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Abstract The nonlinearities of geometric nature that

is characteristic for pendulum-type systems are

expressed by the trigonometric functions. In order to

apply the method of multiple scales in time domain to

solve problems concerning such systems, the trigono-

metric functions of the generalised coordinates are

usually approximated by a few terms of their Taylor

series. In the paper we apply the polynomial approx-

imation in quadratic means. In contrast to the approx-

imation by Taylor series, the proposed manner

approximates the trigonometric functions not around

a given point but on the given interval. Quality and

accuracy of the solutions obtained using the multiple

scales method based on such approach have been

tested. The steady state responses in the main

resonance have been also examined and compared

with their counterparts obtained using the method of

multiple scales based on the Taylor series.

Keywords Method of multiple scales � Geometric

nonlinearity � Polynomial approximation � Pendulum �
Primary resonance

1 Introduction

In general, nonlinearities in mechanical systems can

result from nonlinear constitutive laws, from nonlinear

geometric relationships and due to the design con-

straints. In the case of discrete mechanical systems

consisting of rigid bodies, spring elements and

dampers, the constitutive relationships for elastic and

damping forces have usually the form of the higher-

order power laws. Nonlinearities of the geometric

nature are often manifested in the form of the

trigonometric functions of unknown generalised coor-

dinates. The two circumstances significantly affect the

character of the mathematical governing equations as

well as the methods of their solutions, especially in the

case of employment of the approximate analytical

methods.

One of such methods quite commonly used in the

dynamics of discrete mechanical systems is the

method of multiple scales in time domain (MMS),

which belongs to the broad class of perturbation

methods, and at the same time falls under the

mainstream of multiscale modelling [1]. The pertur-

bation approach consists in replacing an original

nonlinear problem with a simpler one which is
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solvable analytically or partly analytically. Construct-

ing the mathematical model of the simpler problem

using the equations of the harmonic oscillator seems to

be a natural way in the case of the vibrating

mechanical systems [2]. The nonlinear terms occur-

ring in the constitutive equations for springs can

usually be treated as small contribution into the

dominant linear relationship. This provides both the

opportunity to build the differential operator of the

harmonic oscillator equation and makes that all

nonlinear terms in the equations of the approximated

problem have the character of small perturbations.

In the case of the geometric nonlinearities typical

for systems with pendulums, the restoring forces are

described by the trigonometric functions of unknown

generalised coordinates which excludes the direct

applicability of the previously mentioned way of

creating the approximated model. A widely used

solution to this problem consists in the approximation

of the trigonometric functions by few terms of their

Taylor series. The functions sine and cosine are

expanded in the Taylor series around a characteristic

value of the argument, and then the series are truncated

to a finite number of their terms. The choice of the

point around which the functions are expanded in the

Taylor series is dependent on the purpose of the

analysis. It often corresponds to the equilibrium

position around which the system oscillates. The

number of the terms of the Taylor series taken into

account affects the accuracy of the approximation, and

strictly the size of the interval on which it is valid. In

turn, for the reasons closely related with the character

of the method of multiple scales this number is rather

small [2–4]. The expansion in the Taylor series up to

third order is usually applied, although the expansions

both up to lower and higher orders are also used.

The mechanical systems of several degrees of

freedom with pendulums serve as relatively simple

models of many mechanisms and devices. Eissa et al.

[4, 5] used the spring pendulum in order to model the

ship’s roll motion. They dealt with the problem of the

passive reduction of the vibration of the pendulum

subjected to multi-parametric excitation forces with

use the tuned absorber acting in the direction transver-

sal to the swing vibration, in [4], and in the longitu-

dinal direction, in [5]. The method of multiple scales

with three time variables was applied, and the

trigonometric functions of the a priori small angle

were expanded in the Taylor series up to third order

around zero.

The method of multiple scales has been success-

fully applied in the studies of chaotic behaviour of

weakly nonlinear systems with the geometric nonlin-

earities in order to predict the chaotic responses. Lee

and Park [6] investigated the chaotic resonant

responses of a weakly nonlinear spring pendulum

excited by harmonically changing force and torque.

Applying of the method of multiple scales with two

time variables allowed for obtaining uniformly valid

asymptotic expansions corresponding to the condi-

tions simultaneously occurring internal and external

resonances. The trigonometric functions were approx-

imated by the Taylor series truncation to the terms of

the second order which significantly limited the area in

which the chaotic responses were sought. Alasty and

Shabani [7] basing on the asymptotic solutions given

in [6] and conducting an extended analysis of the

pendulum behaviour in the area of the internal and

external resonances, showed the possibility of the

occurrence of both chaotic and quasi-periodic

responses. They also pointed to the high sensitivity

of the pendulum’’ behaviour to small changes in

attenuation parameters. However, it should be noted

that the analysed area around the resonance was

expanded in relation to the area adopted in [6] without

changing the assumptions regarding the order of the

approximation and the Taylor series.

Lee and Park [8] studied the responses of the forced

weakly nonlinear spring pendulum again, this time

using the variant of the method of the multiple scales

with three time variables which is also called the

second order approximation. In this variant, it is

purposeful to expand the trigonometric functions in

the Taylor series up to third order. They focused on the

internal and external responses occurring at the same

time and without enlarging the resonant area observed

that the second-order approximation gives better

qualitative agreement with the original system than

the first-order approximation. In turn, Amer et al. [9]

investigated the chaotic responses of the weakly

nonlinear spring pendulum which is not only forced

harmonically but also subjected to the kinematic

excitation because its pivot point moves along a

circular path. They considered the same type of

resonances as the one studied in [6–8] but applied the

method of multiple scales in the form of the third order

approximation, i.e. the variant with four time
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variables. However, the trigonometric nonlinearities

have been approximated by the terms of the Taylor

series only up to the third order.

Starosta and co-authors [10, 11] dealt with the

dynamics of the forced spring pendulum with viscous

damping under the action of non-stationary constraints

which are performed in such a way that the suspension

point moves with the predetermined movement. They

studied the behaviour of the spring pendulum whose

suspension point moves with a constant angular

velocity along a fixed circular path of a small radius

[10] or along a closed Lissajous curve [11]. The

investigations that focused on the resonant regular

responses at the external and parametric simultane-

ously occurring resonances were based on the uni-

formly valid asymptotic expansions obtained using the

second order variant of the multiple scales method i.e.

the variant with three time scales. The trigonometric

nonlinearities have been approximated by the terms of

the Taylor series up to the third order, i.e. the highest

order possible in this variant of the method.

The approach based on the limiting phase trajecto-

ries (LPT) idea was employed in the papers [12, 13] in

order to study the non-steady resonance states of the

harmonically forced and weakly nonlinear spring

pendulum. Such states are accompanied by intensive

energy exchange between the system and external

source and in the case of the multi-degree of freedom

systems also between the particular modes which

manifests oneself among other in the strong modula-

tion of the amplitude and phases. The shape of the

modulation curves highly depends on the nonlinear

features of the spring. The variant of the method of

multiple scales with time variables was necessary to

guarantee preserving the crucial nonlinear parameter

in the considerations. In agreement with this variant,

the trigonometric functions were expanded in the

Taylor series up to third order. The conception of the

limiting phase trajectories was proposed by Manevitch

[14, 15] and applied firstly as a means to analyse non-

steady vibration accompanied by intensive energy

exchange between weakly coupled oscillators.

Another kind of simple mechanical system with

geometric nonlinearities is the spring physical pendu-

lum. Different aspects of its behaviour in small

oscillations around the stable equilibrium position

have been considered in [16–18]. From the point of

view of this review, it is worth emphasizing that the

common element of these works is the employment of

the method of multiple scales with three time

variables. The trigonometric functions have been

approximated by the Taylor series truncated to the

terms of the third order.

Salahshoor et al. [19] analysed vibration of the

sliding pendulum with clearances ignoring the hori-

zontal motion of the system. They proposed two

models simulating the clearances occurring in the

system. The simpler model has two degrees of

freedom while the more complicated one is of three-

degree-of-freedom. The clearances are modelled

employing nonlinear springs and dampers. Primary

resonance and internal resonance are discussed in

detail on the base of approximate analytical solutions

obtained using the method of multiple scales with

three time variables. This variant of the method

applied imply the expanding of the trigonometric

nonlinearities in the Taylor series up to third order.

Container cranes dynamics is the subject of works

[20, 21], where the double pendulum with assumed

geometric constraint serves as the simplified model of

the crane. In both works, the trigonometric nonlinear-

ities occurring in the governing equations have been

approximated by expansion of them in the Taylor

series up to third order. Daqaq and Masoud [20]

aiming at finding the approximation of the pendulum

frequency necessary to design the nonlinear input-

shaping controller used the method of multiple scales

in the variant with three time variables. Nayfeh and

Baumann [21] determined the normal form of the

Hopf bifurcation applying the method of multiple

scales with two time variables.

The double pendulum is another example of the

mechanical system with nonlinearities of geometric

type. Sado and Gajos [22] investigated the behaviour

of a three-degree-of-freedom system with the double

pendulum focusing on the vibration in the neighbor-

hood of the internal and external resonances occurring

at the same time. The equations governing the

modulation of the amplitudes and phases as well as

the resonance response functions in the implicit form

were obtained employing the method of multiple

scales with three time variables. Both the angle

generalised coordinates have been approximated by

the Taylor series keeping the terms up to the third

order.

Sartorelli and Lacarbonara [23] investigated, both

theoretically and experimentally, the parametric res-

onances of the double pendulum subjected to the
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kinematic excitation in the vertical direction. The

theoretical part consisted in employing the method of

multiple scales in order to obtain the differential

equations of the slow time evolution of the amplitudes

and phases for a priori assumed conditions of the both

parametric resonances. Authors took into account the

effects of higher orders by using the non-classical

approach consisting in the introduction of three time

variables proportional to the first, second and fourth

powers of a small parameter. In the framework of this

formulation they conducted three stages of the

perturbation procedure corresponding to the odd

powers of the small parameter. The trigonometric

functions were approximated by the fifth order poly-

nomial resulting from their expanding in the Taylor

series around the stable equilibrium position.

Summing up, the method of multiple scales, but

also other perturbative methods, cannot be applied

directly for the governing equations for the systems

with geometric nonlinearities. The approximation of

the trigonometric nonlinearities with a polynomial

composed of several terms of the Taylor series is

commonly used for such systems. The accuracy of this

approximation decreases with the distance from the

point around which the function is expanded. The

accuracy of the approximation can of course be

increased by using higher order polynomials, but in

the case of the perturbation methods this leads to a

significant increase of the computational complexity.

Regardless of the order of the approximation by the

Taylor series one should be aware of the restrictions

which result from it. These restrictions mainly apply to

the size of the vibration amplitude. Any extrapolation

beyond the interval on which the approximation is

valid seems to be unjustified.

In the present work, we propose the application of

the polynomial approximation in quadratic meaning in

order to formulate the approximate governing equa-

tions for the systems with trigonometric nonlinearities.

In contrast to the approximation realised by Taylor

series, the proposed novel approach makes that the

functions sine and cosine are approximated with

sufficiently accuracy not only around a given point

but on the whole predefined interval. The size of the

interval one should a priori determine appropriately to

the aim of investigations and to the expected range of

the variability of angle coordinates. Therefore, the

proposed approximation may be the solution which

guarantee to obtain better predictions for resonance

responses for mechanical systems with geometric

nonlinearities.

The further part of the paper is organised in the

following way. The mathematical foundations of the

proposed polynomial approximation are described

briefly in Sect. 2. The system chosen to examine the

effects of the proposed approach is described in

Sect. 3, where equations of motion are also derived.

Section 4 reports the approximation of the governing

equations with the use of the polynomial approxima-

tion. Resonant vibrations for the primary resonance

are studied in Sect. 5. Section 6 is devoted to inves-

tigation of the steady state resonant responses. In

Sect. 7, the results of simulations done are discussed.

Concluding remarks are presented in Sect. 8.

2 Polynomial approximation in quadratic meaning

The issue of finding for a given real-valued function f

the best approximation on a given finite interval we

realize in a Hilbert space U, i.e. in the sense of L2-

norm. The L2-norm is defined as follows

fk kL2¼
ffiffiffiffiffiffiffiffiffiffi

f ; fð Þ
p

; ð1Þ

where f ; fð Þ denotes the inner (or scalar) product.

Due to the fact that the L2-norm is the generalised

Euclidean norm, the best approximation problem in

the Hilbert space is often called the approximation in

quadratic sense.

Let I ¼ a; b½ � be the interval on which the function f

is determined. The solution, h0; of the problem of the

best approximation of f in U fulfills equation [24, 25]

f � h0; uð Þ ¼ 0; 8u 2 U: ð2Þ

Limiting the search to an n-dimensional subspace

of U, with the basis l1; l2; . . .; lnf g, one can effec-

tively find the solution to the best approximation

problem [25]. The solution h to the problem formu-

lated in this mean satisfies equation

f � h; lið Þ ¼ 0; i ¼ 1; 2; . . .; n: ð3Þ

We assume that the solution sought is a linear

combination of the base functions in the form

h ¼
X

n

j¼1

djlj; ð4Þ

where dj; j ¼ 1; 2; . . .; n are unknown coefficients.
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Substituting (4) into Eq. (3) gives the system of n

linear equations

X

n

j¼0

djðlj; liÞ ¼ f ;lið Þ; i ¼ 1; . . .; n ð5Þ

with n unknown coefficients dj.

Thus, the problem of the best approximation of the

given function f consists in the solving the system of

n linear equations.

Some details of the realisation of the procedure of

the best approximation result from the purpose which

is assumed in the paper. We seek the best approxima-

tion of the functions sine and cosine of the generalised

coordinate which changes its values in some range

around the stable equilibrium position. Therefore, the

interval I should be symmetrical relative to zero. Thus,

we postulate I ¼ �p; p½ �: In the most commonly used

variant of the method of multiple scales, three time

variables proportional to the successive powers of the

small parameter are introduced, and thus all terms of

the order higher than third one are neglected in the

solution. Focusing on the approach competitive for

this variant we introduce the following basis

1; x; x2; x3
� �

: Taking all this into account, we obtain

lj;li
� �

¼
Z p

�p

xjþi�2dx; i; j ¼ 1; . . .; 4; ð6Þ

f ; lið Þ ¼
Z p

�p

f xð Þxi�1dx; i ¼ 1; . . .; 4; ð7Þ

where f denotes the sine or the cosine, depending on

the need.

Solving the system of Eq. (4) yields the following

coefficients for the approximation of the sine1

ds1 ¼ 0; ds2 ¼ 15 p p2 � 21ð Þ cos pþ 21 � 8p2ð Þ cos pð Þ
2p5

;

ds3 ¼ 0; ds4 ¼ � 35 p p2 � 15ð Þ cos pþ 3 5 � 2p2ð Þ cos pð Þ
2p7

;

ð8Þ

while for the approximation of the cosine the coeffi-

cients are

dc1 ¼ � 3 5p cos pð Þ þ p2 � 5þð Þ sin p

2p3
; dc2 ¼ 0;

dc3 ¼ 15 3p cos pþ p2 � 3ð Þ sin pð Þ
2p5

; dc4 ¼ 0:

ð9Þ

Therefore, we obtain the approximation formulas

for the sine and cosine of the following form

sin x � b1xþ b2x
3; cos x � b3 þ b4x

2; ð10Þ

where b1 ¼ ds2; b2 ¼ ds4; b3 ¼ dc1; b4 ¼ dc3:
Let us consider additionally the another manner

of the approximation of the sine and cosine in the

quadratic sense. Suppose that for some reasons it

is desirable that the sine around zero to be close to

the function x, and the cosine to the value one.

We take, then, the x2; x3
� �

as the basis, and

postulate that

sin x � xþ c1x
3; cos x � 1 þ c2x

2 ; ð11Þ

where c1; c2 are to be found. With employment of the

best approximation in quadratic meaning we obtain

c1 ¼ �
7 p5 þ 5p p2 � 6ð Þcosp� 15 p2 � 2ð Þsinp
� �

5p7
;

c2 ¼ � 5 p3 � 6pcosp� 3 p2 � 2ð Þsinpð Þ
3p5

:

ð12Þ

In Table 1 are gathered the values of the relative

error for the polynomial approximation of the sine and

cosine in quadratic meaning, i.e. according to formulas

(10)–(11), for some values of the parameter p which

determines the length of the approximation interval.

For comparison, the relative error values for the

approximation carried out using the Taylor series

truncated to the terms of third order are also given in

the two last rows of the table. The relative errors are

calculated using the L2-norm according to the follow-

ing formulas

ri ¼
eik kL2

sin xk kL2

; i ¼ 1; 3; 5; ð13Þ

where

1 In Eqs. (8)–(9), the superscripts do not denote the powers.
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e1 ¼ b1xþ b2x
3 � sin x; e3 ¼ xþ c1x

3 � sin x;

e5 ¼ x� 1

6
x3 � sin x;

e2 ¼ b3 þ b4x
2 � cos x; e4 ¼ 1 þ c2x

2 � cos x;

e6 ¼ 1 � 1

2
x2 � cos x:

ð14Þ

Some regularities one can note. The accuracy

estimated according to the proposed measure

decreases with the growth of the value of the

parameter p. Regardless of the length of the interval,

both approaches basing on the polynomial approxi-

mation in quadratic sense give the more accurate

results. The accuracy of the approximation of the

cosine is significantly lower than the one for the sine,

in the case of all approaches.

The quantitative and qualitative differences

between the considered kinds of the approximation

of the sine and cosine one can observe in Figs. 1 and 2

which present the graphs of the approximation error ei
on the right half of the whole approximation interval

for p ¼ 2.

In both figures, the dot-dashed line is used to draw

the error concerning the approximation according to

formula (10), the solid line presents the error of the

approximation done according to (11), whereas the

dashed line concern the error of the approximation

with use of the Taylor series up to third order.

3 Problem formulation and equations of motion

Plane motion of the body of mass m connected via a

spring-damper suspension with the immovable point

O is studied. The shape and the size of the body are

negligible, so it is treated as a point mass. The

scheme of the system is presented in Fig. 3. The spring

is assumed to be massless, and its elastic properties are

nonlinear with the nonlinearity of the cubic type. By

L0 we denote the spring length in the non-stretched

state. There are assumed two purely viscous dampers

in the system. The resistance force R depends on the

point velocity v according to the relation R ¼ �C2v:

The system is loaded by the torque whose magnitude

varies harmonically M tð Þ ¼ M0 sin X2tð Þ and by the

force F with the magnitude changing harmonically,

i.e. F tð Þ ¼ F0 sin X1tð Þ. The total spring elongation

X tð Þ and the angle U tð Þ are assumed as the generalised

coordinates.

Table 1 Comparison of

errors for polynomial

approximation and Taylor

series expansion

p ¼ 0:15 p ¼ p=3 p ¼ p=2 p ¼ 2:0 p ¼ p

r1 2:8016 � 10�7 0:00071127 0:0039224 0:011338 0:093703

r2 1:6115 � 10�6 0:0043198 0:024414 0:066380 0:27579

r3 4:9033 � 10�7 0:0012523 0:0069603 0:020300 0:17411

r4 2:01455 � 10�6 0:0054179 0:030755 0:084044 0:35679

r5 2:2071 � 10�6 0:0057158 0:032342 0:096267 0:89536

r6 7:0533 � 10�6 0:019284 0:11184 0:31322 1:4701

Fig. 1 Error of the approximation for the sine

Fig. 2 Error of the approximation for the cosine
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The kinetic energy of the pendulum relative to the

immovable reference frame is

T ¼ 1

2
m _X2 þ L0 þ Xð Þ2 _U

2
� �

; ð15Þ

where the dot over a symbol means the derivative with

respect to time.

The potential energy of the conservative forces

acting on the pendulum is described as follows

V ¼ 1

2
k1X

2 þ 1

4
k2X

4 � mg cosU L0 þ Xð Þ; ð16Þ

where g denotes the gravitational acceleration.

All other forces acting on the pendulum are

introduced into consideration as the generalised forces

corresponding to the generalised coordinates, so we

have

QX ¼ F0 sin X1tð Þ � C1
_X;

QU ¼ M0 sin X2tð Þ � C3
_U� C2 L0 þ Xð Þ2 _U;

ð17Þ

where C1 ¼ C þ C2:
In the conditions without the external loading, the

pendulum reaches its stable equilibrium position when

U ¼ 0 and X ¼ Xe, where the elongation of the spring

at the static equilibrium Xe satisfies the equation

k1Xe þ k2X
3
e � mg ¼ 0: ð18Þ

The Lagrange equations of the second kind yield

the pendulum motion equations. Taking into account

condition (18), we get the equations describing the

motion of the pendulum around the stable equilibrium

position

m €X1 þ C1
_X þ k1X þ 3k2X

2
eX1 þ 3k2XeX

2
1 þ k2X

3

þ mg 1 � cosUð Þ � m L0 þ Xð Þ _U2 ¼ F0 sin X1tð Þ;
ð19Þ

m Lþ X1ð Þ2 €Uþ C3
_Uþ C2 Lþ X1ð Þ2 _U

þ m Lþ X1ð Þ g sinUþ 2 _X1
_U

� �

¼ M0 sin X2tð Þ: ð20Þ

where X1 tð Þ ¼ X tð Þ � Xe; L ¼ L0 þ Xe:

In order to transform Eqs. (19)–(20) into the

dimensionless form, the length of the spring at the

stable equilibrium position x�1
1 . and the characteristic

time x�1
1 ;wherex1 ¼

ffiffiffi

k1

m

q

is the frequency of the

simple harmonic oscillator of mass m and stiffness k1,

are chosen as the reference quantities. The dimen-

sionless motion equations of the spring pendulum are

as follows

€xþ c1 _xþ xþ a 3x2
exþ 3xex

2 þ x3
� �

� 1 þ xð Þ _u2

þ w2 1 � cosuð Þ ¼ f1sin p1sð Þ;
ð21Þ

1þ xð Þ2 €u sð Þþ c3 _u sð Þþ c2 1þ xð Þ2 _u sð Þþ2 1þ xð Þ _x _u
þw2 1þ xð Þsinu¼ f2 sin p2sð Þ

ð22Þ

where

x ¼ X1

L
; s ¼ tx1;w ¼ 1

x1

ffiffiffi

g

L

r

; xe ¼
Xe

L
; a ¼ k2L

2

k1

;

c1 ¼ C1

mx1

; c2 ¼ C2

mx1

; c3 ¼ C3

L2mx1

;

f1 ¼ F0

Lmx2
1

; f2 ¼ M0

L2mx2
1

; p1 ¼ X1

x1

; p2 ¼ X2

x1

:

The functions x sð Þ;u sð Þ are the dimensionless

counterparts of the generalised coordinates

X1 tð Þ;U tð Þ: Equations (21)–(22) are supplemented

with the following initial conditions

x 0ð Þ ¼ x0; _x 0ð Þ ¼ v0;u 0ð Þ ¼ u0; _u 0ð Þ ¼ x0 ð23Þ

where x0; v0;u0;x0 are known.

Fig. 3 Spring pendulum
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The dimensionless static elongation xe of the spring

satisfies the equilibrium condition in the dimension-

less form

ax3
e þ xe � w2 ¼ 0: ð24Þ

4 Approximation of the governing equations

In Fig. 4 are presented results of the numerical

experiment done using the standard procedure

NDSolve of the Mathematica software. Assuming the

resonant conditions, the original problem described by

Eqs. (21)–(23) has been solved. The solution is drawn

by the solid line. Then, the trigonometric functions

occurring in the original problem have been approx-

imate according to the formula (11), formula (12) and

finally by the Taylor series terms up to third order. The

solutions to these approximate equations are depicted

in Fig. 4 by the dotted line (A1), the dashed line (A2),

and the dot-dashed line (T), respectively.

The following values of the parameters which have

the impact on the pendulum motion have been

assumed for the numerical simulation

w ¼ 0:13; a ¼ 0:05; c1 ¼ 0:002; c2 ¼ 0:002; c3

¼ 0:002;

f1 ¼ 0:004; f2 ¼ 0:004; p1 ¼ 1:001; p2 ¼ 0:129:

The following initial values are assumed:

x0 ¼ 0:001; v0 ¼ �0:0005;u0 ¼ 0:06;x0 ¼ 0:0002:

The values of the coefficients occurring in approx-

imations formulas (11)–(12) have been calculated for

the fixed value p ¼ 2 which is in agreement with the

expected range of the oscillations.

One can note that the approximation of the sine and

cosine with use of the third order Taylor series, in

contrast to the both approaches basing on the polyno-

mial approximation in the L2-norm sense, definitely

fails in the case of high amplitude vibrations.

Taking into account the error analysis discussed in

Sect. 3 as well as the conclusions following from the

afore numerical simulation, we employ the approxi-

mation of the trigonometric functions in the sense of

the L2-norm. Admittedly, the best results are guaran-

teed by the approximation according to formulas (11),

but there is some problem with this variant of

approximation. It does not satisfy strictly the equilib-

rium condition, because the polynomial approximat-

ing the cosine does not equal 1 at zero. The inability to

satisfy this condition, strongly inscribed in the nature

of the vibration of the pendulum, can significantly

mishandle the intended effect. Thus, we decide for the

variant of the approximation determined by formulas

(12) which does not violate the equilibrium condition

and seems to be a compromise between the best

polynomial approximation and the approximation

with using the Taylor series truncated to the terms of

the third order.

The trigonometric nonlinearities in motion

Eqs. (21)–(22) are approximated according to (12),

thus

sinu � uþ c1u
3; cosu � 1 þ c2u

2: ð25Þ

Substituting Eq. (25) into (21)–(22) gives the

approximate motion equations of the form

€xþ c1 _xþ xþ a 3x2
exþ 3xex

2 þ x3
� �

� 1 þ xð Þ _u2

� w2c2u
2

¼ f1sin p1sð Þ:
ð26Þ

1 þ xð Þ2 €u sð Þ þ c3 _u sð Þ þ c2 1 þ xð Þ2 _u sð Þ
þ 2 1 þ xð Þ _x _u
þ w2 1 þ xð Þ uþ c1u

3
� �

¼ f2 sin p2sð Þ:
ð27Þ

Equations (26)–(27) together with the conditions

(23) form the initial value problem whose mathemat-

ical form allows for employment of the method of

Fig. 4 The image of the swing vibration at the resonance

obtained using various approximation kinds of the trigonometric

functions in the motion equations
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multiple scales in order to obtain the approximate

solution.

5 Asymptotic solution to resonant vibration

problem

The weak character of the nonlinearities that is

assumed in the model of the pendulum causes that

all couplings occurring in the system also become

weak. Therefore, the natural frequencies do not

modify oneself as a result of the couplings and are

close to the natural frequencies of the linear oscillator

and the usual pendulum.

We consider the case of two external resonances

occurring simultaneously, which happens when

p1 � 1; p2 � w: ð28Þ

The standard manner of the study of the resonance

states using MMS consists in the introduction of the

detuning parameters. Introducing the detuning param-

eters r1 and r2, we can rewrite the resonance

conditions (28) as follows

p1 ¼ 1 þ r1; p2 ¼ wþ r2; ð29Þ

where r1 and r2 as dimensionless quantities can be

any small numbers. We assume that they are of the

order O e2ð Þ; thus

r1 ¼ e2r̂1; r2 ¼ e2r̂2: ð30Þ

We substitute the relations (29)–(30) in Eqs. (26)–

(27), and then employ the method of multiple scales in

time domain.

In accordance with the MMS rules, we introduce

three time variables s0; s1; s2 that describe the system

evolution in time. In contrast to the description with

use only one time variable, i.e. the original time s, such

an approach allows for separating the fast and slow

processes from each other. For this reason the

variables introduced are called the time scales. They

are related to the dimensionless time s in the following

manner

si ¼ eis; i ¼ 0; 1; 2; ð31Þ

where the small e parameter should satisfy the double

inequality 0\e � 1:

The time variable s0 is usually called the fast time

scale, and the others time variables are regarded as the

slow time scales.

The consequence of introducing several time

variables is the need to replace the ordinary differen-

tial operators with the partial ones. According to the

chain rule, we can write

d

ds
¼

X

2

k¼0

ek
o

osk
¼ o

os0

þ e
o

os1

þ e2 o

os2

; ð32Þ

d2

ds2
¼ o2

os2
0

þ 2e
o2

os0os1

þ e2 o2

os2
1

þ 2
o2

os0os2

	 


þ 2e3 o2

os1os2

� � � þ O e4
� �

: ð33Þ

The functions x sð Þ;u sð Þ are approximated by the

following asymptotic expansions

x s; eð Þ ¼
X

3

k¼1

eknk s0; s1; s2ð Þ þ O e4
� �

; ð34Þ

u s; eð Þ ¼
X

3

k¼1

ek/k s0; s1; s2ð Þ þ O e4
� �

; ð35Þ

where the functions nk s0; s1; s2ð Þ;/k s0; s1; s2ð Þ; k ¼
1; . . .; 3 are to find.

The assumptions about weak nonlinearities one can

strictly express by the following relations

a ¼ e2â; c1 ¼ e2ĉ1; c2 ¼ e2ĉ2; c3 ¼ e2ĉ3;

f1 ¼ e3 f̂1; f2 ¼ e3 f̂2:

ð36Þ

The coefficients â; ĉ1; ĉ2; ĉ3; f̂1; f̂2 are understood as

O(1) when e ! 0:

Substituting Eqs. (29)–(36) into governing

Eqs. (26)–(27) yields the equations in which the small

parameter appears in a few different powers. In

accordance with the order of approximation of the

variant of MMS used, all terms of the order O e4ð Þ
should be omitted. The terms of the equations obtained

should be ordered according to the powers of the small

parameter. Both equations should be satisfied for any

value of the small parameter. The requirement leads to

the set of six differential equations with unknown

functions nk s0; s1; s2ð Þ; /k s0; s1; s2ð Þ; k ¼ 1; . . .; 3.

The equations of the system are organised into three

groups, depending on the exponent of the power of the

small parameter accompanying the terms occurring in

123

Meccanica (2021) 56:963–980 971



the equation. Two of them belong to the homogeneous

equations containing the terms standing at e. There-

fore, they are called the first order approximation

equations. They are as follows

o2n1

os2
0

þ n1 ¼ 0; ð37Þ

o2/1

os2
0

þ w2/1 ¼ 0: ð38Þ

The equations of the second order approximation

containing the terms standing at e2 have the form

o2n2

os2
0

þ n2 ¼ �2
on2

1

os0os1

þ o/1

os0

	 
2

þw2c2/
2
1; ð39Þ

o2/2

os2
0

þ w2/2 ¼ �2
o2/1

os0os1

� 2n1

o2/1

os2
0

� 2
on1

os0

o/1

os0

� w2n1/1;

ð40Þ

The coefficients that are accompanied by e3 form

the following equations of the third order

approximation

o2n3

os2
0

þ n3 ¼ f̂1 sin 1 þ e2r̂1

� �

s0

� �

� ĉ1

on1

os0

� 3ân2
en1 �

o2n1

os2
1

� 2
o2n1

os0os2

þ o2n2

os0os1

	 


þ n1

o/1

os0

	 
2

þ2
o/1

os0

o/1

os1

þ o/2

os0

	 


þ 2w2c2/1/2;

ð41Þ

o2/3

os2
0

þ w2/3 ¼ f̂2 sin wþ e2r̂2

� �

s0

� �

� w2c1/
3
1

� w2 n2/1 þ n1/2ð Þ � ĉ2 þ ĉ3ð Þ o/1

os0

� o2/1

os2
1

� 2
o2/1

os0os2

� 2
o2/2

os0os1

� o2/1

os2
0

ðn2
1 þ 2n2Þ

� 2n1 2
o2/1

os0os1

þ o2/2

os2
0

	 


� 2
on1

os0

o/1

os1

þ o/2

os0

	 


� 2
o/1

os0

on2

os0

þ on1

os1

	 


� 2n1

on1

os0

o/1

os0

:

ð42Þ

The equations of system (37)–(42) are solved

recursively starting from the equations of the first

order approximation whose general solutions are

n1 ¼ B1e
is0 þ �B1e

�is0 ; ð43Þ

/1 ¼ B2e
iws0 þ �B2e

�iws0 ; ð44Þ

where the functions B1 s1; s2ð Þ;B2 s1; s2ð Þ and their

complex conjugates �B1 s1; s2ð Þ; �B2 s1; s2ð Þ are

unknown.

After substituting solutions (43)–(44) into equa-

tions of the second order approximation we obtain the

following solvability conditions

oB1

os1

¼ 0;
o �B1

os1

¼ 0;
oB2

os1

¼ 0;
o �B2

os1

¼ 0: ð45Þ

The particular solutions to Eqs. (39)–(40) are

n2 ¼ 2w2 1 þ c2ð ÞB2
�B2

þ 1 � c2ð Þw2 e2iws0B2
2 þ e�2iws0 �B2

2

4w2 � 1
; ð46Þ

/2 ¼ �
w wþ 2ð Þe�i wþ1ð Þs0 �B1

�B2 þ e2i wþ1ð Þs0B1B2

� �

2wþ 1

þ
w w� 2ð Þe�i w�1ð Þs0 B1

�B2 þ e2i w�1ð Þs0 �B1B2

� �

2w� 1
:

ð47Þ

Substituting solutions (43)–(44) and (46)–(47) into

equations of the third order approximation imply

occurrence of secular terms again. They must be

eliminated from the equations which leads to the

following solvability conditions

�2i
oB1

os2

� 1

2
if̂1eie2r̂1s0

� B1

6w2 2w2 1 þ c2ð Þ � 1ð ÞB2
�B2

4w2 � 1
þ 3ân2

e þ i ĉ1

	 


¼ 0;

ð48Þ

2i
o �B1

os2

þ1

2
if̂1e�ie2r̂1s0

þ �B1 �6w2 2w2 1þ c2ð Þ�1ð ÞB2
�B2

4w2 �1
�3ân2

e þ i ĉ1

	 


¼ 0;

ð49Þ

123

972 Meccanica (2021) 56:963–980



� 2iw
oB2

os2

� 1

2
if̂2eie2r̂2s0 � i w ĉ2 þ ĉ3ð ÞB2

� 6w2 w2 � 1ð Þ
4w2 � 1

B1
�B1B2

þ w2 3c1 þ 8w4 1 þ c2ð Þ þ w2 c2 � 12c1 � 5ð Þð Þ
4w2 � 1

B2
2
�B2 ¼ 0;

ð50Þ

2iw
o �B2

os2

þ 1

2
if̂2e�ie2r̂2s0 þ i w ĉ2 þ ĉ3ð Þ �B2

� 6w2 w2 � 1ð Þ
4w2 � 1

B1
�B1

�B2

þ w2 3c1 þ 8w4 1 þ c2ð Þ þ w2 c2 � 12c1 � 5ð Þð Þ
4w2 � 1

B2
�B2

2 ¼ 0:

ð51Þ

The particular solutions to the equations of the third

order approximation, i.e. (41)–(42), are

n3 ¼ w
2w2 c2 � 1ð Þ þ 4w c2 � 1ð Þ � 3

4 1 þ wð Þ 1 þ 2wð Þ
� ei 1þ2wð Þs0B1B

2
2 þ e�i 1þ2wð Þs0 �B1

�B2
2

� �

� w
2w2 c2 � 1ð Þ � 4w c2 � 1ð Þ � 3

4 w� 1ð Þ 2w� 1ð Þ
� ei 2w�1ð Þs0 �B1B

2
2 þ e�i 2w�1ð Þs0B1

�B2
2

� �

;

ð52Þ

/3 ¼ w w2 þ 5wþ 6
� � ei 2þwð Þs0B2

1B2 þ e�i 2þwð Þs0 �B2
1
�B2

� �

4 2wþ 1ð Þ

þ w w2 � 5wþ 6
� � ei w�2ð Þs0 �B2

1B2 þ e�i w�2ð Þs0B2
1
�B2

� �

4 2w� 1ð Þ

� w2 5c2 þ 4c1 � 5ð Þ � c1

� � e3iws0B3
2 þ e�3iws0 �B3

2

� �

8 4w2 � 1ð Þ :

ð53Þ

The unknown functions Bj; �Bj; j ¼ 1; 2; should

satisfy the solvability conditions. According to condi-

tions (45) each of them does not depend on the time

variable s1: Let us present the unknown functions in

the exponential form

Bj ¼
1

2
bje

iwj ; �Bj s2ð Þ ¼ 1

2
bje

�iwj ; j ¼ 1; 2; ð54Þ

where the functions b1 s2ð Þ; b2 s2ð Þ;w1 s2ð Þ;w2 s2ð Þ are

real-valued.

Taking into account the independence of the time

variable s1; one can regard solvability conditions

(48)–(51) as the set of four ordinary differential

equations of the first order with respect to the functions

B1;B2 and their complex conjugates. Inserting

relationships (54) into differential Eqs. (48)–(51),

solving the latter with respect to the derivatives, and

finally, using relationships (30)–(33) and (36), we

obtain

da1

ds
¼ � 1

2
c1a1 �

1

2
f1cos r1s� w1ð Þ; ð55Þ

da2

ds
¼ � 1

2
c2 þ c3ð Þa2 �

1

2w
f2cos r2s� w2ð Þ; ð56Þ

dw1

ds
¼ 3w2ð2w2 1 þ c2ð Þ � 1Þa2

2

4 4w2 � 1ð Þ � f1sin r1s� w1ð Þ
2a1

þ 3

2
n2

ea;

ð57Þ

dw2

ds
¼ 3w w2 � 1ð Þ

4 4w2 � 1ð Þ a
2
1

� w
8w4 1 þ c2ð Þ þ w2 c2 � 12c1 � 5ð Þ þ 3c1

8 4w2 � 1ð Þ a2
2

� f2sin r2s� w2ð Þ
2wa2

;

ð58Þ

where aj sð Þ ¼ ebj sð Þ; j ¼ 1; 2:

The initial conditions

a1 0ð Þ ¼ a10; a2 0ð Þ ¼ a20;w1 0ð Þ ¼ w10;w2 0ð Þ ¼ w20

ð59Þ

where the known quantities a10; a20;w10;w20 are

compatible with the initial values x0; v0;u0;x0, com-

plete the formulation of the initial-value problem.

The real-valued functions aj;wj; j ¼ 1; 2; present

the amplitudes and phases of the pendulum oscilla-

tions, respectively. In the original formulation of

modulation equations derived directly from the solv-

ability conditions (48)–(49), there are derivatives

relative to the slowest time scale. Employment of the

relationships (32)–(33) transform this formulation to

another one with the sole time variable s: Therefore,

Eqs. (55)–(58) describe the slow modulation of the

amplitudes and phases.

Inserting solutions (43)–(44), (46)–(47) and (52)–

(53) into asymptotic expansions (34)–(35), one can

obtain the approximate solution to the problem
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x ¼ a1 cos sþ w1ð Þ þ w
2w 2 þ wð Þ c2 � 1ð Þ � 3

16 wþ 1ð Þ 2wþ 1ð Þ
a1a

2
2 cos 1 þ 2wð Þsþ w1 þ 2w2ð Þ

� w
2w w� 2ð Þ c2 � 1ð Þ � 3

16 w� 1ð Þ 2w� 1ð Þ
a1a

2
2 cos 1 � 2wð Þsþ w1 � 2w2ð Þ

þ w2 1 � c2ð Þ
2 w2 � 1ð Þ a2

2 cos 2wsþ 2w2ð Þ þ w2

2
1 þ c2ð Þa2

2;

ð60Þ

u ¼ a2 cos wsþ w2ð Þ

� w
wþ 2

4wþ 2
a1a2 cos 1 þ wð Þsþ w1 þ w2ð Þ

þ w
w� 2ð Þ
4w� 2

a1a2 cos 1 � wð Þsþ w1 � w2ð Þ

þ w
wþ 2ð Þ wþ 3ð Þ
16 2wþ 1ð Þ a2

1a2 cos 2 þ wð Þsþ 2w1 þ w2ð Þ

þ w
w� 3ð Þ w� 2ð Þ
16 2w� 1ð Þ a2

1a2 cos 2 � wð Þsþ 2w1 � w2ð Þ

þ w2 5c2 þ 4c1 � 5ð Þ � c1

32 4w2 � 1ð Þ a3
2 cos 3wsþ 3w2ð Þ;

ð61Þ

where the functions a1 sð Þ; a2 sð Þ;w1 sð Þ;w2 sð Þ stand

for numerically obtained solutions of modulation

Eqs. (55)–(58).

6 Steady state resonant responses

In order to study the steady states, it is convenient to

introduce into consideration the modified phases. The

modified phases h1 and h2 are associated with the

phases w1;w2 in the following way

h1 sð Þ ¼ r1s� w1 sð Þ; h2 sð Þ ¼ r2s� w2 sð Þ: ð62Þ

Substituting relations (62) into Eqs. (55)–(58)

yields

da1

ds
¼ � 1

2
c1a1 �

1

2
f1cosh1; ð63Þ

da2

ds
¼ � 1

2
c2 þ c3ð Þa2 �

1

2w
f2 cos h2; ð64Þ

r1 �
dh1

ds
¼ 3w2ð2w2 1 þ c2ð Þ � 1Þa2

2

4 4w2 � 1ð Þ � f1
2a1

sin h1

þ 3

2
n2

ea;

ð65Þ

r2 �
dh2

ds
¼ 3w w2 � 1ð Þ

4 4w2 � 1ð Þ a
2
1

� w
8w4 1 þ c2ð Þ þ w2 c2 � 12c1 � 5ð Þ þ 3c1

8 4w2 � 1ð Þ a2
2

� f2
2wa2

sin h2:

ð66Þ

According to the assumptions about the steady state

vibration, we postulate that the time derivatives of the

amplitudes and the modified phases become equal to

zero, and the amplitudes a1; a2 and the modified

phases h1; h2 are constant quantities. The steady state

vibration is governed by the following equations

0 ¼ c1a1 þ f1cosh1; ð67Þ

0 ¼ w c2 þ c3ð Þa2 þ f2 cos h2; ð68Þ

2r1 ¼ 3w2ð2w2 1 þ c2ð Þ � 1Þa2
2

2 4w2 � 1ð Þ þ 3n2
ea�

f1
a1

sin h1;

ð69Þ

2r2 ¼ 3w w2 � 1ð Þ
2 4w2 � 1ð Þ a

2
1

� w
8w4 1 þ c2ð Þ þ w2 c2 � 12c1 � 5ð Þ þ 3c1

4 4w2 � 1ð Þ a2
2

� f2
wa2

sin h2:

ð70Þ

The modified phases can be eliminated from

Eqs. (66)–(69) using the trigonometric identities

which allows for expressing the dependence between

the amplitudes and the frequencies as a system of two

algebraic equations
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c1a1

f1

	 
2

þ
ðw2 6w2 1 þ c2ð Þ � 3ð Þa2

2 þ 4w2 � 1ð Þ 6an2
e � 4r1

� �2

4f 2
1 �1 þ 4w2ð Þ2

a2
1 � 1 ¼ 0;

ð71Þ

c2 þ c3ð Þ2

f 2
2

w2a2
2

þ
8r2 4w2 � 1ð Þ þ w Ca2

2 � 6a2
1 w2 � 1ð Þ

� �� �2

16f 2
2 4w2 � 1ð Þ2

w2a2
2

� 1

¼ 0;

ð72Þ

where C ¼ 3c1 þ w2 8w2 1 þ c2ð Þ þ c2 � 12c1 � 5ð Þ:
Each of the polynomials occurring on the left sides

of Eqs. (71)–(72) is of degree six, hence the number of

the solutions of the system, understood as the pairs

(a1; a2), equals thirty-six. Observe that not all of these

solutions are the real numbers. In order to find the

values of the amplitudes and phases appropriate for the

steady state vibration we solve the aforementioned

equations in the numerically with a use of the standard

procedure NSolve of the Mathematica program. In this

way, the resonance response curves are constructed by

the multiple numerical solving Eqs. (71)–(72) for

various values of the detuning parameters. However,

the stability analysis of the resonance response curves

demands also the knowledge of the values of the

modified phases. Therefore, the fixed points of the

modulation equations are determined numerically by

solving Eqs. (67)–(70).

7 Examples and results analysis

In order to test the proposed approach consisting in the

approximation of the trigonometric functions in the

quadratic sense and show how it does in the associ-

ation with the method of multiple scales, several

simulations have been carried out. The results are

compared with the numerical results and the results

obtained using MMS, but combined with the com-

monly used approximation of the trigonometric non-

linearities by the third order Taylor series. The

solutions obtained using MMS in the case when the

trigonometric functions are approximated by the

truncated Taylor series one can derive from

Eqs. (60)–(61), assuming that

c1 ¼ � 1

6
; c2 ¼ � 1

2
: ð73Þ

Similarly, substituting Eq. (73) into Eqs. (55)–(58)

yields the modulation equations adequate for the

approach with the Taylor series.

Due to the assumed purpose, we focus on the

pendulum oscillations with relatively large ampli-

tudes, especially concerning the vibration in the

transversal direction. Let us start yet with the case

when the amplitudes are rather small. We assume the

following values of the parameters:

w ¼ 0:23; a ¼ 0:04; c1 ¼ 0:006; c2 ¼ 0:006;
c3 ¼ 0:004;

f1 ¼ 0:001; f2 ¼ 0:001; p1 ¼ 0:991;
p2 ¼ 0:225:

The initial values are as follows:

x0 ¼ 0:02; v0 ¼ 0; u0 ¼ 0:3; x0 ¼ 0:

Moreover, the value of the parameter p which

determines the interval of the approximation of the

trigonometric functions in the L2-norm sense has been

set to 0.45.

The time variability of the generalised coordinates

x sð Þ and u sð Þ are presented in Figs. 5 and 6. Two first

of them are related to the initial stage of motion in

which the transient vibration is realised. Figures 7 and

8 concern the pendulum oscillations at the end of

simulation. The pendulum oscillations in the longitu-

dinal direction do not fix oneself on the simulation

Fig. 5 The transient longitudinal vibration
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interval. In each of these group of graphs two curves

are depicted. The approximate analytical solution

obtained using MMS is drawn using solid red line,

whereas the dotted line in black is used to draw the

numerical solution obtained by means of the standard

NDSolve of the Mathematica software. In all cases

presented, one can observe a high compliance between

the both solution.

Quantitative analysis of the effectiveness of the

proposed approach to the approximation the trigono-

metric functions is carried out with using the measure

of error of the satisfying the governing equations. Let

G1 and G2 denote the differential operator of the first

or the second of governing Eqs. (21)–(22), respec-

tively. The measure proposed evaluates the error of the

fulfilment of the governing equations in the following

way

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

se � ss
r
se

ss

Gi xa sð Þ;ua sð Þð Þ � 0ð Þ2ds

s

;

i ¼ 1; 2;

ð74Þ

where xa sð Þ;ua sð Þ denote the approximate solutions

to the considered initial-value problem obtained by

means of the MMS, irrespectively of the manner of the

approximation of trigonometric nonlinearities, ss; se
are the instants chosen from the interval of simulation,

and ss\se:
The values of the error calculated according to (74)

are gathered in Table 2.

In the case of resonant vibration when the ampli-

tudes of the pendulum oscillations in both direction are

rather small, there is not significantly difference

between the results obtained using polynomial approx-

imation in quadratic sense and the ones that are

calculated using the approximation with the Taylor

series.

The next example is conceived as a test of the

approach proposed in the case of the resonant motion

with large amplitudes of swing vibration. The follow-

ing values of the parameters are fixed:

w ¼ 0:22; a ¼ 0:04; c1 ¼ 0:03; c2 ¼ 0:01;
c3 ¼ 0:002;

f1 ¼ 0:0001; f2 ¼ 0:035; p1 ¼ 0:965;
p2 ¼ 0:215:

The initial values are as follows:

x0 ¼ 0:08; v0 ¼ 0; u0 ¼ 0:05; x0 ¼ 0:

Additionally, the parameter p ¼ 1:8:

Let us start the discussion from the error analysis.

The values of the error determined according to (74)

are presented in Table 3.

The results are much less accurate than the ones

discussed in the previous example. However, one can

note that the approximation in the quadratic sense

Fig. 6 The transient swing vibration

Fig. 7 The stationary longitudinal vibration

Fig. 8 The steady swing vibration
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works better, in the range of steady state vibration,

than this one basing on the Taylor series. Graphs

presented in the Fig. 9 show the nature of the

noticeable difference. In this figure, a fragment of

the whole time history of the generalised coordinate

u sð Þ is shown. The time history is obtained numer-

ically by means of the NDSolve procedure. The

vibration on the interval is almost steady. The dotted

red line, lying upper, presents the time course of the

amplitude a2 sð Þ which is obtained using the proposed

approach of the approximation in the L2-norm sense.

The graph of the amplitude is strictly the envelope of

the first term of the solution (61), i.e. a2 cos wsþ w2ð Þ:
This term is the solution of the first order

approximation Eq. (44). The dashed blue line also

depicted the amplitude of the first term of the whole

solution, but obtained using the approximation of the

trigonometric functions by the Taylor series. The fixed

values of the amplitudes of the first approximation

solutions are taken as the steady-state resonance

responses. Thus, one can note that the prediction of

the resonant responses based on the proposed

approach to the approximation of the trigonometric

nonlinearities is more accurate. The graphs of the

approximate solution obtained according to Eq. (61)

and the solution calculated numerically are shown in

Fig. 10. The first of them is depicted by the solid red

line, the second one by the dotted black line.

Continuing the matter of the prediction of the

steady states let us determine the resonance response

curve assuming the following data:

w ¼ 0:21; a ¼ 0:03; c1 ¼ 0:002; c2 ¼ 0:0021;
c3 ¼ 0:001; f1 ¼ 0:0008; f2 ¼ 0:0012:

Focusing on the relationship between the amplitude

a2 and the detuning parameter r2 we assume addi-

tionally that the detuning parameter r1 ¼ �0:008:

In Fig. 11 two resonance response curves are

shown. One of them presents the dependence obtained

by solving Eqs. (71)–(72), i.e. in the L2-norm sense.

The second one is related to the approach consisting in

Fig. 9 Prediction of the steady state amplitude

Table 2 Comparison of error of satisfying the governing equations

Interval ss; se½ � Polynomial approximation in L2-norm sense Approximation with use of the Taylor series

[0,200] d1 ¼ 8:7971 � 10�5

d2 ¼ 9:8630 � 10�5

d1 ¼ 8:8659 � 10�5

d2 ¼ 9:8736 � 10�5

[900,100] d1 ¼ 27:059 � 10�5

d2 ¼ 4:9931 � 10�5

d1 ¼ 26:957 � 10�5

d2 ¼ 5:0060 � 10�5

Table 3 Comparison of error of satisfying the governing equations

Interval ss; se½ � Polynomial approximation in L2-norm sense Approximation with use of the Taylor series

[0,320] d1 ¼ 4:2114 � 10�2

d2 ¼ 1:1829 � 10�2

d1 ¼ 3:8977 � 10�2

d2 ¼ 1:0929 � 10�2

[1440,1600] d1 ¼ 4:9035 � 10�3

d2 ¼ 1:4145 � 10�3

d1 ¼ 9:3546 � 10�3

d2 ¼ 2:65811 � 10�3
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employment of the approximation based on the Taylor

series. For small values of the swing vibration

amplitudes both approaches give consistent results.

The significant difference occurs in the range when the

values of the amplitudes are greater than 0.5 which

essentially coincides with the range of the applicabil-

ity of the Taylor series expansions up to third order

(see Table 1). Resonance response curves obtained

using the approach proposed in the paper indicate that

the nonlinear resonance response of the spring

pendulum is less flexible.

The stability in the sense of Lyapunov of the

resonance response curve related to the proposed

approach shown in Fig. 11 has been evaluated. Results

of this study are presented in Fig. 12. The

stable branches of the resonance response curves are

depicted using filled squares, whereas the small circles

present the fixed points that are unstable.

8 Conclusions

The geometric nonlinearity is an inherent feature of

many mechanical systems and devices. In the case of

the pendulum-like systems, nonlinear relationships of

the trigonometric form describe the restoring forces

that are of the crucial meaning for the motion and is

impossible to treat them as small nonlinear contribu-

tions into motion equations. The occurrence of the

trigonometric functions in the equations of the math-

ematical model excludes the direct applicability of the

perturbation methods in order to find approximate

analytical solutions. A widely used solution to this

problem consists in the approximation of the trigono-

metric functions by few terms of their Taylor series.

In the present work, we propose the application of

the polynomial approximation in the L2-norm sense in

order to formulate the approximate governing equa-

tions for the systems with trigonometric nonlinearities.

In contrast to the approximation realised by using the

Taylor series, the proposed approach makes that the

functions sine and cosine are approximated with

sufficiently accuracy not only around a given point

but on the whole predefined interval.

We have employed the polynomial approximation

in the L2-norm meaning in connection with the method

of multiple scales in time domain. The pendulum

spring, which is relatively simple mechanical system

of 2-dof, has been chosen by us in order to apply and

test the approach proposed. The approximate solution

in the analytical form for the case of two simultane-

ously occurring resonances has been derived. The

focusing on the resonance study was conditioned by

Fig. 11 The swing vibration amplitude a2 as functions of the

detuning parameter r2

Fig. 12 The stable (filled squares) and unstable (small circles)

branches of the resonance response curve a2 � r2

Fig. 10 The steady swing vibration
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the fact that a significant advantage of the proposed

approximation is expected in the case of large

oscillations.

The results of the simulations carried out confirm

that the approximation in the L2-norm sense works just

as well as the approximation basing on the Taylor

series in the case of oscillations with rather small

amplitudes. The advantage of the solution proposed,

among other in prediction of the steady state resonant

vibration, becomes significantly visible when the

amplitudes of the swing oscillations beyond the

threshold of about 0.5 rad. The resonance response

curves obtained using the approach proposed in the

paper indicate that the nonlinear resonance response of

the spring pendulum is less flexible than it results from

the commonly used solutions basing on the Taylor

series. It is worth underlying that in both approxima-

tion the degrees of polynomials are equal to each

other.
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