solution with

forward motion, which gives an indication of the

presence of two phenomena, namely, a period-dou-

bling bifurcation and a critical point where the capsule

changes its direction of average progression. Some

sample solutions related to these observations are

given in Fig. 8, for D ¼ 0:45, D ¼ 0:47 and D ¼ 0:5.

It is worth noting that the values of the velocities
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Fig. 7 a Numerical continuation computed in Fig. 5a showing

the behavior of average capsule velocity Vavg. The bifurcation

labels are the same as in Fig. 5a. b Two-parameter continuation

of the F1 (red curve) and F2 (black curve) bifurcation points

with respect to the excitation period T and duty cycle D. The

grey region represents parameter values producing multistabil-

ity, where two or three attractors coexist (see Fig. 5). Panels (c)

and (d) show phase plots of solutions making grazing contact

with the impact boundary Xr ¼ 3:4 mm and Xr ¼ 0 mm,

respectively. (Color figure online)
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obtained numerically are three times higher than those

recorded experimentally as presented in the figure, and

also the period-doubling bifurcation occurs at very

different values of parameter D. These two discrep-

ancies are due to the friction coefficient and the step

size used in experiment. Since our model adopted

Coulomb friction, its coefficient was a constant for

which numerical continuation can be conducted, while

this coefficient should increase with capsule’s speed as

measured in our experiment [29]. In the experiment,

we can only change the duty cycle D at the minimum

step of 0.1, so any intervals between 0.1 cannot be

observed. This leads our experimental observations of

the period-1 backward, period-2 forward and period-1

forward motion at D ¼ 0:3, 0.4 and 0.5, respectively.

In order to investigate in detail the observations

described above, we will carry out the numerical

continuation of the periodic response of the capsule

with respect to the duty cycle D. The result is shown in

Fig. 9a. Here, we show in the vertical axis the average

capsule velocity. If we start the study with the duty

cycle close to the symmetric case (D ¼ 0:5), we can

observe that the capsule presents forward motion, as

can be seen for instance at the test point P2, see

Fig. 9b. As we decrease the duty cycle, the average

capsule velocity Vavg decreases as well. During this

continuation process, a period-doubling bifurcation of

limit cycles (PD2) is found at D 	 0:4734, where the

original period-1 solution becomes unstable and a

stable branch of period-2 solutions is born. For these

stable period-2 solutions the average capsule velocity

becomes smaller as the duty cycle decreases, until a

critical point P3 (D 	 0:4651) is found where Vavg

becomes zero, see Fig. 9d. For smaller duty cycles, the

(a) (b)

Fig. 8 Average speeds of the experimental rig on the small

intestine under different duty cycle D for Pd ¼ 275:8 mN and

f ¼ 18:5 Hz obtained by a experiment and b numerical

simulation. Additional windows in a demonstrate that the

experimental rig bifurcates from a period-1 backward motion at

D ¼ 0:3 to a period-2 forward motion at D ¼ 0:4, and then to a

period-1 forward motion at D ¼ 0:5. Additional windows in b
recorded for D ¼ 0:45, 0.47 and 0.5 demonstrate the same

bifurcations observed in numerical simulation
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Fig. 9 a Numerical continuation of the periodic response of the

capsule system (1) on the small intestine with respect to the duty

cycle D, computed for Pd ¼ 275:8 mN, f ¼ 18:5 Hz, and the

parameter values given in Table 1. The vertical axis shows the

average capsule velocity. The points PDi represent period-

doubling bifurcations of limit cycles, while the labels P1 and P2

denote test points at D ¼ 0:3 and D ¼ 0:5, respectively. The

label P3 (D 	 0:46514) gives the point for a period-2 solution

with zero average capsule velocity. Panels b–d depict time plots

of periodic solutions with negative (at P1), positive (at P2) and

zero (at P3) average capsule velocity. Here, grey and blank areas

indicate that the excitation is on and off, respectively
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Fig. 10 a Two-parameter continuation of period-2 solutions
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the excitation period T and duty cycle D. The resulting curve

divides locally the parameter space into two regions corre-

sponding to forward and backward capsule progression. Panels

(b) and (c) show time plots of periodic solutions computed at the

test points P1 (D ¼ 0:453, T ¼ 56:5 ms, forward progression)

and P2 (D ¼ 0:465, T ¼ 53:5 ms, backward progression),

respectively
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capsule start moving backwards, as can be seen for

instance at the test point P1 (D ¼ 0:3) depicted in

panel (c).

Therefore, the critical point P3 found above can be

used to define a boundary between forward and

backward capsule motion, via two-parameter contin-

uation of this critical point with respect to the

excitation period T and the duty cycle D. The result

of this process is shown in Fig. 10a. This curve then

gives combinations of T and D producing period-2

solutions with zero average capsule velocity. Hence,

this curve can be used to divide locally the parameter

space into two regions: one for parameter values

producing forward motion (above the curve) and one

for backward motion (below the curve). This classi-

fication can be verified with the test points given in

panels (b) and (c). Note that although the test points

are quantitatively close to each other (P1 at

D ¼ 0:453, T ¼ 56:5 ms, and P2 at D ¼ 0:465, T ¼
53:5 ms), the precise knowledge of the critical curve

allows us to identify which one will produce the

desired type of motion. According to the discrepancies

shown in Fig. 8, such a critical curve for the exper-

imental rig will appear on the left of the curve obtained

through two-parameter continuation. The result pre-

sented in Fig. 10a give an accurate boundary for

numerical simulation, but a rough prediction for

experiment. However, this numerical result do give

us an indication of parameter selection in experiment.

For example, by using Figs. 8 and 10, we could predict

in experiment that a low frequency of external

excitation with a large duty cycle will produce forward

progression, while a high frequency of external

excitation with a small duty cycle could generate

backward progression.

5 Experimental investigation of the capsule system

In this section we will further analyse the dynamics of

the experimental rig under different control parame-

ters and contact surfaces based on experimental

observations.

Figure 11 compares the movement of the rig on the

aluminium bench and the small intestine under the

same control parameters, Pd ¼ 300 mN, f ¼ 9 Hz and

D ¼ 0:5. It can be seen from Fig. 11a that the rig

moving on the aluminium bench was faster than the

one moving on the small intestine. As backward drift

occurred at every period of excitation, greater friction

on the aluminium bench forced the rig to have less

backward drift than the small intestine, so leading to a

faster overall progression. This also caused different

amplitudes of acceleration for the shaft when both

front and back impacts were encountered as presented

in Fig. 11b. As can be seen from the figure, although

impacts occurred at the same time for both surfaces,

and most of the amplitudes of back impacts for the

small intestine (red dash line) were smaller than the

aluminium bench (black solid line), the rig still had

larger backward drifts on the small intestine due to

smaller friction on the surface.

To investigate the influence of the impact on

capsule’s motion, a comparison of capsule’s displace-

ments on the aluminium bench under different duty

cycles is presented in Fig. 12. It can be seen from the

right panel that as the duty cycle is small (D ¼ 0:1),

the shaft only had back impacts so leading to backward

progression of the system. When D ¼ 0:2, front

impact was encountered which caused large forward

drift. As the duty cycle was increased to D ¼ 0:7, two

front impacts were encountered in every period of

excitation. However, such a large duty cycle seems

inefficient in driving the system as the shaft stuck with

the front constraint causing less forward progression.

Finally, a comparison of capsule’s response on the

small intestine under different excitation forces is

presented in Fig. 13. It can been seen from Fig. 13a

that when Pd ¼ 185 mN, no impact was encountered,

so the rig had chaotic motion oscillating at its original

position. When Pd ¼ 300 mN as shown in Fig. 13b,

both front and back impacts were recorded, and the rig

bifurcated into a period-2 forward motion.

6 Concluding remarks

The present work considered a vibro-impact rig with

two-sided constraint, which was studied in detail both

from a numerical and an experimental perspective.

The rig was excited by an on-off rectangular wave-

form signal applied to its inner vibrating shaft, which

intermittently impacts with the outer frame of the

entire system, leading to forward and backward drifts.

The purpose of development of such a rig was to

understand the dynamics of the standard-sized capsule

[29] (26 mm in length and 11 mm in diameter) for

gastrointestinal endoscopy. For this purpose, two
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different contacting surfaces, an aluminium bench and

a cut-open synthetic small intestine, were tested in this

study. To have a better understanding of dynamics of

the rig, we introduced a mathematical formulation of

the model in the framework of piecewise-smooth

dynamical systems, so as to later apply path-following

methods for a detailed bifurcation analysis via the

continuation platform COCO [32].

Our analysis focused on the multistability and the

period-doubling phenomena in the system. Through

numerical continuation, it was revealed that the

existence of parameter windows for which two and

three attractors coexist, consisting of a combination of

non-impacting solutions and solutions with front and

back impacts, caused after grazing bifurcations with

the motion constraints. It is also a transitional region

for the system moving from stationary to forward

progression. In addition, basins of attractions for the

coexisting solutions were computed, showing the

complex dynamical scenario of the system. Further-

more, a two-parameter continuation of the critical

bifurcation points allowed the identification of a

parameter region for which multistability can be

observed, considering the period of the external

excitation and the duty cycle as the main control

parameters.

By using path-following methods a detailed bifur-

cation study was carried out, showing the presence of

period-doubling bifurcations of limit cycles. During

this study, it was observed that stable period-2

(b)(a)

Fig. 11 Experimental time histories of a capsule’s displacement and b shaft’s acceleration at Pd ¼ 300 mN, f ¼ 9 Hz and D ¼ 0:5
when the rig moved on the aluminium bench (black solid lines) and the small intestine (red dash lines). (Color figure online)

Fig. 12 Experimental time histories of capsule’s displacement (left panel), excitation force and shaft’s acceleration (right panels) at

Pd ¼ 300 mN, f ¼ 9 Hz, D ¼ 0:1, 0.2 and 0.7 when the rig moved on the aluminium bench
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solutions produce the transition from forward to

backward average motion of the capsule. This transi-

tion can be traced in two parameters (period and duty

cycle) via continuation methods, which allowed the

computation of a critical curve representing the

boundary between forward and backward progression.

This curve then enables the implementation of control

strategies that can be tested in further investigations

related to directional control of the vibro-impact

capsule system.

Experimental observations in this work revealed

that it was challenging to control the progression of the

system on slippy surface as less friction may present

causing excessive backward drifts. The studies also

confirmed the role of front and back impacts on

contributing the overall progression of the system.

Front and back impacts can generate sufficiently large

forces for the experimental rig to overcome environ-

mental resistance leading to forward and backward

progression, respectively.

Our future work will focus on the development of a

standard-sized capsule prototype, which is 26 mm in

length and 11 mm in diameter, design optimisation,

mathematical modelling, numerical continuation anal-

ysis, and experimental verification.
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