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Abstract In this paper, the application of a recently

formulated two-step Bayesian framework to the

estimation of effective anisotropic elastic constants

of single plies within a multi-laminate polymer matrix

composite is demonstrated, while using previously

reported spherical indentation measurements within

singular plies. Experimental spherical indentation

measurements within the epoxy/fiber plies are inher-

ently noisy due to local variation of the fiber volume

fraction underneath the indenter. This paper demon-

strates that the usage of a two-step Bayesian frame-

work enables the extraction of reliable point estimates

(and associated distributions) for the effective elastic

constants from indentation modulus measurements

conducted within single plies at different angles to the

fiber orientations. The first step of the two-step

Bayesian framework establishes the effective elastic

indentation modulus of a single ply as a function of its

intrinsic elastic stiffness parameters and the angle

between the indentation direction and the fiber orien-

tation using a database of suitable finite element

simulations. The second step involves the calibration

of the indentation measurements from a given set of

multi-laminate samples to the reduced-order model

established in the first step. The second step is

accomplished by sampling the posterior distribution

of the single ply elastic parameters via Monte Carlo

Markov Chain methods. This new framework is

demonstrated in this study for an IM7/977-3 carbon

fiber/epoxy multi-laminate sample.
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1 Introduction

Laminated polymer matrix composites (PMC), com-

prised of stacked layers (referred as a laminate or

multi-laminate) with each layer consisting of fibers

orientated in a single direction (referred as a ply), have

offered high tailorability and potential for the opti-

mization of the mechanical properties to various

applications across automotive, aerospace and civil

infrastructure industries [1–4]. The modeling of the

mechanical properties of the multi-laminate compos-

ite is generally pursued using homogenization

schemes at two scales. At the first level, one takes

the fiber and matrix properties and fiber volume

fraction as inputs, and estimates the effective aniso-

tropic properties of a singular ply [5, 6]. At the second
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level, one takes the laminate properties and geometry

(including stacking sequence and thicknesses of the

individual plies) as inputs, and estimates the effective

anisotropic properties of the PMC [7–12]. Conse-

quently, the effective properties of a single ply play a

critical role in the design of the laminated PMCs

tailored for a selected application. Direct experimental

validation of the two-level composite models has been

hampered by the lack of experimental protocols for the

reliable estimation of the ply properties in a given

multi-laminate sample [9, 13–16]. The current prac-

tice relies on making single ply samples for experi-

mental evaluation of their mechanical properties.

However, one cannot be confident that the properties

measured from these single ply samples would

correspond well with the properties of the individual

plies in a multi-laminate sample, because there are

unavoidable differences in the processing conditions

experienced in the production of these different

samples.

Indentation techniques have been widely used in

prior literature for establishing the local properties in

heterogeneous samples, mostly aimed at evaluating

the properties of microscale constituents or interfaces

[17–20]. Recent advances in indentation instrumenta-

tion have tremendously improved the measurement

resolution limits, and have now made it possible to

measure local properties at submicron length scales.

More specifically, recently developed spherical inden-

tation protocols have demonstrated the consistent

extraction of crystal-level indentation stress–strain

responses from sub-granular load–displacement

indentation measurements on polycrystalline metal

samples [21–25]. These recent protocols are able to

extract reliably the grain-level (i.e., grain lattice

orientation dependent) indentation properties such as

indentation modulus and indentation yield strength.

Even more recently, novel protocols based on

Bayesian statistics have been developed for estimating

the intrinsic single crystal material properties (e.g.,

single crystal elastic stiffness parameters such as C11,

C12, and C44 or the critical resolved shear strength)

from the grain orientation-dependent indentation

properties measured in different grains in a polycrys-

talline sample. These protocols fundamentally tackle

an inverse problem that calibrates the values of the

intrinsic material properties of interest by matching

the forward numerical (i.e., finite element method)

solutions to the measurements obtained in the

indentation experiments performed on a polycrys-

talline sample [26–28].

The spherical indentation stress–strain protocols

have recently been extended to studies in carbon fiber/

epoxy laminate composite. In a recent study, the

spherical indentation stress–strain protocols were

demonstrated for various orientations of single plies

within a multi-laminate system [29]. Indentation

moduli and indentation yield strengths at different

declination angles (i.e., angle between the indentation

direction and the fiber direction in a single ply) were

reliably extracted from a multi-laminate PMC sample.

The measured values of the indentation moduli were

shown to decrease dramatically with an increase in

declination angle, and were found to be reasonably

consistent with forward predictions from finite ele-

ment simulations. This recent study has demonstrated

the potential of the spherical indentation stress–strain

protocols for obtaining reliable and repeatable mea-

surements of the local mechanical response of a single

ply from a multi-laminate PMC sample. The next

logical step in this research is to explore methods to

extract the homogenized intrinsic properties of the

individual plies from the indentation moduli measured

at different declination angles (by indenting the

differently oriented plies in a multi-laminate PMC

sample). More specifically, the homogenized elastic

response of a single ply (each ply is a composite

comprising matrix and fibers) can be assumed to

exhibit transverse isotropy and is represented by a set

of five intrinsic stiffness parameters denoted as C11,

C12, C13, C33, and C44; these five parameters are

adequate to fully define the ply’s fourth-rank elastic

stiffness tensor.

As already mentioned, the estimation of the intrin-

sic materials properties from the indentation proper-

ties demands a difficult inverse solution. This is

because the most reliable forward models for this

problem require the use of a computationally intensive

finite element (FE) model of the indentation test. For

the present case, the forward model would take the

single ply properties as inputs, and predicts the

indentation stress–strain responses at different decli-

nation angles. Given the high computational cost of

the FE models of the indentation tests, inverse

solutions need an efficient strategy. In recent work

[26], a two-step Bayesian framework was proposed to

address this class of problems, and its viability was

demonstrated with the extraction of intrinsic crystal-
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level properties from indentation measurements in

polycrystalline cubic and hcp metal samples. The first

step in this protocol establishes a high fidelity, low

computational cost, reduced-order model to take place

of the computationally intensive FE model of the

spherical indentation test. The second step calibrates

the single ply properties of interest by using the

experimentally measured indentation properties at

different declination angles using the reduced-order

model established in the first step together with a

Monte Carlo Markov Chain (MCMC). One of the

salient aspects of the proposed two-step Bayesian

framework is that it also provides an estimate of the

uncertainty (quantified as variance) in the estimated

intrinsic properties. In this work, we will extend and

demonstrate the viability of using the two-step

Bayesian framework for the estimation of the single

ply elastic stiffness parameters from the spherical

indentation measurements on a multi-laminate PMC

sample. It should be noted that the PMC samples

studied here exhibit significantly higher levels of

anisotropy and inherent variance in the indentation

measurements, when compared to the polycrystalline

cubic and hcp metal samples studied earlier.

2 Methods

2.1 Experimental data

The elastic contact between two isotropic homoge-

nous bodies with quadratic surfaces is described by

Hertz theory as

P ¼ 4

3
E�R

1
2

eff h
3
2
e ð1Þ

where P is the indenter load,he is the elastic indenta-

tion displacement, Reff is the effective radius of the

indenter-sample system, and E� is the effective

indentation modulus. Although the measured E�

generally reflects the effective indentation modulus

of the indenter-sample system, one can account for the

elastic deformation in the indenter itself and recover

the indentation modulus of the sample alone [30]. In

the treatment presented here, it will be assumed that

such corrections have been made, i.e., E� denotes the
indentation modulus of the sample. In recent work

[29], spherical indentation protocols were used suc-

cessfully to measure the effective indentation moduli

at four different declination angles (denoted by /) for
single plies in an IM7/977-3 carbon fiber/epoxy multi-

laminate sample. These measurements are summa-

rized in Table 1, and are used in this study for the

estimation of the single ply elastic constants. Note that

the measurements show that the indentation moduli

decrease significantly with an increase in the declina-

tion angle, and exhibit high levels of variance in the

measurements. The high variance was attributed to the

expected large variance in the local fiber volume

fractions in the primary zones of the indentations

performed [29].

2.2 Finite element models for effective

indentation moduli of plies

The simulated domain is treated as homogenous,

transversely isotropic solid, whose elastic response in

the sample reference frame is fully described by the set

of five elastic constants, c ¼ C11;C12;C44;C33;C13f g
and the specified declination angle, /, between the

fiber orientation in the single ply and the indentation

direction. The sample size simulated was chosen to be

670 lm 9 670 lm 9 335 lm, while the indenter

radius was chosen to be 500 lm, consistent with the

experiments. The simulated sample size was chosen to

be much larger than the indentation zone size

(* 50 lm reported in experiments) [29]. The mesh

used is adopted from prior work, and consisted of

12,610 C3D8 continuum 3-D elements [27, 29]. The

FE model used in this work has been previously

validated for the extraction of effective indentation

moduli of various material systems, including cubic

metal single crystals [27] and hexagonal metal single

crystals [26]. The FE model has also been validated by

direct comparisons with the analytical solutions

reported by Vlassak and Nix [19]. Most recently, this

FE model has been validated through the direct

comparison of simulated and experimental values in

single plies within PMC multi-laminate samples [29].

2.3 Bayesian framework for the extraction

of intrinsic material properties

The Bayesian framework employed here is adopted

from prior work [26], and is briefly reviewed next. In

this approach, the measured experimental indentation

modulus for the ith ply orientation (i.e., declination

angle, /) is modeled as
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E�
i ¼ E�

sim c;/ið Þ þ �i ð2Þ

where E�
sim c;/ið Þ denotes the FE-simulated indenta-

tion modulus corresponding to a set of effective elastic

constants and a single ply orientation, and

�i �N 0; r2i
� �

denotes a stochastic noise term. It is

implicitly assumed here that the FE simulated

E�
sim c;/ið Þ exhibits negligible variance. Let

{E�
exp;Uexp} denote the set of experimental indenta-

tion moduli, E�
exp, measured at the corresponding ply

orientations, Uexp. The likelihood for n experimental

measurements across multiple plies (denoted

{E�
exp;Uexpg) is expressed as

p E�
expjc;Uexp

� �
¼

Yn

i

1
ffiffiffiffiffiffi
2p

p
ri
exp

� E�
i � E�

sim c;/ið Þ
� �2

2r2i

( )

ð3Þ

where the variance, r2i ; is directly measured from

experiments in the i-th ply (with a declination angle,

/i). Inference of the effective elastic constants, c, for

the observed experimental data can be expressed by

Bayes rule:

p cjE�
exp;Uexp

� �
/ p E�

expjc;Uexp

� �
p cð Þ ð4Þ

Assuming a uniform prior for p cð Þ along with the

likelihood function shown in Eq. (3), Eq. (4) allows

for the application of MCMC methods for sampling

the posterior distribution on the effective intrinsic

material properties [31, 32]. MCMC algorithms seek

to generate a sequence, known as a Markov Chain,

which converges to a target posterior distribution by

accepting/rejecting a large number of proposed

transitions across a finite parameter space based on

an acceptance probability [26]. Specifically, the Single

Component Metropolis–Hastings (SCMH) algorithm

is adopted in this work to generate transitions across

the multivariate parameter space of effective elastic

constants [26, 31]. When implementing SCMH, the

acceptance probability of a transition is solely deter-

mined by the ratio between candidate and current

values evaluated by Eq. (4). In practice, these methods

often require tens of thousands of evaluations of the

likelihood function to ensure convergence [33]. In this

work, 50,000 samples are drawn via SCMH in order to

generate a Markov Chain. Due to the probabilistic

nature of MCMC, it is desirable to run the algorithm

multiple times, randomly selecting initial starting

points to ensure that independently sampled Markov

Chains converge to similar distributions. The high

computational costs associated with the execution of

the FE models of indentation make it impractical to

use the FE indentation models directly in the compu-

tations described above. The only practical approach

for addressing this challenge is to first establish a

reduced-order model.

Recent work [26] has demonstrated the successful

development of a reduced-order model that captures

the dependence of indentation modulus on the crystal

orientation of the indented grain and an arbitrary set of

single crystal elastic constants. The development of

this reduced-order model involved the use of an

expanded Fourier basis and the calibration of the

Fourier coefficients via Bayesian Linear Regression

(BLR). The usage of BLR provides a valuable

quantification of uncertainty associated with the

predictions from the reduced-order model [34]. These

Table 1 Previously reported measured indentation moduli for single plies in an IM7/977-3 carbon fiber/epoxy multi-laminate sample

[29]
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same strategies are adopted in this work to establish a

reduced-order model for E�
sim c;/ð Þ. In order to

establish the reduced-order model, a database of finite

element simulations covering the relevant input

parameter space is necessary. The quantification of

uncertainty provided by BLR enables the deployment

of sequential strategies to build a simulated database

by focusing on areas of high predictive uncertainty.

Simulations can be continually performed until suffi-

cient performance of the reduced-order model is

achieved, as determined by various error metrics.

The implementation of this strategy in previous work

has shown a significant reduction in the number of

simulations necessary to establish a high fidelity

reduced-order model in comparison with traditional

regression approaches [26, 27].

The Fourier basis used in the development of a

reduced-order model in the previous work were

obtained by compounding symmetrized surface spher-

ical harmonics (to represent functions over the orien-

tation space) with Legendre polynomials (to represent

functions over the ranges of the values for the single

crystal material constants) [26, 27]. The advantage of

this representation was the ability to capture the

underlying crystal symmetries exhibited by the mate-

rial system. We note that the local orientation of any

material system with respect to a defined sample frame

can be represented by a set of Bunge Euler angles

u1;/;u2f g [35]. Since any rotation about the sample

normal does not affect the measured indentation

properties, it can be seen that the indentation proper-

ties are independent of u1 [19, 35, 36]. Furthermore,

the indentation modulus of the transversely isotropic

material simulated in this work is also independent of

u2 (i.e., a rotation of the ply about the fiber axis also

does not influence the measured indentation response).

As a result of these considerations, the desired

reduced-order model [26] can be expressed as

E�
sim � Ê� c;/ð Þ ¼

XL

l¼0

XQ

q

AlqPl cos /ð Þð Þ ~Pq �cð Þ ð5Þ

�cj ¼
2cj � cminj � cmaxj

cmaxj � cminj

ð6Þ

where Pl cos/ð Þ denote Legendre polynomials

expanded over the ply orientation space [35], and
~Pq �cð Þ denote a multivariate Legendre polynomial

product basis. In other words, one can express

~Pq �cð Þ ¼ Pq1 �c11ð ÞPq2 �c12ð ÞPq3 �c44ð ÞPq4 �c33ð ÞPq5 �c13ð Þ,
where q ¼ ðq1; q2; q3; q4; q5Þ forms a multi-index

array, each element of which is a nonnegative integer

allowed to vary from 0 to the selected maximum

degree, Q, i.e., qj 2 0;Q½ �. For the proper application
of the Legendre Polynomial basis, each of the elastic

constants are rescaled over their respective ranges [37]

as shown in Eq. (6), where cmaxj and cminj are the

maximum and minimum values of the j-th elastic

constant. Q and L denote the truncation levels adopted

in the formulation of Eq. (5). We note that the degree

of the Legendre polynomials expanded about the

orientation space are selected to be strictly even to

fully reflect the symmetries present in the transversely

isotropic material system [35]. The model coefficients,

A, are established using the aforementioned sequential

model building process deployed successfully in

previous work [26].

3 Results

3.1 Reduced-order model building

In order to evaluate the likelihood function in Eq. (3),

a high fidelity reduced-order model must be estab-

lished covering a suitable parameter space of the

elastic intrinsic material parameters. The first step in

this process is the identification of the extent of the

input parameter space to be covered by the reduced-

order model. To identify this space, simplified

estimates of the effective elastic properties of a ply

[6] can be computed using the constituent fiber/matrix

properties in the following equations:

E3 ¼ Ef3Vf þ EmVm ð7Þ

E1 ¼ E2 ¼
Em

1�
ffiffiffiffiffi
Vf

p
1� Em

�
Ef2

� � ð8Þ

G23 ¼ G13 ¼
Gm

1�
ffiffiffiffiffi
Vf

p
1� Gm

�
Gf23

� � ð9Þ

G12 ¼
Gm

1�
ffiffiffiffiffi
Vf

p
1� Gm

�
Gf12

� � ð10Þ

v23 ¼ vf23Vf þ vmVm ð11Þ
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where E, G; v denote the Young’s moduli, shear

moduli, and Poisson’s ratios, respectively, the fiber

direction corresponds to the 3-axis, and the subscripts

m and f refer to the matrix and the fiber components,

respectively [5]. A range of fiber volume fraction, Vf ;

between 20 and 80% was used in Eqs. (7–11) in order

to delineate the domain of the input parameter space

for the desired reduced-order model. For these com-

putations, the constituent fiber and matrix properties

were taken frommanufacturers’ data (Hexcel HexTow

IM7, CYCOM 977-3 Epoxy Resin) and reported

values in literature [29, 38, 39]. The fiber properties

were set as Ef3 ¼ 276 GPa;Ef1 ¼ 26 GPa;Gf12 ¼
7 GPa;Gf23 ¼ 20 GPa; vf23 ¼ 0:3; while the matrix

properties were set as Em ¼ 3:3 GPa; Gm ¼
1:2 GPa; vm ¼ 0:35. The ply stiffness values com-

puted from Eqs. (7–11) were then converted to the

corresponding values of c used in the development of

the framework presented in this paper using relations

already established in literature [5]. The extents (i.e.,

ranges) for the values of the components of c covered

by the present work are summarized in Table 2. The

full range of the ply orientation space, 0�/� 90

degrees, was included in this work.

As previously mentioned, a sequential model

building process is adopted from prior work [26] in

order to efficiently establish a reduced order model

within the identified input parameter space. The

implementation of this process includes the establish-

ment of an initial reduced-order model using an initial

data set, followed by the selection of additional

simulations based on predictive uncertainty. An initial

data set of 740 simulations was generated from unique

sets of inputs, c;/f g, determined by a Max-Pro Latin

Hypercube Design within the extents of the parameter

space identified in Table 2, while ensuring material

stability (i.e., positive eigen values for the stiffness

tensor) [40, 41]. The number of simulations for the

initial data set was selected to be close to the number

of coefficients associated with a reduced-order model

established for the single crystal elastic constants in

hcp crystals (i.e., truncation level Q = 2, L = 4

resulting in 729 model coefficients) [26]. Inputs to

additional simulations were selected from another

Max-Pro Latin Hypercube Design of 2200 simulations

in accordance with the sequential model building

strategy adopted from previous work [26].

Given the high levels of anisotropy in the composite

plys studied here compared to the hcp crystals studied

in previous work [26], it was anticipated that a higher

level of truncation would be necessary for the present

work. Using cross-validation error (CVE) approaches

[42], the aforementioned model building process

identified that a truncation level of Q = 2, L = 6

(CVE = 0.93 GPa) provides significant improvement

over the truncation level Q = 2, L = 4 (CVE = 1.57

GPa) for the present work. The necessity of higher

model complexity for the present case compared to the

previous work [26] involving hexagonal single crys-

tals is quite reasonable due to a notable increase in the

anisotropy in the present work. The degree of elastic

anisotropy can be quantified by the universal elastic

anisotropic index, A, defined as [43]

A ¼ 5
Gv

Gr
þ Kv

Kr
� 6 ð12Þ

where K and G are the bulk and shear moduli

provided by Voigt and Reuss estimates (indicated by

subscript v and r, respectively) of randomly oriented

homogenized plies within a macroscopically homoge-

nous multi-laminate system [43]. The arithmetic mean

ofA encountered in the training data used in this study

is 17.4 while previous studies involving hcp single

crystals encountered a mean anisotropic index of 2.2

[26].

A total of 860 simulations were sequentially added

(1600 simulations total) to achieve convergence in the

model building process. Convergence in the model

building process is determined by changes in the

model coefficients, A, established at every step.

Table 2 Bounds of each elastic stiffness constant considered in this study. Bounds were computed in accordance to Eqs. (7–11)
considering a fiber volume fraction between 20 and 80%

C11 (GPa) C12 (GPa) C44 (GPa) C33 (GPa) C13 (GPa)

Max 30.8 22.1 7.7 239 16.7

Min 5.6 1.3 2.2 65.9 2.2
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Changes in the model coefficients as simulations are

added is shown in Fig. 1. It is seen that the model

building process described in this paper produces a

robust model.

An additional 600 simulations were added via the

sequential design process for critical validation of the

predictive performance of the reduced-order model.

The accuracy of the predictions over the training and

test sets is summarized in Fig. 2. The reduced-order-

model produced in this work shows very good

predictive capability, exhibiting a mean absolute

prediction error of 0.75 GPa over the test set. We

note, predictions with a relatively high error (greater

than 3.5 GPa) consistently corresponded to high

values of A ranging from 75 to 215.

3.2 Estimation of single ply stiffness

from indentation measurements

We now shift focus to sampling the posterior distri-

bution of ply elastic constants,

c ¼ C11;C12;C44;C33;C13f g, given a set of experi-

mentally measured indentation moduli at different

declination angles in individual plies of a multi-

laminate sample. Following the establishment of the

reduced-order model in the previous subsection, the

likelihood function in Eq. (3) can readily be evaluated

for the available experimental data (presented in

Table 1). In accordance with the methodology

described earlier, 50,000 samples are drawn from the

posterior distribution shown in Eq. (4) using a Single

Fig. 1 Convergence metrics during the building of the reduced-

order model developed in this work, corresponding to trunca-

tion levels Q = 2, L = 6. Top: The angular difference of the

vector of model coefficients due to the addition of new

simulations is shown to converge around 1600 simulations.

Bottom: The magnitude of the vector of model coefficients

shows a similar convergence
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Component Metropolis–Hastings algorithm [26]. The

sampled posterior distributions of the effective elastic

constants are shown in Fig. 3. The mean values were

found to be c ¼ 20:1; 11:7; 4:9; 155:4; 9:9f gGPa.
Literature regarding the extraction of the (homog-

enized) single ply elastic properties from multi-

laminate samples is sparse. To provide a basis for

comparison, the effective properties of a correspond-

ing ply with a fiber volume fraction of 63% (reported

in the experiments) estimated using Eqs. (7–11) [29]

is shown in Table 3.

Interestingly, all of the estimates obtained using the

simplified equations presented in Eqs. (7–11) lie close

to or within a single standard deviation of the

respective sampled means. The noticeably higher

discrepancy for the value of C11 is consistent with

observations in prior experimental work when com-

paring the experimental data in Table 1 to FE

simulations using initial effective property estimates

[29]. We emphasize that one of the main advantages of

the proposed framework is that we obtain useful

measures of the uncertainty related to the estimated

single ply elastic stiffness parameters from the spher-

ical indentation measurements. Note that the uncer-

tainty is relatively higher for the estimates of the ‘‘off

diagonal’’ stiffness constants, C12 and C13. This is

because the indentation modulus exhibits a relatively

low sensitivity to changes in these parameters across

Fig. 2 The accuracy of the reduced-order model built in this

work for the prediction of the FE simulated effective indentation

modulus for input values of the single ply stiffness distributed

over the ranges specified in Table 2 and ply orientations ranging

between 0� and 90�. Left: Comparison of predicted and actual

FE simulated effective indentation modulus for test and training

data. Right: Corresponding histograms of the absolute error for

test data and training data

Fig. 3 Extracted posterior distributions of the single ply elastic stiffness parameters from the available experimentally measured

indentation moduli presented in Table 1
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the ply-orientation space [44]. The relatively high

uncertainty levels in Table 3 could be reduced if

additional indentation measurements at additional ply

orientations become available. Determination of

where to perform additional experiments can be

qualitatively determined by viewing the predictions

of the reduced-order model over the ply orientation

space. The variation in the predictions of the reduced-

order model due to the MCMC process is shown in

Fig. 4.

The predictions of the variation of the indentation

moduli with the indentation declination angle,

obtained from MCMC sampling, conform closely to

the measured experimental indentation dataset veri-

fying that the underlying variation in local indentation

modulus observed within the single plies is effectively

being communicated to the extracted distributions.

However, significant variation in predictions occurs at

lower declination angles, suggesting there would be

value from additional experiments performed at lower

declination angles. We note that the recently devel-

oped work in the sequential selection of indentation

experiments based on highest information gain [45]

may prove useful in leveraging the extracted distribu-

tions of effective elastic constants in order to quan-

titatively determine the precise orientation of single

plies to focus upon that may best sharpen the C12 and

C13 distributions.

3.3 Bulk multi-laminate property estimation

The effective elastic properties of a multi-laminate

system can be tailored by manipulating the configu-

ration of the constituent plies. Simple homogenization

theories have often provided estimates for the effec-

tive properties of various configurations of a multi-

Table 3 Comparison of effective elastic constants extracted using MCMC to estimates [29] obtained using Eqs. (7–11). We note the

sampled distributions provide a measure of uncertainty with respect to the extracted ply elastic stiffness constants

C11 (GPa) C12 (GPa) C44 (GPa) C33 (GPa) C13 (GPa)

Vf: 63% 15.1 8.0 4.9 179.6 7.2

Sampled mean 20.1 ± 4.7 11.7 ± 6.1 4.9 ± 1.6 155.4 ± 45.2 9.9 ± 4.9

Fig. 4 The sampled MCMC posterior distribution for the

prediction of indentation moduli as a function of the indentation

declination angle. Highest uncertainty is seen at low declination

angles, suggesting more information gathered at these angles

will provide the best improvement in the extracted effective

intrinsic properties
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laminate system. Therefore, it is desirable to incorpo-

rate the distributions of effective elastic constants

sampled in Sect. 3.2 into such homogenization

schemes in order to examine how the uncertainty in

the single ply properties are propagated to the effective

properties at the next higher length scale. Specifically,

the overall elastic properties of a multi-laminate

system with m oriented plies can be estimated using

an iso-strain model [6, 7] expressed as

�Cijkl ¼ f cð Þ ¼
Xm

t¼1

CpqrsV
tQt

ipQ
t
jqQ

t
krQ

t
ls ð13Þ

where C denotes the 4th rank elastic stiffness tensor

composed from c, Vt is the volume fraction of the tth

ply and Qt denotes the rotation matrix which trans-

forms the material principle frame to the sample frame

in accordance with the t-th ply orientation. We note, �C
is the effective 4th rank stiffness tensor of the multi-

laminate system. In practice, symmetric ply configu-

rations are often chosen such that a multi-laminate

system likely exhibits an orthotropic, or quasi-

isotropic elastic response [5, 38, 46, 47]. Conse-

quently, the effective Young’s modulus in the longi-

tudinal direction of such multi-laminate systems is

commonly reported in experiments [38, 48]. Let gð �CÞ
be the function which computes the effective Young’s

modulus, denoted �E, in the longitudinal direction of an
elastic orthotropic or quasi-isotropic multi-laminate

system. We recall this relation is readily available in

literature [5]. In order to take into account the

distributions of effective elastic constants extracted

in Sect. 3.2, the expected effective Young’s modulus,

can be computed as

E �EjE�
exp;Uexp; c

� �
¼ rg f cð Þð ÞpðcjE�

exp;UexpÞdc

ð14Þ

where the expectation function, E, is readily approx-

imated using the Monte-Carlo estimate [49] by

E �EjE�
exp;Uexp; c

� �
� 1

N

XN

i¼1

g f cið Þð Þ ð15Þ

where ci enumerates the N ¼ 50; 000 samples of the

Markov Chain. The expected effective Young’s

Moduli in the longitudinal direction computed for

various configurations of the IM7/977-3 epoxy-carbon

fiber multi-laminate system are compared to previ-

ously reported experimentally measured values [38] in

Table 4.

The computed expected longitudinal stiffness using

the distributions extracted in Sect. 3.2 are in very good

agreement with experimentally measured values.

Furthermore, the reported standard deviations corre-

spond to 10 separate MCMC chains. The small

deviations between the predictions of these chains

indicate robustness of the MCMC sampling method-

ology. The above exercise demonstrates how the

distributions of in-situ elastic ply properties may

provide accurate predictions of the homogenized

properties for arbitrary configurations of multi-lami-

nate composite systems.

4 Conclusions

A new framework has been presented and demon-

strated for the extraction of homogenized single ply

anisotropic elastic constants from available spherical

indentation measurements on single plies within a

multi-laminate PMC sample. The available experi-

mental measurements exhibited varying levels of

variance attributed to a large variance in the local

fiber volume fractions in the primary zones of

indentation. The Bayesian framework extended from

prior work was successfully employed to sample

distributions of the ply anisotropic elastic constants

which reflect the uncertainty (expressed as variance)

in the underlying experimental measurements. This is

accomplished through the establishment of a

Table 4 Comparison of homogenized longitudinal Young’s Modulus predicted using posterior distributions of single ply elastic

stiffness constants to the longitudinal Young’s Modulus measured experimentally for multiple multi-laminate configurations

Multi-laminate

Ply configuration

Experimental longitudinal

Young’s modulus

Expected longitudinal

Young’s modulus

STDEV of expected

longitudinal Young’s modulus

[0/?45/90/-45]2S 58.9 57.6 0.6

[?60/0/-60]3S 59.5 57.9 0.6

[?30/?60/90/-60/-30]2S 38.1 39.5 0.4
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likelihood function which requires a FE model of the

spherical indentation experiment. In practice, a large

number of evaluations of the likelihood function is

necessary to discern the distributions of effective

elastic constants. In order to expedite these computa-

tions, a high fidelity reduced-order model is estab-

lished for the FE model of the indentation

measurement. Following the determination of the

distribution of effective elastic constants pertaining to

single plies, high fidelity estimates of bulk elastic

properties of multi-laminate samples with various ply

configurations were obtained. This was accomplished

using the extracted distributions of effective elastic

constants coupled with existing composite lamina

theory.
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