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Abstract This paper is concerned with the linear

theory of elastodynamics for homogeneous, isotropic,

porous elastic materials with memory effects for the

intrinsic equilibrated body forces. We are able to relax

the conditions on constitutive coefficients and to

determine the wider class of materials for which the

internal energy is positive semi-definite, when bound-

ary conditions are homogeneous. We found the class

of semi-strongly elliptic porous elastic materials. For

this class of materials, the above conditions may be

relaxed without loss of some well-posedness proper-

ties of the solutions. In particular, we obtain unique-

ness of the solutions and we study the spatial behavior

problem.

Keywords Porous materials �Memory effect � Semi-

strong ellipticity �Uniqueness result � Spatial behavior

1 Introduction

In the study of the uniqueness of solutions or in wave

propagation, Gurtin [1] shows how the condition of

strong ellipticity of the elasticity tensor is applicable.

Ericksen and Toupin [2] prove, in the equilibrium

case, that there is uniqueness of solutions if and only if

we assume constitutive coefficients of the strongly

elliptic type. The hypothesis of strong ellipticity, in the

dynamical case, may be relaxed without loss of

uniqueness, or without loss of some other well-

posedness properties of the solutions. Examples of

strongly elliptic materials are auxetic materials (see

e.g. Lakes [3] and Caddock and Evans [4]); these

materials have particular structures that expand later-

ally when stretched, in contrast to the behavior of

ordinary materials, see [5]. Some anisotropic polymer

foams have been prepared which exhibit a Poisson’s

ratio exceeding 1 (see [6]). Materials of the above sorts

are expected to have interesting mechanical proper-

ties, such as high energy absorption and fracture

resistance, which may be useful in applications.

Possible applications of such materials in prevention

of pressure sores or ulcers are outlined by Wang and

Lakes [7]. The ellipticity analysis is relevant in

studying wave propagation [1, 8, 9] and has important

applications in several contexts [10–13].

Further, Gurtin and Sternberg [14] and Gurtin and

Toupin [15] have obtained the uniqueness of solutions

for semi-strongly elliptic elastic bodies for the first
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boundary value problem of elastodynamics, surface

displacements prescribed, and for bounded domains.

The concept of semi-strongly elliptic materials is not

new, but has already been object of investigation by

many and has theoretical interest. Now, we have to

outline that the method used in the uniqueness theorem

(see also [1, 16, 17]) can be used also for appropriate

classes of weak solutions.

Porous media may be studied by mathematical

models where the bulk density is written as the product

of two fields: the matrix material density field and the

volume fraction field (see Cowin and Nunziato

[18, 19]). The Cowin and Nunziato theory has enjoyed

much success and its applications are to geological

materials, such as rock, soils and to manufactured

porous materials. The literature dealing with these

phenomena is very rich and covers different research

fields, see, for example, [20–26].

In [27] Chirită and Ciarletta obtain a spatial decay

estimate of exponential type with a factor independent

of time using the time-weighted surface power func-

tion method under the positive definiteness condition

on the elasticity tensor. In [28] under the positive

definiteness of internal energy density, Scalia studies

the spatial and temporal behavior of the solution to the

initial-boundary value problems associated with the

linear theory of porous elastic materials with memory

effects for the intrinsic equilibrated body forces.

Important results have been achieved to describe

the spatial behavior of the solutions for some classes of

materials for which the internal energy density is not

necessarily positive definite. There are been several

attempts to relax the conditions on constitutive

coefficients, while still maintaining well-posedness

results. For example, following [27, 29], in [30] the

authors obtain a result of uniqueness and spatial

behavior for two classes of isotropic porous materials

whose internal energy density is not always a positive

definite quadratic form. Important results have been

achieved also for other types of materials (see [31–36]

and references therein.)

Chiriţă and Ghiba [37] have established the neces-

sary and sufficient conditions characterizing the strong

ellipticity of materials with voids and have investi-

gated a model for propagation of progressive waves

associated with this class of materials.

In [38, 39], the authors study the spatial behavior

for materials whose elasticity tensor is semi-strongly

elliptic, in linear elastodynamics and linear thermoe-

lastodynamics, respectively.

The work plan of this article is as follows: in

Sect. 2, we present the linear theory of porous elastic

materials taking into account memory effects for the

intrinsic equilibrated body forces [19]; in Sect. 3, we

study how to relax the conditions on constitutive

coefficients and determine a wider class of materials

for which the internal energy density is not always

positive definite but the internal energy is non negative

when the boundary data are null; in Sect. 4, we

establish a uniqueness result for the initial-boundary

value problem for the class of isotropic homogeneous

and semi-strongly elliptic porous materials; in Sect. 5,

a family of appropriate surface integral measures and a

set of properties are established; moreover, we estab-

lish a result describing the domain of influence and a

spatial decay estimate of exponential type for a class

of materials that is wider with respect to [30], by using

a single family of measures, so simplifying the whole

process.

2 Formulation of the problem

Throughout this article, we refer the motions of a

continuum body to a fixed orthonormal frame in the

physical 3-dimensional space R3. We deal with

functions of position and time. We denote the tensor

components of order p� 1 by Latin subscripts ranging

over the integers f1; 2; 3g. Summation over repeated

subscripts is implied. Superposed dots or subscripts

preceded by a comma will mean partial derivative

with respect to the time or the corresponding coordi-

nate. Further, we suppress the dependence upon the

spatial variable when no confusion may occur and,

occasionally, we shall use bold-face characters and

typical notations for vectors and operations upon

them. All involved functions are supposed sufficiently

regular to ensure analysis to be valid.

Let B be a bounded regular region of the physical

space R3 with piecewise smooth boundary surface oB.

The set B represents the closure of B. We designate by

n the outward unit normal vector to the boundary. The

region B is filled with an isotropic and homogeneous

elastic porous material with memory effects for the

intrinsic equilibrated body forces. In the context of the
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linear theory [19, 22, 28], the behavior is governed by

the equations of motion

tji;j þ qbi ¼ q€ui;

hj;j þ gþ ql ¼ qv €/;
in B� ð0;1Þ; ð1Þ

the constitutive equations

tji ¼ kedij þ 2leij þ b/dij;

hj ¼ a/;j;

g ¼ ~g� s _/; ~g ¼ �be� n/;

in �B� ½0;1Þ;

ð2Þ

where eij are the components of the strain tensor given

by

eij ¼
1

2
ui;j þ uj;i
� �

; ð3Þ

and e ¼ ekk and s� 0. Here ui, tij and bi are the

components of the displacement field, the stress tensor

and the body force, respectively; /, hi, g and l are the

change in volume fraction from the reference volume

fraction, the equilibrated stress, the intrinsic equili-

brated force and the extrinsic equilibrated body force,

respectively. Further, q and v are the positive bulk

mass density and the positive equilibrated inertia in the

reference state and k, l, a, b and n are constant

constitutive coefficients.

We denote byP the initial-boundary value problem

defined by the following system in the variables ui, /
equivalent to Eqs. (1)–(3)

lui;jj þ ðkþ lÞuj;ji þ b/;i þ qbi ¼ q€ui;

a/;jj � buj;j � n/þ ql ¼ qv €/þ s _/;

and by the following initial conditions

ui ¼ u0i ; _ui ¼ _u0i ; / ¼ /0; _/ ¼ _/
0
; on B� f0g;

and boundary conditions

ui ¼ ~ui; / ¼ ~/; on oB� ½0;1Þ;

where u0i , _u
0
i ,/

0, _/
0
, ~ui and ~/ are prescribed functions.

A regular solution of P is denoted by U ¼ fui;/g.
The positive definite kinetic energy density and the

internal energy density W associated with U are

defined by (see Cowin and Nunziato [19])

K ¼ 1

2
q _ui _ui þ v _/

2
� �

;

and

W ¼ 1

2
ke2 þ 2leijeij þ 2be/þ n/2 þ a/;j/;j

� �
:

It is well known that

W ¼ 1

2
tjiui;j þ hj/;j � ~g/
� �

;
oW

ot
¼ tji _ui;j þ hj _/;j � ~g _/:

The internal energy W is positive definite if and only

if the constitutive coefficients satisfy the inequalities

(see [19])

a[ 0 l[ 0; n[ 0; kþ 2

3
l

� �
n[ b2:

In [37], the authors prove that an isotropic, homoge-

neous porous material is strongly elliptic if and only if

a[ 0 l[ 0; n[ 0; ðkþ 2lÞn[ b2:

3 Semi-strongly elliptic porous materials

In this section, we study how to relax the conditions on

constitutive coefficients to have that the internal

energy associated with B be non negative, even if

the internal energy density is not positive. Our analysis

is motivated by the existence of novel foam structures

for which the internal energy density is not always a

positive definite quadratic form and therefore the

constitutive coefficients satisfy relaxed conditions, as

for example auxetic or anti-rubber materials.

The porous material satisfying

l� 0; ðkþ 2lÞn� b2; ð4Þ

a� 0; n� 0; ð5Þ

will be called semi-strongly elliptic material.

We denote by D� and by Dþ the classes of semi-

strongly elliptic materials and the class of materials for

which the internal energyW is positive semi-definite,

respectively. It is obvious that Dþ � D� (see Fig. 1).
Now, we write the equations of motion (1) in the

following equivalent form

123

Meccanica (2020) 55:103–112 105



sji;j þ qbi ¼ q€ui;

hj;j þ ~gþ ql ¼ qv €/þ s _/;
in B� ð0;1Þ; ð6Þ

with

sji ¼ a1ur;rdij þ a2uj;i þ a3ui;j þ b/dij;

hj ¼ a/;j;

~g ¼ �be� n/;

ð7Þ

where the coefficients a1, a2, a3 2 R are such that

tji;j ¼ sji;j: ð8Þ

From Eqs. (2)1, (3) and (7)1 we prove that

sji � tji ¼ ða1 � kÞur;rdij � l� a2;ð Þuj;i þ ða3 � lÞui;j;

and, consequently,

sji;j � tji;j ¼ ða1 � kÞuj;ji � l� a2;ð Þuj;ij þ ða3 � lÞui;jj:

Then, it is evident that Eq. (8) is satisfied when

a1 � k ¼ l� a2; l� a3 ¼ 0:

If we introduce the parameter e such that

e ¼ a1 � k ¼ l� a2; ð9Þ

the coefficients a1, a2, a3 are

a1 ¼ kþ e; a2 ¼ l� e; a3 ¼ l;

and, replacing the last relations in Eq. (7)1, we get the

following family

s
ðeÞ
ji ¼ ðkþ eÞur;rdij þ ðl� eÞuj;i þ lui;j þ b/dij:

ð10Þ

Now, we put

WðeÞ ¼ 1

2
s
ðeÞ
ji ui;j þ hj/;j � ~g/

� �
: ð11Þ

We remark that when e ¼ 0 we have

s
ð0Þ
ji ¼ tji and Wð0Þ ¼ W: ð12Þ

Using Eqs. (10) and (7)2;3, we get the following

quadratic form

WðeÞ ¼ 1

2

�
ðkþ eÞur;ruj;j þ ðl� eÞuj;iui;j þ lui;jui;j

þ 2b/ur;r þ n/2 þ a/;j/;j

	
;

ð13Þ

in the variables

w ¼


u1;1; u2;2; u3;3;/; u2;1; u1;2; u3;1; u1;3; u3;2; u2;3;
ffiffiffi
v

p
/;1;

ffiffiffi
v

p
/;2;

ffiffiffi
v

p
/;3

�
:

We define AðeÞ the matrix associated to the quadratic

form WðeÞ, such that WðeÞ ¼ w � AðeÞw, so that it is

AðeÞ ¼

BðeÞ 0 0 0 0

0 CðeÞ 0 0 0

0 0 CðeÞ 0 0

0 0 0 CðeÞ 0

0 0 0 0
a
v
I

0

BBBBBBB@

1

CCCCCCCA

;

ð14Þ

with

Fig. 1 Areas definingD�,Dþ in the lk plane, for b, n constant
and n[ 0
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BðeÞ ¼

kþ 2l kþ e kþ e b

kþ e kþ 2l kþ e b

kþ e kþ e kþ 2l b

b b b n

0

BBBBB@

1

CCCCCA
;

CðeÞ ¼
l l� e

l� e l

 !

; I ¼

1 0 0

0 1 0

0 0 1

0

BB@

1

CCA:

ð15Þ

We can prove thatWðeÞ is positive semi-definite if and

only if the elastic coefficients satisfy the inequalities

(5) and the following inequalities in substitution of (4)

0� e� 2l; kþ 2

3
ðlþ eÞ

� �
n� b2: ð16Þ

It is obvious that n ¼ 0 implies b ¼ 0.

If we consider these as inequalities with respect to e
with k, l, b, n fixed (n[ 0), the second of them can be

rewritten as

e� 3

2

b2

n
� k

� �
� l;

and the two inequalities are compatible if and only if

3

2

b2

n
� k

� �
� l� 2l , ðkþ 2lÞn� b2:

We can conclude that there is no possibility to further

relax the semi-strong ellipticity conditions.

The set of material, such that Eqs. (5), (16) holds, is

denoted by DðeÞ and we have (see Fig. 2).

DðeÞ � D�;

for each e satisfying inequalities (16) and in particular

Dð2lÞ ¼ D�;

On the other hand, we introduce the antisymmetric

part of ru and the corresponding axial vector

xij ¼
1

2
ðui;j � uj;iÞ; xi ¼ � 1

2
eijkxjk; ð17Þ

and we observe that

xij ¼ �eijkxk; xijxij ¼ 2xixi: ð18Þ

Further, it is well known that

ui;j ¼ eij þ xij; uj;i ¼ eij � xij; ð19Þ

so that, replacing these relations in Eq. (13), we obtain

WðeÞ ¼ 1

2

�
ðkþ eÞe2 þ ð2l� eÞeijeij þ 2e xixi

þ 2b/eþ n/2 þ a/;j/;j

	
:

With the help of the following relation

eijeij ¼ 2xixi þ e2 þ ½uj;iui � ujui;i	;j; ð20Þ

we arrive to

WðeÞ ¼ W� þ 1

2
ð2l� eÞ½uj;iui � ujui;i	;j; ð21Þ

where

W� ¼ 1

2

�
4lxixi þ ðkþ 2lÞe2 þ 2b/eþ n/2 þ a/;j/;j

	
:

We see that W� is a quadratic form in the variables

Fig. 2 Areas defining DðeÞ, D� in the lk plane, for e, b, n
constant and n[ 0
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W� ¼

 ffiffiffi

2
p

x1;
ffiffiffi
2

p
x2;

ffiffiffi
2

p
x3;

e
ffiffiffi
3

p ;/;

ffiffiffi
v

p
/;1;

ffiffiffi
v

p
/;2;

ffiffiffi
v

p
/;3

�
;

ð22Þ

whileWðeÞ also depends on the variables eij except for

e ¼ 2l, in fact

W� ¼ Wð2lÞ:

Denoted by A� the matrix associated to the quadratic

form W�, i.e.

A� ¼

2lI 0 0

0 B� 0

0 0
a
v
I

0

BB@

1

CCA;

B� ¼ 3ðkþ 2lÞ
ffiffiffi
3

p
b

ffiffiffi
3

p
b n

 !

;

ð23Þ

it is obvious that W� is positive semi-definite if and

only if the inequalities (4), (5) are satisfied.

Then, the set of materials for which W� is positive
semi-definite coincides with the set of semi-strongly

elliptic porous materials D� and, so, include all sets

DðeÞ with e 2 ½0; 2l	.
On the other hand, taking into account (12) and (21)

it is easy to verify that

W ¼ Wð0Þ ¼ W� þ l½uj;iui � ujui;i	;j;

and the following theorem holds

Theorem 1 If the boundary data are null, the

internal energy W associated with B is non negative

when we consider a semi-strongly elliptic material. In

particular, we have

W ¼
Z

B

Wdv ¼
Z

B

W�dv� 0: ð24Þ

We emphasize the fact that e enter into the

expression of WðeÞ only through the term ½uj;iui �
ujui;i	;j whose integral vanishes in our hypotheses, so

that Eqs. (21) and (24) imply

W ¼
Z

B

WðeÞdv� 0; ð25Þ

for any value of e, also if the internal energy density is
not positive.

In order to prove the results of the following

sections, we multiply Eq. (6)1 by _ui and Eq. (6)2 by _/,
so we arrive to

½sðeÞji _ui þ hj _/	;j � ½sðeÞji _ui;j þ hj _/;j � ~g _/	

þ qbi _ui þ ql _/ ¼ oK

ot
þ s _/

2
:

ð26Þ

On the other hand, using Eqs. (10), (13) and (21), we

observe that

s
ðeÞ
ji _ui;j þ hj _/;j � ~g _/

¼ ðkþ eÞur;r _uj;j þ ðl� eÞuj;i _ui;j þ lui;j _ui;j

þ bð/ _ur;r þ bur;r _/Þ þ a/;j
_/;j þ n/ _/ ¼ oWðeÞ

ot
;

and

oWðeÞ

ot
¼ oW�

ot
þ 1

2
ð2l� eÞ o

ot
½uj;iui � ujui;i	;j:

ð27Þ

Combining Eqs. (26), (27), we obtain

oE�

ot
þ s _/

2 ¼ ½sðeÞji _ui þ hj _/	;j

� 1

2
2l� eð Þ o

ot
½uj;iui � ujui;i	;j þ qbi _ui þ ql _/;

ð28Þ

where

E� ¼ KþW�:

Taking into account Eq. (28), it is easy to prove the

following lemma, that will be useful in the following

Lemma 1 Let D be any regular subregion of B with

regular boundary oD. For any r� 0 it is
Z

D

e�rt oE�

ot
þ s _/

2
� �

dv

¼
Z

D

e�rtqðbi _ui þ l _/Þdv

� 1

2
ð2l� eÞ

Z

oD

e�rt o

ot
½uj;iui � ujui;i	njda

þ
Z

oD

e�rt½sðeÞji _ui þ hj _/	njda:
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4 Uniqueness result

In this section, for the class of isotropic, homogeneous

and semi-strongly elliptic materials with voids we

prove a uniqueness result for the initial-boundary

value problem P.

Theorem 2 (Uniqueness) If we consider a semi-

strongly elliptic material, there exists at most one

solution to the initial-boundary value problem P.

Proof Given two solutions to P for the same initial

data, same boundary data and for the same external

supplies, due to the linearity of the problem the

difference of them satisfies the associated problemP�

with null initial and boundary data and null external

supplies. So we have to show that the only solution

U ¼ fu;/g to P� is the null solution.
If we take the relation of Lemma 1 with D ¼ B and

r ¼ 0 and integrate on the time interval ½0; t	, thanks to
the null given data, we have

Z

B

E�ðtÞdv ¼ �
Z t

0

Z

B

s _/
2ðsÞdvds� 0; 8t� 0:

SinceK andW� are non negative functions and using
the null initial conditions again, we arrive to

KðtÞ ¼ W�ðtÞ ¼ 0 ) uiðtÞ ¼ 0; /ðtÞ ¼ 0;

for any t� 0. h

We point out that this results can be obtain in more

general hypotheses with other techniques, for example

with the Lagrange-Brun identity method or the

logarithmic convexity. Nevertheless our setup will

also be useful in other type of problems where these

techniques cannot be applied.

5 Spatial behavior of solutions

In this section, we describe the spatial behavior of

solutions for semi-strongly elliptic materials with

voids by following the approach used in [27, 28, 30].

For a fixed T [ 0, we suppose there exist a

nonempty regular region D0 � B such that the given

data (initial, boundary and external data) is localized

in D0 in the time interval ½0; T 	, i.e. the given data

vanish outside of D0 for every t 2 ½0; T 	. More

formally

• initial data vanish in B� D0,

• boundary data vanish in oB� oD0 for every

t 2 ½0; T 	,
• external data vanish in B� D0 for every t 2 ½0; T	.

We will call D0 the support of the external data on the

time interval ½0; T	. Let us further define, for r� 0,

Br ¼ x 2 B : dðx;D0Þ� rf g
;

where d denote the distance, S
 denote the interior of a
set S. Let us define

L ¼ sup r : Br 6¼ £f g:

We suppose that Br is a nonempty regular regions with

piecewise regular boundary for every 0� r\L, while

for r ¼ L we have BL ¼ £.

In order to study the spatial behavior, we introduce

the following time-weighted surface power function

associated with U, for 0� r� L and 0� t� T

Jðr; tÞ ¼
Z t

0

Z

oBr

e�rs s�ji _ui þ hj _/
h i

njdads; ð29Þ

where r is a fixed positive parameter and s�ij is given by

s�ij ¼ s
ð2lÞ
ij ¼ ½ðkþ 2lÞeþ b/	dij � 2leijkxk:

We now prove some useful proprieties of the time-

weighted surface power function Jðr; tÞ

Theorem 3 If we consider a semi-strongly elliptic

material, then Jðr; tÞ has the following properties:

(i) Jðr; tÞ is a continuous differentiable function

and

oJ

or
¼ �

Z

oBr

e�rtE�da

�
Z t

0

Z

oBr

e�rs rE�ðsÞ þ s _/
2ðsÞ

h i
dads;

ð30Þ

oJ

ot
¼ þ

Z

oBr

e�rs s�ji _ui þ hj _/
h i

njda; ð31Þ

(ii) Jðr; tÞ is a non-increasing function with

respect to r, i.e.

Jðr1; tÞ� Jðr2; tÞ; with r1 � r2; ð32Þ

(iii) Jðr; tÞ is a measure associated to the solution
U of P and can be expressed as
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Jðr; tÞ ¼ þ
Z

Br

e�rtE�dv

þ
Z t

0

Z

Br

e�rs rE�ðsÞ þ s _/
2ðsÞ

h i
dvds� 0:

Proof We proceed as follows

(i) From Eq. (29) we arrive to

oJ

or
¼ � lim

h!0þ

1

h

Z t

0

Z

Br�Brþh

e�rs
�
s�ji _ui þ hj _/

	
;j
dvds

¼ �
Z t

0

Z

oBr

e�rs
�
s�ji _ui þ hj _/

	
;j
dads:

By the definitions given the body force, the

extrinsic equilibrated body force and the

initial data vanish on Br and oBr. Using the

divergence theorem and Lemma X it follows

Eq. (30).

Further, Eq. (31) immediately follows from

the definition (29).

(ii) For semi-strongly elliptic material, K, W�

are non negative functions, consequently we

have E� � 0 and from Eq. (30) we obtain

oJ

or
ðr; tÞ� 0;

and consequently Eq. (32)

(iii) From Eqs. (28) and (29) we have

Jðr; tÞ� JðL; tÞ

¼
Z t

0

Z

Br�BL

e�rs oE�

os
þ s _/

2ðsÞ
 �

dvds�0;

and taking into account that BL ¼ £, we

have JðL; tÞ ¼ 0 and this proves the thesis.

h

Next, we can establish the following

Theorem 4 Assumed that the conditions (4) and (5)

hold, and that the maximum eigenvalues j of A� is

strictly positive, for r[ 0 there exists n[ 0 such that

Jðr; tÞ� n
Z t

0

Z

oBr

e�rsE�ðsÞdads;

and

oJ

ot
ðr; tÞ

����

����� n
Z

oBr

e�rtE�da: ð33Þ

Proof Remembering that W�, A� are defined in

Eqs. (22) and (23), we have

W� � A�W� ¼ 2W�; S� ¼ A�W�; ð34Þ

where

S� ¼
ffiffiffi
2

p
s�1;

ffiffiffi
2

p
s�2;

ffiffiffi
2

p
s�3;

s�
ffiffiffi
3

p ;�~g;
1
ffiffiffi
v

p h1;
1
ffiffiffi
v

p h2;
1
ffiffiffi
v

p h3

� �
;

with

s�i ¼ � 1

2
eijks

�
jk; s� ¼ s�kk:

We can prove that

s�jis
�
ji þ ~g2 þ 1

v
hihi ¼ 2s�i s

�
i þ

s�2

3
þ ~g2 þ 1

v
hihi ¼ S�2:

ð35Þ

Use of Cauchy–Schwarz’ inequality, with respect to

the positive semi-definite symmetric bilinear form

associated to A�, and Eqs. (34) leads to

S�2 ¼ W� � A�A�W� � jW� � A�W� ¼ 2jW�: ð36Þ

Taking into account the Cauchy–Schwarz’s and

arithmetic–geometric mean inequalities, Eqs. (35)

and (36) lead to

s�ji _uinj þ hj _/nj
���

���� 1

2
n
�
q _ui _ui þ qv _/

2�

þ 1

2qn

�
s�jis

�
ji þ ~g2 þ 1

v
hjhj

�

� nKþ j
qn

W�;

ð37Þ

where n is an arbitrary positive constant. Choosing

n ¼
ffiffiffiffiffiffiffiffi
j=q

p
in Eq. (37), then Eqs. (30), (31) yield

Eq. (33). h

Following the procedure developed in [27], one can

prove the following

Theorem 5 Under the hypotheses of Theorem 4, it

follows that
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rJðr; tÞ þ n
oJ

or
ðr; tÞ� 0;

and

� oJ

ot
ðr; tÞ þ n

oJ

or
ðr; tÞ� 0:

As an immediate consequence of Theorem 5, we

have

o

or
err=nJðr; tÞ
h i

� 0;

and

d

dr
J r; t0 �

r � r0

n

� � �
� 0; r0 � nt0:

Finally it is easy to prove the following theorem

Theorem 6 Under the hypotheses of Theorem 4, the

spatial behavior of solution U of P outside of the

support D0 is described by:

(i) for 0� r� nt we have

Jðr; tÞ� e�rr=nJð0; tÞ;

(ii) for r� nt we have

ui ¼ 0; / ¼ 0:

6 Conclusions

The linear theory of elastodynamics for homogeneous

and isotropic, porous elastic materials with memory

effects for the intrinsic equilibrated body forces has

been studied. A family of energy densities WðeÞ has
been considered, to which the classical internal strain

energy density belongs, and the conditions of positive

semi-definiteness for these energy densities has been

investigated. As relaxed conditions on the constitutive

coefficients, the conditions of semi-strong ellipticity

have been obtained, for which the classical internal

strain energy density is not necessarily positive.

For the class of linear porous elastic materials with

memory effects considered, we obtained a uniqueness

result for the solutions, with relaxed conditions on the

constitutive coefficients, in order to consider also

materials for which the internal energy density is not

always positive definite.

We deduced a result for describing the domain of

influence by using an appropriate and single time-

weighted surface measure family, differently from

other attempts where they need two families to cover

the whole class of strongly elliptic materials, still not

covering the semi-strongly elliptic case. Moreover, we

obtained a spatial decay of exponential type into the

domain of influence.
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