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Abstract In this paper, two new methods for

detecting the bearing’s degradation starting points

are presented based on the vibration signal analysis. In

the first method, a new feature extraction technique is

suggested based on the envelope harmonic-to-noise

ratio (EHNR) and the fast ensemble empirical mode

decomposition (FEEMD). Each vibration signal is

decomposed into its intrinsic mode functions (IMFs)

using the FEEMD algorithm. Also, a novel technique

has been introduced based on the autocorrelation

function (ACF) of the original signal and its IMFs for

selecting the most appropriate IMF and eliminate the

noisy components. Then, the EHNR of the most

sensitive IMF is computed for detecting the early

degradation of bearing. In the second method, a new

adaptive feature is defined using the ACF of the raw

signal and the energy-entropy vector. At first, a novel

indicator called the periodicity intensity factor (PIF) is

introduced using the energy of the ACF of the raw

signal and its maximum points. In the next step, the

energy-entropy variations of the PIF factor are inves-

tigated for recognizing the fault starting point in

bearings. In this work, the vibration signals of the run-

to-failure experiment are used to appraise the pre-

sented techniques. The results indicate that the

proposed approaches are able to detect the exact

moment of the defect occurrence. Also, comparing the

results of this paper with other techniques presented

recently indicates the superiority of the proposed

approaches.

Keywords Incipient fault detection � Bearing �
Empirical mode decomposition (EMD) � Envelope

harmonic-to-noise ratio (EHNR) � Auto-correlation

function (ACF) � Periodicity intensity factor (PIF)

1 Introduction

Rotary machines play a very important role in many

production lines. The failure of these machines will

result in a huge loss for industrial sets. The rolling

bearing is one of the main components of the rotating

machinery. In general, their failure leads to full

paralysis of the machines [1, 2]. Therefore, the bearing

fault detection is one of the main tasks of engineers.

The subject of designing a condition monitoring

approach becomes important when its main purpose

is to detect the degradation starting point. In recent

years, many studies were carried out to monitor the

condition of the bearings. The analysis of vibration

signals and the vibration data-based feature extraction
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are the approaches that were used to identify the

bearing damages in different working conditions [3].

In recent decades, different signal processing

methods were presented to develop the fault diagnosis

techniques. The feature extraction methods are uti-

lized to extract the fault signatures and are categorized

into three main groups: time domain, frequency

domain, and time–frequency domain analysis tech-

niques. In the classical feature extraction methods in

the time domain, the features such as standard

deviation, skewness, kurtosis, crest factor, shape

factor, and clearance factor are extracted from the

vibration signals. These features are only able to detect

the presence of defects and they cannot be used to

diagnose the type of faults [4]. On the other hand, the

diagnosis of the fault type is possible by analyzing the

vibration data in the frequency domain. When a fault is

created in one of the bearing components, the alter-

native impulses are appeared in the vibration signals

by the collision of defect location with the other

surfaces of bearings. Each element of the bearing has a

specific characteristic frequency. These frequencies

are the ball spin frequency, ball fault frequency, ball

pass frequency outer race and ball pass frequency

inner race. Therefore, if the spectrum of a vibration

signal includes one of these frequencies and its

harmonics, the type of defect can be identified [5].

The analysis of the spectrum of acquired data is one of

the useful tools for identifying the location and type of

fault. This approach has been used in many studies

[6–8]. The third group of signal processing methods is

the time–frequency domain techniques. In recent

years, various approaches such as wavelet transform

(WT) [9], empirical mode decomposition (EMD) [10],

ensemble EMD (EEMD) [11], empirical wavelet

transform (EWT) [12] and variational mode decom-

position (VMD) [13] were proposed for extracting the

time–frequency features. These techniques and their

improved versions were used in various researches to

develop the sagacious fault diagnosis methods,

denoise the noisy vibration signal and extract the fault

- susceptible feature.

In papers such as [14–16], researchers developed

the bearings and gears fault detection methods based

on improving the implementation steps of the EMD

and EEMD techniques. Wang et al. [17] proposed a

self-adaptive filter using the EEMD method for

eliminating the noise from the vibration signals

acquired from a damaged locomotive bearing. For

this purpose, an adaptive relationship was suggested

for computing the number of the sifting process based

on the number of signal IMFs. The results of their

work demonstrated that the fault characteristics can

easily be seen in the frequency spectrum of the de-

noised signal. Wei et al. [18] proposed a new signal

processing for detecting the bearing fault. They

extracted the time and frequency statistical features

from the vibration signal using the wavelet packet

transform (WPT) and EEMD methods. Then, the

authors presented a novel optimal feature selection

method based on the adaptive feature selection

technique and affinity propagation clustering method.

Abdelkader et al. [19] proposed a new strategy for

diagnosing the characteristics of the bearing faults

using the improvement of the EMD-based denoising

method, the kurtosis value, and the envelope spectrum.

In their work, the vibration signals were decomposed

into several IMFs. Then, the trip point and the singular

IMFs were selected based on the energy of all IMFs.

Finally, the soft thresholding and the optimized

threshold were applied to denoise the singular IMFs.

Cao et al. [20] investigated the wheel-bearing fault

diagnosis of trains using the EWT approach. In this

work, the EWT technique for different case studies,

and also for the compound fault of the faulty outer race

and faulty rolling elements has been applied. Keda-

douche et al. [21] combined the EWT method and the

operational modal analysis (OMA) for improving the

bearing fault diagnosis. In this study, the kurtosis

parameter has been performed for identifying the

appropriate modes and extracting the defect frequen-

cies. Zhang et al. [22] designed a novel technique for

recognizing the bearing fault of the multistage

centrifugal pumps based on the VMD method. Coc-

concelli et al. [23] presented a procedure for the

condition monitoring of the ball bearing in direct-drive

motors with the non-stationary condition. They ana-

lyzed the vibration signals to highlight the presence of

damage impacts in the time–frequency domain.

Bellini et al. [24] suggested a fault detection technique

for bearings damage based on the statistical analysis of

vibration and current signals. The authors used the

spectral kurtosis and the energy of the signal to

identify the spreading bandwidth related to general-

ized roughness and introduce the diagnostic index,

respectively. Montechiesi et al. [25] introduced a

bearing faults recognition approach using the mech-

anisms of the immune system. Their proposed
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algorithm is based on the Euclidean Distance Mini-

mization in the evaluation of the binding between

antigens.

In all of the studies mentioned above, different fault

types with various sizes were artificially created on

each of the components of rotating machinery such as

bearings and gears. In fact, the researchers investi-

gated the validation of their proposed methods with

fully aware of the status of their case studies. On the

other hand, in practical applications, the mechanism of

creating faults is not consciously. In other words,

according to the working conditions of the bearing, a

particular defect may be created by one of its

components and the bearing losses its efficiency by

expanding the defect severity. Therefore, the recogni-

tion of the presence and type of fault in the initial

moments can provide sufficient opportunity for the

operator to take the appropriate actions. Recently,

limited studies have been conducted on the detection

of early degradation. In these works, the researchers

utilized the run–to–failure data set provided by the

center of Intelligent Maintenance System (IMS) at

NASA website [26] for evaluating their suggested

approaches. Qiu et al. [27] applied the wavelet filter to

extract the weak signature of the mechanical impulse-

like defect signals. They used the minimal Shannon

entropy and the signature value decomposition (SVD)

for finding the optimal values of the Morlet wavelet

factor and the scale of the wavelet transform, respec-

tively. Yu [28] proposed a new feature selection

technique based on the locality preserving propagation

(LPP) for exploiting the most informative fault

signatures from the original high dimensional feature

set. Then, a new on-line bearing performance degra-

dation evaluation was implemented using a combina-

tion of the squared prediction error (SPE) statistic and

the Exponential Weight Moving Average (EWMA)

statistic. In other work [29], the author applied the

dynamic principal component analysis (DPCA) for

extracting the most appropriate information from the

raw signals. In the next stage, the obtained useful

features were used as input of the Hidden Markov

Model (HMM) for monitoring the bearing in the test–

to–failure experiment. Fernandez-Francos et al. [30]

used the one-class t-SVM to recognize the degrada-

tion starting point of bearing based on the healthy

vibration data in the run-to-failure test. Ben Ali et al.

[31] performed the EMD method to process the non-

stationary bearing signals. The authors applied the

combination of the EMD-energy entropy and statisti-

cal features to construct the feature matrix as the input

of the artificial neural network (ANN) classifier. They

suggested a health index (HI) for predicting the

degradation point. Xu et al. [32] indicated that the

root–mean–square (RMS) and kurtosis are not suit-

able parameters for appearing the periodicity property

of impulses produced by the bearing defects. There-

fore, they introduced an effective feature called

envelope harmonic-to–noise ratio (EHNR) for moni-

toring the incipient bearing faults. Jia et al. [33]

investigated the capabilities of the minimum entropy

deconvolution (MED) and the Convolutional Sparse

Filter (CSF) in extracting the impulsive signature.

They illustrated the performance of the CSF and the

MED techniques for incipient fault detection. Hasani

et al. [34] introduced an unsupervised feature extrac-

tion by using the auto-encoder correlation (AEC) to

diagnose the condition of bearing during the test-to-

failure experiment. Li et al. [35] designed a novel

weak fault feature extraction technique using the

intrinsic character-scale decomposition (ICD) and the

turntable Q-factor wavelet transform (TQWT) to

estimate the moment of the bearing fault occurrence.

Jiang et al. [36] improved the VMD approach by

performing the ability of EMD technique in the VMD

decomposition process to monitor the weak transient

impulses of faulty bearing in the early stage. Dybala

[37] presented a new bearing diagnostics approach in

the early stage based on the amplitude level-based

decomposition of the vibration data. The author

proposed a new effective feature from a low-energy

component by using the power spectra of the empir-

ically identified local amplitude. Lv et al. [38] utilized

a novel strategy based on the complete EEMD with

adaptive noise (CEEMDAN) and improved multivari-

ate multi-scale sample entropy (MMSE) for detecting

the incipient fault. Qian et al. [39] used the combina-

tion of the recurrence quantification analysis (RQA)

with Kalman filter for diagnosing the bearing degra-

dation phase. They applied the RQA and Kalman filter

to extract the novel feature from the vibration data and

identify the bearing conditions, respectively.

In this paper, two novel methods are proposed for

diagnosing the degradation starting point. Then,

similar to the articles described in this section, the

test-to-failure data set provided by IMS is used to

check the accuracy of the proposed approaches. The

first technique is a combination of the EHNR-based
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feature extraction and the EEMD decomposition

method. In this method, each vibration signal is

decomposed into its constituent components through

EEMD. All of these components do not contain the

fault-related information and may even be impreg-

nated by noise. Therefore, a new technique based on

the correlation coefficient between the auto-correla-

tion coefficient of the original signal and its compo-

nents has been provided for selecting the most

suitable component. Then, the EHNR of the most

informative IMF is calculated for appearing the

characteristics of the periodic impulses and the

incipient faults signatures. In the second proposed

technique, a new effective index is defined based on

the energy of the auto-correlation of the raw signal and

the energy-entropy feature. The results show that the

proposed approaches are effective in identifying the

fault starting point and are superior to classical

techniques such as EHNR and other early fault

detection methods.

The remainder of this article is compiled as follows:

A summary of the bearings concepts, their character-

istic frequencies and the experimental setup utilized in

this paper are described in Sect. 2. In Sect. 3, the

EEMD algorithm and EHNR are explained. In Sect. 4,

both proposed methods and their results are presented.

Comparison of suggested approaches with other

methods is presented in Sect. 5. Finally, this work

has been concluded in Sect. 6.

2 Bearing fault detection in run-to-failure

experiment

So far, most researches have been devoted to the

bearing fault diagnosis with the artificial defects

[5–22]. On the other hand, a few papers studied the

condition monitoring of the bearings based on the run-

to-failure vibration signals. Although the researchers

in most experiments investigated the identification of

the small-sized defects, these defects have been

artificially created. Hence, their results are not

suitable for detecting the fault starting point. In the

run-to-failure tests, it is possible to study the early

fault detection in the bearings. In other words, in the

run-to-failure experiments, fault detection in the

earliest stage is one of the most important tasks.

Importance of this issue can be discussed as follow:

• The fault diagnosis at a preliminary level allows

applying the necessary actions by operators.

• The incipient fault detection in a particular com-

ponent of the bearing prevents the defect expansion

to the other components and as a result, it makes

economic sense.

• The fault diagnostic at the early moments provides

the possibility of predicting the remaining useful

life (RUL) of the bearing. Therefore, maintenance

can be performed at a lower cost.

2.1 The bearing fault characteristic frequencies

The vibration signals of the faulty bearings usually

include fault-induced periodic impulses which can be

used as an indicator to diagnose the bearing condi-

tions. These series of impulses are produced by

interactions between the fault location and the rolling

elements of bearing. The periodicity of the produced

impulses depends on the defect location in the bearing,

i.e., the inner race, outer race, and rolling element.

Therefore, each type of fault is corresponding to a

specific frequency which called the characteristic fault

frequency. The presence of a specific fault character-

istic frequency along with its harmonics in the

envelope spectrum of the vibration signal will be an

indication of a particular fault type. The commonly

used equations for calculating these frequencies have

been presented in Table 1 [30]. In this table, Fo is the

ball pass frequency of the outer race, Fi is the ball pass

frequency of the inner race, BSF is the ball spin

frequency,FTF is the fundamental train frequency,Fs

is the rotational frequency, Nb is the number of rolling

elements, d is the rolling element diameter, Dm is the

pitch diameter and a is the contact angle which is the

angle of the load from the radial plane. In these

equations, it is assumed that there is no slip between

the components of the bearing. Nevertheless, practi-

cally there is some slip. Therefore, the angle a is

changed with the position of each rolling element in

the bearing. As a result, in the practical condition, the

characteristic frequency value generally deviates

about 1–2% from the theoretical value. Table 2

indicates the list of frequencies corresponding to

different fault types that are emerged in the envelope

spectrum [30].
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2.2 Experimental setup

In this paper, it is studied a run-to-failure lifetime

testing provided by the center of Intelligent Mainte-

nance Systems (IMS) of the University of Cincinnati

[26]. The data package includes three data sets. Each

test is a run-to-failure experience of four bearings. So,

a total of twelve bearings were used but only four

bearings were reached failure with the known defects.

Bearing test rig and schematic of the sensor

placements is shown in Fig. 1. According to this

illustration, PCB 353B33 High sensitivity Quartz ICP

accelerometers installed on the bearing housing in X

and Y axes (shown in Fig. 1a) were used to acquire

each vibration signal. The vibration data were col-

lected with the sampling rate of 20 kHz by a National

Instruments DAQCard-6062E data acquisition card.

The details of case studies used in presented work are

summarized in Table 3. In each case study, the

number of samples, the experimental full lifetime,

the damaged bearing number and the type of fault are

reported. Each dataset consists of individual files that

are 1-s vibration signal snapshots recorded every

10 min and each file contains 20,480 points. Rexnord

ZA-2115 double row bearings were used in this run-to-

failure test. The bearings contain 16 rollers in each

Table 1 The equations of

bearing characteristic

frequencies [30]

Bearing characteristic frequencies Formula

Ball-pass frequency of outer race FoðHzÞ ¼ Fs
Nb

2

� �
1 � d

Dm
cosu

� �

Ball-pass frequency of inner race Fi ¼ Fs
Nb

2

� �
1 þ d

Dm
cosu

� �

Fundamental train frequency FTF Hzð Þ ¼ Fs
1
2

� �
1 � d

Dm
cosu

� �

Ball spin frequency BSF Hzð Þ ¼ Fs
Dm

2d

� �
1 � d2

D2
m
cos2u

� �

Table 2 The frequencies appeared in the envelope spectrum correspond to different fault types [30]

Bearing fault Frequencies appeared in the power spectrum Description

Rolling elements 2 � BSF;Fo;Fi Modulated by 2 � BSF or FTF

Outer race Fo Harmonics may be found

Inner race Fi Harmonics may be found

Inner race faults are typically modulated by Fs

Fig. 1 Bearings run-to-failure test rig [27]. a Test system, b System structure
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row, the pitch diameter of 7.150 cm, a roller diameter

of 0.840 cm and a tapering contact angle of 15.17

degree. In each case study described in Table 3, the

outer ring is stationary and the inner ring rotates with

the shaft speed. A constant radial load of 6000 lbs

(about 26,690 N) was performed to the shaft and each

bearing in Y-Axis by a spring mechanism, and the

rotating speed of the shaft was kept constant at

2000 rpm. All of the bearings were force lubricated. A

magnetic plug collected debris from the oil circula-

tion. An electronic switch was utilized to stop the test

when the debris exceeds a certain level and cause a

switch to turn off [27].

Figure 2a–c demonstrate the vibration signals of

the faulty bearings presented in Table 3. According to

the bearing geometry, the rotational speed and the

frequency characteristic equations presented in

Table 1, the theoretical value of Fo, Fi, BSF, FTF

are 236.4 Hz, 296.9 Hz, 139.9 Hz, and 14.04 Hz,

respectively.

3 Methods

3.1 Ensemble empirical mode decomposition

method

Ensemble empirical mode decomposition (EEMD)

[11] is an adaptive signal processing method for

decomposing the complex signal. This method can

decompose a nonlinear signal into a series of functions

called intrinsic mode functions (IMFs) and a residue

via an iterative procedure named the stiffing process.

The main idea of the EEMD method is to solve the

problems of the empirical mode decomposition

(EMD) such as the mode mixing phenomenon and

the end effects. In the EEMD technique, the original

signal with added white noise is repeatedly decom-

posed into a series of IMFs by applying the original

EMD process. Then the final EEMD decomposition

results are calculated by the ensemble average of the

extracted IMFs. The EEMD algorithm can be

described as follows:

In the first step, the Gaussian white noise with

different amplitudes is added to the original signal and

ensembles of signals are produced:

xi ¼ xþ amp � wi; i ¼ 1; 2; . . .; n ð1Þ

where wi is the Gaussian white noise (with zero-mean

and unit variance), the amp is the amplitude of the

added noise, and n is the number of ensembles. The

amplitude is commonly computed relative to the

standard deviation of the original signal. In the next

step, the signal xi i ¼ 1; . . .; nð Þ is decomposed by the

traditional EMD method into its IMFs. It is assumed

that cik is the kth IMF produced by the ith realization.

In the last step, the ensemble mean of the

Table 3 Summary information of case studies used in the presented work

Case study Number of samples Experiment full lifetime (day) Number of defected bearing (defect type)

Case 1 2156 35 Bearing 3 (inner race)

Case 2 984 8 Bearing 1 (outer race)

Case 3 6324 46 Bearing 3 (outer race)

Fig. 2 The vibration signals corresponding to the damaged

bearings introduced in Table 3 [27]. a Case 1, b Case 2 and

c Case 3
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corresponding IMFs is computed based on the fol-

lowing equation:

�ck ¼
Pn

i¼1 cik

n
; k ¼ 1; 2; . . .; I ð2Þ

where �ck and I are the kth IMF of the original signal

x and the minimum number of IMFs among all the

trials, respectively.

In the EEMD method, determining the amplitude of

added noise and the ensemble number are two vital

parameters in the decomposition process. Wu et al.

[11] indicated that the EEMD with an ensemble

number of a few hundred and the added noise

amplitude of 0.2 standard deviation of the original

signal will lead to a very good result. On the other

hand, Wang et al. [40] proposed an optimized program

(FEEMD) to increase the computation speed of EEMD

up to about 1000 times faster. In the presented paper,

the FEEMD approach is used to process the vibration

signals. The original vibration signal corresponding to

Case 2 and its first six IMFs and residual obtained by

FEEMD are shown in Fig. 3.

3.2 Envelope harmonic-to-noise ratio for early

fault detection

Xu et al. [32] proposed a new method based on

envelope harmonic-noise ratio (EHNR) for detecting

the periodicity of the fault-induced impulses. Accord-

ing to [32], the implementation steps of the EHNR

method are as follows:

1. Calculate the Hilbert transform of the signal based

on the following equation:

x̂ tð Þ ¼ H x tð Þf g ¼ 1

p

Zþ1

�1

x sð Þ
t � s

ds ð3Þ

2. Compute the direct envelope of the signal and

remove the direct-current (DC) component from

it:

Fig. 3 Signal vibration and its first 6 IMFs and residue obtained via FEEMD
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En�vx tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂ tð Þ2þx tð Þ2

q
ð4Þ

Envx tð Þ ¼ En�vx tð Þ � mean En�vx tð Þð Þ ð5Þ

3. Calculate the autocorrelation of Envx tð Þ:

renvx sð Þ ¼
Z

Envx tð ÞEnvx t þ sð Þds ð6Þ

where s is the lag in the autocorrelation function

(ACF). ACF is a powerful tool for finding the

periodic events such as the fault-related impulses.

4. Find the maximum position of the autocorrelation

function of the original signal in the lag domain.

Then EHNR is defined as follows:

EHNR ¼ renvx smaxð Þ
renvx 0ð Þ � renvx smaxð Þ ð7Þ

where smax is the maximum location of the auto-

correlation of Envx tð Þ. renvx smaxð Þ is the amplitude of

the autocorrelation spectrum at s ¼ smax or the energy

of harmonics and renvx 0ð Þ is the total energy of the

envelope.

In [32], the EHNR results were presented only to

identify the moment of the occurrence of the fault for

the second case study and no interpretation was

provided for analyzing the bearing conditions. There-

fore, in this work, the steps of the condition monitoring

process of Case 2 are investigated for further expla-

nation. For this purpose, the results of the original

EHNR method for vibration signals of Case 2 are

shown in Fig. 4. As shown in this figure, the health

condition monitoring process clearly can be divided

into five segments. These five parts are discussed as

follows:

1. Healthy phase: This section takes about 90 h. In

this phase, the bearing works in perfectly healthy

conditions. The changes of the EHNR values in

the healthy phase are very insignificant.

2. Fault occurrence phase: This phase takes about

28 h and is started when a small fault has been

created in the bearing. Since the fault-related key

characteristics in this stage often are masked by

the heavy noise, identifying the start time of this

phase is very difficult.

3. Initial defect propagation phase: In this phase, the

increasing the defect size is more accelerated and

the fault-related characteristics become obvious.

Therefore, this phase is relatively easy to

recognize.

4. Healing Phase: When the edges of a crack or a

small defect area created in the bearing compo-

nents have been smoothened due to the continuous

contact of the damage location with the rolling

elements of bearings, the healing phenomenon is

utilized [32]. In this phase, the EHNR amplitude is

reduced and the fault-related characteristics are

hidden.

5. Severe degradation phase: The bearing fault

grows more rapidly, and at the end of this step,

the bearing will not have enough efficiency to

continue the work. At this stage, maintenance is

not appropriate and can cause serious damage to

the entire mechanical system.

The results of the original EHNR for Case 1 and

Case 3 are presented in Figs. 5 and 6, respectively. Xu

et al. [32] assumed that the bearings work in the

normal condition at hours 1–80 and they considered

the mean of EHNR plus four times the standard

deviation of the EHNR in the normal region as a

criterion for distinguishing the instant of the fault

occurrence. Similarly, in this paper, this criterion is

used for early fault identification. As shown in Fig. 5,

the first faulty sample determined by the original

EHNR method for Case 1 is the 2130th sample.

Another noteworthy point in Fig. 5 is the absence of

false alarms in the EHNR curve of Case 1. The results

of the original EHNR of Case 3 are different from

those of the EHNR of Case 1. According to Fig. 6, in

the EHNR curve of Case 1, the first, 22th, 25th and

6162th samples are nominated for identifying the

incipient fault moment. Since the three samples 1, 22

and 25 are related to the initial hours of the bearing

operation and at these moments, the bearing works in

the healthy condition, these samples cannot be

considered as the bearing degradation starting points.

Therefore, the sample corresponding to the fault

occurrence time reported by the original EHNR for

Case 3 is the 6162th measurement. Three measure-

ments 1, 22 and 25 are the false alarms that confuse the

operator in identifying the fault occurrence time. The

existence of these false warnings indicates the weak-

ness of the original EHNR method in the early defect

diagnosis.

123

268 Meccanica (2020) 55:261–286



4 Proposed methods

4.1 Proposed method 1: FEEMD–EHNR

4.1.1 New approach for selecting the most sensitive

IMF

The selection of the most informative IMFs for

detecting the defects in the early stage is a fundamen-

tal problem in the bearing fault feature extraction. The

selection of the most sensitive IMFs is equivalent to

choosing the IMFs containing the fault-related infor-

mation and removing the noisy IMFs. In the previous

studies, such as [41, 42], the researchers applied the

first few IMFs of each signal as the meaningful

components for extracting the features from the

vibration data and forming the feature vector. The

presence of possible noise and unrelated information

in these components as well as the high computational

cost due to the use of several IMFs are the shortcom-

ings of the approach employed in those researches. In

this section, the cross-correlation coefficient between

the auto-correlation of each IMF and the original

signal is utilized as a criterion for selecting IMF which

includes the most dominant fault information. Accord-

ing to this idea and the algorithm proposed in [43], in

this work, a new method is proposed for finding the

most suitable component. The steps of this technique

are described below:

1. Calculate the cross-correlation between the auto-

correlation of the original signal and the autocor-

relation of the obtained IMFs denoted as

T
kð Þ

i (i ¼ 1; 2; . . .; n), where T
kð Þ

i is the correlation

between the autocorrelation of the kth sample

(k ¼ 1; 2; . . .;mÞ and the autocorrelation of the ith

IMF of the mentioned sample. n and m are the

number of IMFs obtained in the decomposition

process and the total samples, respectively.

2. Calculate the cross-correlation between the auto-

correlation of the original signal in the healthy

region and the obtained IMFs denoted as H
kð Þ
i

(i ¼ 1; . . .; n), where H
kð Þ
i is the correlation

between the autocorrelation of the kth healthy

sample (k ¼ 1; 2; . . .; hÞ and the autocorrelation of

the ith IMF of the mentioned sample. n and h are

the number of IMFs obtained in the decomposition

process and the number of healthy samples,

respectively.

3. Calculate the mean value of T
kð Þ

i and H
kð Þ
i :

ai ¼
1

m

Xm

k¼1

T
kð Þ

i k ¼ 1; 2; . . .;mð Þ ð8Þ

bi ¼
1

h

Xh

k¼1

H
kð Þ
i k ¼ 1; 2; . . .; hð Þ ð9Þ

Fig. 4 The results of the original EHNR method for Case 2
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where ai is the mean value of T
kð Þ

i for total

samples, bi is the mean value of H
kð Þ
i for normal

samples.

4. Compute the absolute difference between two

parameters ai and bi:

ci ¼ ai � bij j; i ¼ 1; 2; . . .; �n ð10Þ

where ci called the fault-related coefficient and �n

is the minimum number of the IMFs obtained from

the considered samples.

5. Introduce the sensitivity factor ki according to the

following equation:

ki ¼
ci � min cð Þ

max cð Þ � min cð Þ ; c ¼ cnf g;

i ¼ 1; 2; . . .; �n
ð11Þ

6. Sort all the IMFs in terms of their sensitivity

factors in decreasing order to get the following

series:

y
0

i

n o
; i ¼ 1; 2; . . .; �n and �k1 [ �k2; . . .; �ki; . . .; �k�n�1 [ �k�n

ð12Þ

7. Calculate the difference of the sensitivity factor

for every two consecutive IMF and find the index i

corresponding to the maximum value of di as the

final sensitive IMF:

Fig. 5 The results of the original EHNR for Case 1
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di ¼ �ki � �kiþ1; i ¼ 1; 2; . . .; �n ð13Þ

The results obtained by the new proposed approach

for case studies 1, 2 and 3 are presented in Fig. 7.

According to this figure, IMF1 with a significant

difference for every three cases has the most sensitive

factor. On the other hand, the components IMF4,

IMF3, and IMF5 for Case 1, Case 2 and Case 3 are

placed in the next ranks, respectively. As can be seen

in Fig. 9, IMFs 6–12 in compare with IMF1 have the

sensitivity factors with insignificant values and it can

be concluded that these components are not useful for

diagnosing the bearing fault. In other words, these

components are irrelevant IMFs.

For evaluating the IMF selection technique pro-

posed in this work, the original EHNR method is

performed to the first three IMFs of the vibration

signals of Case 2. The results have been shown in

Fig. 8. As shown in Fig. 8a, by calculating the EHNR

of the most sensitive IMF i.e., IMF1, the early fault can

be identified in the 535th sample without any false

alarm. According to Fig. 8b, many false alarms have

appeared in the EHNR curve of the IMF2 in the

healthy region, and this phenomenon complicates the

fault diagnosis procedure. It can be concluded that the

existence of noise in IMF2 leads to emerging false

Fig. 6 The results of the original EHNR for Case 3

Fig. 7 Sensitivity rank of the IMFs of the vibration signal for

all case studies
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alarms in the EHNR of IMF2. On the other hand, the

investigation of the EHNR for IMF3 shows that the

first indications of the presence of defect are recog-

nizable in the 617th sample (see Fig. 8c). The above

results demonstrate that the EHNR of the first IMF can

detect the defect signatures easier than that of IMF3. In

other words, IMF1 has the most information about the

defect in comparison with other components and gives

us a better estimation from the moment of the

occurrence of the fault.

4.1.2 Early fault detection using FEEMD–EHNR

The new hybrid incipient fault detection method,

introduced in this subsection, is based on the FEEMD

and EHNR techniques. The implementation steps of

the proposed approach called FEEMD-EHNR are as

follows:

1. Decompose the input signal into a series of IMFs

by FEEMD.

2. Select the most sensitive IMF using the new

approach proposed in Sect. 4.1.1.

3. Compute the EHNR for the most appropriate IMF

chosen in step 2.

4. Calculate the mean of the EHNR, l, and the

standard deviation of the EHNR, r, in the normal

working statue of bearing. Compute the alarm

threshold as lþ 4r for identifying the early fault.

5. Consider the first intersection of the EHNR curve

with the alarm threshold value computed in the

previous step as the moment of the fault

occurrence.

The flowchart of the proposed method 1 (FEEMD-

EHNR) has been shown in Fig. 9.

The results of the FEEMD-EHNR for Case 1, Case

2 and Case 3 are presented in Figs. 10, 8a and 11,

respectively. According to Fig. 10, the first faulty

sample determined by FEEMD-EHNR for Case 1 is

the 2120th sample. By investigating the results of the

FEEMD-EHNR and EHNR in Figs. 10 and 5, respec-

tively, it is observed that FEEMD-EHNR can diagnose

the incipient fault ten samples earlier than EHNR

(about 90 min). As illustrated in Fig. 8a, the alarm

time recognized by the FEEMD-EHNR approach for

Case 2 is the 89th hour or the 535th sample. As

demonstrated in Fig. 11 for Case 3, the 25th and

6079th measurements are reported as the degradation

starting point by the FEEMD-EHNR technique. On

the other hand, the 25th sample is corresponding to the

Fig. 8 The results of EHNR for the three first IMFs of the vibration signal of Case 2
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healthy zone. Therefore, the first faulty sample

diagnosed by the proposed method 1 for Case 3 is

the 6079th point. As can be seen, the FEEMD-EHNR

diagnoses the fault starting point 83 samples (about

14 h) earlier than the original EHNR method (see

Fig. 6). Also, the number of incorrect alerts that

appeared in the FEEMD-EHNR curve is less than one

in the original EHNR curve.

Figure 12 is presented for investigating the capa-

bilities of the EHNR and FEEMD-EHNR methods to

analyze the fault occurrence stage. For this purpose, in

each of these curves, the points of the beginning and

the end of the fault occurrence phase are connected by

a line. The slope of these lines for the EHNR and the

FEEMD-EHNR methods are 0.003195 and 0.009215,

respectively. This result shows that the proposed

technique can indicate the change of the fault charac-

teristics during the fault occurrence very well. Also,

the result accuracy of the proposed approach is more

than the EHNR method.

4.2 Proposed method 2: a new index based

on the energy entropy of auto-correlation

function

In this section, a novel health monitoring index or a

new feature for the early fault diagnosis is proposed

based on the autocorrelation function. The analysis of

the auto-correlation is a powerful mathematical tool

for finding the intermittent patterns such as the fault-

induced impulses. ACF can be calculated by the

following equation:

Fig. 9 The flowchart of the proposed method 1 (FEEMD–EHNR)
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li tð Þ ¼
Z

xi tð Þxi t þ sð Þds; i ¼ 1; . . .;N ð14Þ

where xi tð Þ is the vibration signal corresponding to the

i-th sample and N is the number of samples.

According to the ACF definition, when the repet-

itive impulses appear in a vibration signal, the

magnitude of the ACF of the signal is increased. The

number of ACF maximum points for the samples of

Case 2 is shown in Fig. 13. It can be seen that the

number of the maximum points of the ACF corre-

sponding to the faulty samples is more than that of the

healthy samples. On the other hand, by increasing the

fault size, the value and number of these maximum

points have a relatively increasing behavior. As a

result, the energy of the maximum points of ACF has

the same treatment. The ACF energy of all the samples

of Case 2 is illustrated in Fig. 14. As can be seen in this

configuration, the total energy of the ACF has a

relatively decreasing trend with the occurrence of the

defect and increasing its severity. Therefore, « the

energy of the maximum points of the ACF » and « the

total energy of the ACF » are the suitable factors for

finding the early fault. In this section, a new early fault

detection indicator is defined based on these factors.

The feature extraction presented in this section is a

combination of the energy-entropy operator and the

auto-correlation function and denoted as EEACF. The

steps of the proposed algorithm are described as

follows:

1. Calculate the autocorrelation of the original signal

using Eq. (14).

2. Find the local maxima points of the ACF series

obtained in the previous step. These points are

denoted as Mij; j ¼ 1; ::;m where Mij is the jth

local maxima detected in the ACF of the ith

sample and m is the number of the local maxima

found in the ACF series.

Fig. 10 The results of the FEEMD-EHNR for Case 1
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Fig. 11 The results of the FEEMD-EHNR for Case 3

Fig. 12 The comparison of the FEEMD-EHNR and the original EHNR methods for analyzing the early stage for Case 2
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3. Calculate the following factor called the period-

icity intensity factor (PIF):

ki ¼
Pm

j¼1 M
2
ij

PT
t¼1 li tð Þ

2
; i ¼ 1; . . .;N ð15Þ

where
Pm

j¼1 M
2
ij is the energy of the ACF maxi-

mum points,
PT

t¼1 li tð Þ
2

is the total energy of the

ACF series, T is the length of the ACF series and

N is the total number of samples.

4. Compute the energy-entropy vector of the factor ki
or EEACF as follows:

Hi ¼ �ki � log kið Þ; i ¼ 1; . . .;N ð16Þ

5. Compute the criterion value as l ? 4r for distin-

guishing the fault occurrence instance. The

parameters l and r are the mean and the standard

deviation of the EEACF curve, respectively.

The results of the EEACF approach for Case 1,

Case 2 and Case 3 have been shown in Figs. 15, 16 and

17, respectively. According to Fig. 15, the EEACF

feature is ineffective in determining the moment of

fault occurrence of the first case study. As can be seen

in Table 3, Case 1 is corresponding to the defective

inner race. Stack et al. [44] studied the effect of the

fault location on the quality of appearing the fault-

related features. They pointed out when a defect is

created on the inner race, during each revolution of the

shaft, this fault now rotates in and out of the load zone.

In this instance, the strong fault signatures produced

while the defect is in the load zone are averaged with

the weaker signatures acquired while the defect is

outside the load zone. This has the effect of attenuating

the signatures of the faulty inner race.

As shown in Fig. 16, the alarm time recognized by

EEACF for Case 2 is obviously 88 h and 40 min or the

533th sample. According to the results shown in

Sects. 3.2 and 4.1.2, the EEACF technique can

identify the incipient fault about 20 min, and 1 h and

30 min earlier than the FEEMD-EHNR and the

original EHNR, respectively. As can be seen, the

EEACF method can diagnose the incipient fault earlier

than the other methods. For Case 3, according to

Fig. 17, the first faulty sample identified by EEACF is

the 6072th measurement. This sample is marked in

green in Fig. 17. In this case study, in addition to the

faulty sample, an incorrect alert has appeared in the

6037th measurement in the EEACF graph. In

Sect. 4.3, the healthy state of the bearing at the

6037th sample will be investigated by analyzing the

envelope spectrum of this sample. As mentioned in

Sect. 4.1.2 (Fig. 11), a false alarm appeared at the 25th

measurement in the FEEMD-EHNR curve. The false

alarm displayed in the FEEMD-EHNR corresponds to

the early moments of the experiment and the bearing is

healthy at this moment. On the other hand, the false

alarm appeared in the EEACF curve (the 6037th

measurement) is close to the faulty sample **reported

by the second proposed method (i.e., the 6072th

sample). These results illustrate that even if the 6037th

sample is reported as the fault starting point, the

prediction error of the EEACF method is insignificant

Fig. 13 The number of the maximum points of the ACF series

for Case 2

Fig. 14 The total energy of ACF series for Case 2
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compared to the FEEMD-EHNR method. By looking

at Figs. 6, 11 and 17, it can be observed that EEACF

has been accomplished the early fault detection at

about 1 and 15 h earlier than FEEMD-EHNR and

EHNR, respectively.

Comparing the results of the EEACF method with

the original EHNR and FEEMD-EHNR techniques

indicates that EEACF can detect the first faulty sample

earlier than the other methods. It can be concluded that

the proposed method has a high sensitivity to the

changes caused by the defects with very small sizes. It

can be clearly seen that the suggested feature in this

paper can monitor the bearing conditions with the

huge vibration data and the long run time. These

results confirm the capability of the proposed

approach.

Fig. 15 The results of EEACF for Case 1

Fig. 16 The results of EEACF for Case 2

Fig. 17 The results of EEACF for Case 3
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4.3 Evaluation of the results using the hilbert

envelope spectrum

In order to investigate the validation of the obtained

results, the envelope spectrum of the vibration signals

is used to extract the characteristic frequencies of the

bearing fault. For this purpose, three samples of each

bearing discussed in Table 3 have been selected.

These samples relate to three situations: the last

healthy sample, the first faulty sample, and the

completely defective sample. The results of the

Hilbert envelope spectrum for Case 1, Case 2 and

Case 3 are shown in Figs. 18, 19 and 20, respectively.

Figure 18a corresponds to the last healthy sample of

Case 1, i.e., the 2119th sample. As shown in this

figure, none of the characteristic frequencies related to

the defected inner ring have appeared in the envelope

spectrum. The envelope spectrum of this signal sample

indicates that the bearing works in the healthy region.

According to Subsection 4.1.2, the first faulty sample

of Case 1 found by the proposed FEEMD-EHNR

method is the 2120th point. The envelope spectrum of

this sample is plotted in Fig. 18b. According to

Fig. 18b, the rotational frequency, i.e., Fs, and its

harmonics, the characteristic frequency of the inner

ring, Fi, and its harmonics and the frequencies

modulated with Fs in the envelope spectrum indicate

that the 2120th sample corresponds to the moment of

the occurrence of a small defect in the inner race.

Figure 18c is the spectrum of a sample in the

completely defective area. As can be seen, the

spectrum amplitude of the characteristic frequencies

in the entirely defective region is larger than the

corresponding values of these frequencies at the

moment of the defect occurrence.

The results of the EEACF method show that the last

healthy sample and the first defective sample for Case

2 are the 532th and 533th measurements, respectively.

In the spectrum of the 532th point in Fig. 19a, it can be

seen that the frequency Fo is hardly detectable, and

none of the harmonics of this frequency is observed.

This result indicates that the bearing is healthy in the

532th specimen. On the other hand, appearing the

characteristic frequency of Fo and its harmonics in

Fig. 19b implies the fact that the moment of occurring

the damage in the bearing corresponds to the 533th

sample or 88 h and 40 min. In the completely faulty

samples such as the 700th sample, the frequencies of

the defective outer ring are much more clearly seen

(see Fig. 19c).

The results of the envelope spectrum for Case 3 are

presented in Fig. 20. As can be seen in Figs. 20a, b,

emerging the characteristic frequency of the bearing

and its harmonics in the spectrum of the sample 6072

and the absence of these frequencies in the sample

6071 indicate that the measurements of 6072 and 6071

are the first defective sample and the last healthy

sample, respectively. It was seen in Fig. 17 that an

alarm emerged at the 6037th sample in the EEACF

feature vector calculated for Case 3. It was also

claimed that there is no fault in the bearing in this

measurement. Here, to prove this allegation, the

envelope spectrum of the 6037th measurement is

illustrated in Fig. 21. According to this illustration,

none of the characteristic frequency and its harmonics

have appeared. In other words, the bearing is healthy at

this moment.

5 Comparison with other methods

This section is dedicated to comparing our proposed

methodologies with previous researches that studied

the run-to-failure case. For this purpose, the results

reported by the authors in [28–34, 36, 37, 39] have

been used. The summary of the fault diagnosis

techniques used in these papers is described in

Table 4. The results of the proposed methods and

other techniques have been presented in Tables 5 and

6 for Case 1 and Case 2, respectively. Recognizing the

slight degradation of bearing at the early stage is a

criterion for evaluating these approaches. When a fault

occurs in the inner ring of the bearing, it is difficult to

detect its occurrence time [44]. Therefore, there are

few studies that have investigated the detecting this

defect type in the run-to-failure working conditions,

and most researches are related to the defect diagnosis

in the outer ring. On the other hand, the vibration data

of the third case study used in this work have recently

been updated. In the articles we have studied so far, no

results have been provided for newly updated data of

cFig. 18 The envelope spectrum of the three samples of Case 1,

a the 2119th sample, b the 2120th sample, c the 2151th sample
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Fig. 19 The envelope

spectrum of the three

samples of Case 2, a the

532th sample, b the 533th

sample, c the 700th sample

123

280 Meccanica (2020) 55:261–286



Fig. 20 The envelope spectrum of the three samples of Case 3, a the 6071th sample, b the 6072th sample, c the 6320th sample
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Case 3. So, no comparison is presented for Case 3 in

this section.

The results reported in Table 5 are relevant to the

diagnosis of the early defect created in the inner ring of

bearing in accordance with Case 1. In the preliminary

review of this table, it seems that the proposed

techniques are more incapacitated than the other

methods in detecting the degradation starting point.

The schemed approaches in this work determine the

moment of the incipient fault at the 2120th measure-

ment or 353 h 20 min. Also, to prove this allegation,

the envelope spectrums of some instances that are

corresponding to the last healthy sample (the 2119th

measurement) and the first defective measurement

(the 2120th measurement) were computed and plotted

in Fig. 18. Existing the characteristic frequencies in

Fig. 21 The envelope spectrum of the 6037th sample appeared as the false alarm for Case 3

Table 4 The description of the proposed methods and the other fault diagnosis method

Method Description of method

The proposed

method 1

Select the most appropriate IMF using the new presented index ? early fault detection using EHNR of the

selected IMF (FEEMD-EHNR)

The proposed

method 2

Diagnose the moment of the occurrence of the incipient fault by the auto-correlation function of the signal and

energy entropy (EEACF)

Method 1 [28] Extract the time and frequency domain features ? find the appropriate low-dimensional information using

local preserving projection (LPP) ? recognize the slight degradation of the bearing using exponential

weighted moving average statistic (EWMA)

Method 2 [29] Apply principle component analysis (PCA) and dynamic PCA (DPCA) to extract the effective features from

the vibration signal ? distinguish the machine health degradation using hidden Markov model (HMM) and

contribution analysis—based method

Method 3 [30] Discriminant between normal and faulty condition using the combination of one- class t-SVM and envelope

analysis

Method 4 [31] Drive time–frequency domain features from EMD energy entropy of the first eight IMFs and statistical

measurement ? classify the bearing defects by the artificial neural network (ANN)

Method 5 [32] Identify the periodic impulses using the envelope harmonic-to-noise ratio (EHNR)

Method 6 [33] Use the conventional sparse filter for detecting the impulsive signature

Method 7 [34] Train a sparse auto-encoder to extract unsupervised features

Method 8 [36] Detect the incipient fault using improve variational mode decomposition (IVMD)

Method 9 [37] The amplitude level-based decomposition of the machine vibration signal ? spectral analysis of the

empirically determined local amplitude of the low-amplitude signal component

Method 10 [39] Apply the recurrence quantification analysis (RQA) to extract the features from the vibration signal ? predict

the bearing degradation state using the Kalman filter
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the obtained spectrum confirms the accuracy of these

results. On the other hand, the authors in articles such

as Method 1 [28], Method 4 [31] and Method 10 [39]

have not provided any evidence to prove their results

regarding the detection of the degradation starting

point time for Case 1. Here, in order to demonstrate

that the samples reported by these methods are not the

first faulty samples, the spectra of their reported

samples are shown in Fig. 22. It is necessary to point

out that in order to eliminate the effects of noise in the

spectrum of these samples, the most sensitive IMF of

each signal is determined by using the method

presented in Sect. 4.1.1, and then its spectrum is

calculated. As shown in Fig. 22, none of the charac-

teristic frequencies of the damaged inner ring of the

bearing 3 for Case 1 are clearly recognizable. These

observations indicate that the samples introduced by

[28, 31, 39] are in the healthy zone.

The results of the prediction of the degradation

starting point in bearing 1 of Case 2 are reported in

Table 6. These values have been determined by the

different techniques and the presented method. It can

be seen that most of these results are close together. On

the other hand, the suggested approach 2 and the

technique presented in [36] are superior to other

methods in the fault starting point detection. Of

course, it should be noted that the spectrum provided

for Case 2 in Fig. 19 confirms the accuracy of the

result reported by the proposed method.

Consequently, the results show that the suggested

approaches in this paper are suitable and authoritative

in the online bearing fault detection. Also, the results

presented for Case 1 indicate that the techniques

proposed in this paper are effectively able to identify

the moment of degradation occurring in the inner ring

of the bearing.

6 Conclusion

The main target of this paper was to provide the

powerful methods for identifying the starting point of

the defects and the assessment of the damage severity

in bearings. For this aim, two novel approaches were

suggested in this paper. In the first method, the EHNR

of the most efficient IMF obtained by the FEEMD

algorithm was computed for revealing the signatures

of the degradation starting point. In this approach, a

new indicator was defined based on the auto-correla-

tion of both the original signal and its IMFs for picking

out the most informative IMF. In the second proposed

method, a new feature was defined which was a

combination of the energy of maximum points of the

raw signal autocorrelation and the energy-entropy

vector. The vibration signals in the run-to-failure test

corresponding to the defective outer race and the

defective inner race were used in order to check the

ability of the presented works. The results indicated

that the presented techniques in this paper can

effectively identify faults in their early stages of

development. It was found that most of the methods

presented in previous studies were ineffective in

detecting the fault in the inner race. The results of

this paper imply the capability of the presented

approaches to identify the degradation moment in

Table 5 Comparison between the previous researches and the

presented works for Case 1

Methods Time of fault starting point

Method 1 [28] 298 h 20 min

Method 2 [29] 353 h 20 min

Method 4 [31] 260 h 10 min

Method 10 [39] 305 h 30 min

The proposed method 1 353 h 20 min

The proposed method 2 353 h 20 min

Table 6 Comparison between the previous researches and the

presented works for Case 2

Methods Time of fault starting point

Method 2 [29] (HMM-DPCA) 89 h 30 min

Method 2 [29] (HMM-PCA) 89 h 40 min

Method 3 [30] 89 h

Method 4 [31] 92 h 10 min

Method 5 [32] 90 h 30 min

Method 6 [33] 90 h 30 min

Method 7 [34] 91 h 10 min

Method 8 [36] 88 h 30 min

Method 9 [37] 91 h 40 min

Method 10 [39] 90 h 40 min

The proposed method 1 89 h

The proposed method 2 88 h 40 min
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the bearing inner race. The envelope spectrums of the

last healthy sample and the first faulty sample

determined by the proposed techniques proved the

accuracy of the results. Also, the results illustrated that

the presented methods were more precise than the

other methods proposed in the recent years.

The Remaining Useful Life (RUL) can be predicted

by determining the moment of degradation on the

various components of the bearing. It seems that

combination of the indicators introduced in this article

and the Prognostics and Health Management (PHM)

techniques can be used for diagnosing the bearing

statues and estimating its RUL.
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