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Abstract Dynamic stress concentration factor

around a cylindrical cavity which is in vertically

inhomogeneous half space is investigated by applying

complex function method and multi-polar coordinates

system. The mass density of the half space is

inhomogeneous while the shear modulus is a constant.

Utilizing conformal mapping method, the governing

equation with variable coefficients is transformed to

be a normalized Helmholtz equation. Then, incident

wave, reflected wave and scattering wave in the half

space are obtained. With the help of the boundary

condition at the cylindrical cavity, the undetermined

coefficients in scattering wave are solved. Then,

dynamic stress concentration factor with different

influencing parameters around the cavity is calculated

and discussed.

Keywords SH wave scattering � Complex function

method � Multi-polar coordinates system � Vertical
exponentially inhomogeneous � Dynamic stress

concentration factor (DSCF)

1 Introduction

The characteristic of wave propagation in elastic

solids has been an attractive topic for decades.

Intensive research about the characteristic of wave

propagation is meaningful to many fields. Considering

the mechanical properties of the medium, wave

velocity and the stresses distribution are mostly

concerned about, which provides references in mate-

rial sciences. Meanwhile, focusing on the influences of

defects and interfaces on wave propagation is neces-

sary in material sciences as well. Moreover, due to the

underground structures and local terrains exist com-

monly in practical engineering, investigation about

influences of defects and interfaces on wave propaga-

tion is of great significance in earthquake engineering

and civil engineering.

Wave scattering in homogeneous medium was a

classical topic which was investigated by many

scholars. For analytical analysis, wave function
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expansion method and complex function method were

effective and utilized in most cases [1–5]. Moreover,

with the aids of other methods, it is possible to solve

complicated problems about wave propagation in

homogeneous medium. By utilizing Green’s function

method, the antiplane harmonic dynamics stress of an

infinite isotropic wedge with a circular cavity was

analyzed by [6]. Then the stress distribution around the

cavity was calculated and discussed. As an efficient

method, Green’s function method can be applied to

solve problems of complex interfaces as well. By

applying this method, linear cracks can be modeled.

Meanwhile, contact conditions between different

medium was able to be constructed by it validly

[7, 8]. Aiming at wave scattering by defects or

structures in half space or right-angled medium, image

principle was mostly used to obtain the expression of

scattering wave [9, 10]. By constructing one or more

imaginary scattering sources, the scattering wave can

satisfy the boundary condition at the surface of the half

space or right-angled medium well. Furthermore, in

order to investigate complicated defects (structures) or

terrains, auxiliary boundary method was needed in

most cases [9–11].

Except for analytical analysis, some semi-analyti-

cal and numerical methods are more appropriate in

solving multi-scattering or complex terrain problem.

Boundary element method and boundary integral

equation method have advantages to research complex

boundary value problems. Considering the scattering

by multilayered embedded inclusion, the correspond-

ing integral equations were derived in terms of the

unknown boundary displacements and tractions. Sub-

sequently, the wave fields and the stress fields in the

background medium and the inclusion can be obtained

[12–14]. Based on extensions to these methods, it was

effective to investigate scattering by lined tunnel

underground as well [15, 16]. Some researchers paid

their attention to study wave scattering by applying

numerical methods or hybrid methods. For solving

wave scattering by trapezoidal terrain and dike, finite

element method (FEM) had a high efficiency than

many other analytical methods [17, 18]. Moreover,

different kinds of degenerated models can be simu-

lated to verify the validity of the calculation.

Sincemostmedia in the nature are not homogeneous,

wave propagation in inhomogeneous medium have

attracted lots of attention. Basic solutions of SH wave

propagation in inhomogeneous anisotropic medium can

be derived by analytical method directly [19]. Consid-

ering the inhomogeneity and anisotropy of the medium,

the wave front was shown in the calculations. As a

simplified condition, dividing continuous inhomoge-

neous medium to be multi-layered medium was a

feasible way as well. Let the multi-layered medium be

composed of periodically repeated fundamental lami-

nae with a small thickness to achieve the wave velocity

in the inhomogeneous medium [20]. Moreover, analy-

ses of wave propagation in closed inhomogeneous

region was helpful for material science and earthquake

engineering. Considering the deposition of soils, the

inhomogeneity of the soil layerwas assumed to be radial

inhomogeneous [21]. Then, based on the wave function

expansion method, the surface motion was calculated

with different conditions of inhomogeneity. Investiga-

tion of elastic wave scattered by an inhomogeneous

circular tubewas of vital importance inmaterial science

[22]. To assume the tube was linear inhomogeneous,

Finite Fourier Transform was utilized to solve the

governing equation. Furthermore, this research pro-

vided a feasibleway to investigate SHwave scattered by

inhomogeneous lined tunnel underground. Obviously,

research ofwavepropagation in infinite inhomogeneous

medium is also meaningful but with more difficulties.

Generally, two or more methods were needed together

in solving these problems. With the help of auxiliary

function method, researches about wave motion in

inhomogeneous medium with a constant velocity was

conducted analytically [23–25]. Then, wave fields,

stress distribution and far-field behaviorwere discussed.

By applying conformal mapping method, the closed-

form solution of SH wave propagation in inhomoge-

neous medium with a variable velocity was studied

[26, 27]. Through normalized the governing equation,

dynamic stress concentration around the inclusions was

analyzed.

Since the lack of researches about body wave

propagation in inhomogeneous half space with wave

velocity variation, SH wave scattering in vertically

inhomogeneous half space is investigated in this work.

The mass density is assumed to be vertically inhomo-

geneous by applying the similar method in

Refs.[26, 27]. Considering the effect of the horizontal

surface, image principle is used to solve the scattering

wave. Then, wave fields and stresses in the half space

was obtained analytically. Ultimately, dynamic stress

around the cylindrical cavity was calculated and

discussed.

123

2412 Meccanica (2019) 54:2411–2420



2 Description of the problem

2.1 Model description

Scattering model of a cylindrical cavity in vertically

inhomogeneous half space is shown in Fig. 1. The

mass density of the half space is exponentially

inhomogeneous while the shear modulus is a constant.

The radius of the cavity is R and the buried depth is h.

The surface of the half space locates at y1 ¼ 0 and the

origin of the polar coordinate is coincident with the

center of the cylindrical cavity. Considering the

symmetry of the half space, the SH wave is assumed

to be vertically incidence. Based on the transformation

between two polar coordinates, xoy and x1o1y1 have

the relation of x ¼ x1, y ¼ y1 � h.

The mass density of the half space is inhomoge-

neous and changes with the depth exponentially.

Hence, the form of the mass density can be expressed

as

q yð Þ ¼ q0b
2 exp 2byð Þ ð1Þ

where q0 is a constant which is defined as the reference
mass density, b is the inhomogeneous parameter of the

half space. Since the shear modulus is a constant, the

wave velocity in the half space has the form of

c yð Þ ¼ c0

b
exp �byð Þ ð2Þ

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

l=q0
p

is the reference wave velocity, l
is the shear modulus of the half space.

2.2 Basic equations

Considering harmonic response and ignoring the body

force, the governing equation of wave motion in

vertically inhomogeneous half space is

o2w

ox2
þ o2w

oy2
þ k20b

2 exp 2byð Þw ¼ 0 ð3Þ

Based on complex function method, a pair of complex

variables are introduced

z ¼ xþ iy; �z ¼ x� iy ð4Þ

Then, the governing equation in complex coordinates

is

o2w

ozo�z
þ 1

4
k20b

2 exp 2bImzð Þw ¼ 0 ð5Þ

where w ¼ w x; yð Þ is the displacement, k0 ¼ x=c0 is

the reference wave number and x is the circular

frequency.

Since the equations like Eq. (5) is too difficult to

solve, a pair of transformation is utilized on basis of

conformal mapping method in order to normalize the

governing equation

v ¼ exp �ibzð Þ; �v ¼ exp ib�zð Þ ð6Þ

Substituting Eq. (6) into Eq. (5), the governing

equation becomes

o2w

ovo�v
þ 1

4
k20w ¼ 0 ð7Þ

Hence, the governing equation is normalized into a

Helmholtz equation with constant coefficients.

3 Wave fields and corresponding stresses

3.1 Wave fields in half space

On the basis of the normalized governing equation, the

vertical incident wave can be expressed as

w ið Þ ¼ w0 exp
k0

2
v1 � �v1ð Þ

� �

ð8Þ

where w0 is the displacement amplitude of incident

wave.

Fig. 1 Scattering model of a cylindrical cavity
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Because of the surface of the half space, the

incident wave will be reflected vertically

w rð Þ ¼ w0 exp
k0

2
�v1 � v1ð Þ

� �

ð9Þ

Considering the Sommerfeld radiation condition at

infinity and the zero-stress boundary condition at the

surface, the scattering wave in the half space which is

induced by the cylindrical cavity obeys

w sð Þ ¼
X

1

n¼�1
An H 1ð Þ

n k0 vj jð Þ v
vj j

� �n

þ H 1ð Þ
n k0 v2j jð Þ v2

v2j j

� ��n� �

ð10Þ

where An are undetermined coefficients need to be

solved. Moreover, v2 ¼ exp �ib zþ 2hið Þ½ �.
Hence, the whole wave field in the half space

should be the superposition of the incident wave, the

reflected wave and the scattering wave

w fð Þ ¼ w ið Þ þ w rð Þ þ w sð Þ ð11Þ

3.2 Expression of stress components

Based on the constitutive relations between wave

fields and corresponding stresses, the stress compo-

nents in Cartesian coordinate system have the form of

sxz ¼ l
ow

ox
; syz ¼ l

ow

oy
ð12Þ

In complex coordinate system, the constitutive rela-

tions become

srz ¼ l
ow

oz
eih þ ow

o�z
e�ih

� �

ð13Þ

shz ¼ il
ow

oz
eih � ow

o�z
e�ih

� �

ð14Þ

It can be inferred that in complex plane v; �vð Þ, the
stress components can be written as

srz ¼ l
ow

ov
dv
dz

eih þ ow

o�v
d�v
d�z

e�ih

� �

ð15Þ

shz ¼ il
ow

ov
dv
dz

eih � ow

o�v
d�v
d�z

e�ih

� �

ð16Þ

Substituting the incident wave, the reflected wave and

the scattering wave into Eqs. (12)–(15), the detailed

expression of corresponding stress components can be

obtained.

4 Boundary condition and dynamic stress

concentration factor

4.1 Boundary condition at the cavity

In order to solve the undetermined coefficients in

whole wave field, the boundary condition at the

surface of the cavity need to be used. The boundary

condition of the cylindrical cavity is zero-stress

condition of radial stresses, which can be formulated

as

s fð Þ
rz ¼ s ið Þ

rz þ s rð Þ
rz þ s sð Þ

rz ¼ 0; r ¼ R ð17Þ

Substituting the stress components into Eq. (17), the

boundary condition can be simplified to

X

1

n¼�1
Annn ¼ n ð18Þ

where

nn ¼ H
1ð Þ
n�1 k0 vj jð Þ v

vj j

� �n�1

� v0 þ H
1ð Þ
n�1 k0 v2j jð Þ v2

v2j j

� ��nþ1

� v02

( )

eih

� H
1ð Þ
nþ1 k0 vj jð Þ v

vj j

� �nþ1

� �v0 þ H
1ð Þ
nþ1 k0 v2j jð Þ v2

v2j j

� ��n�1

� �v02

( )

e�ih

ð19Þ

n ¼ �w0 v01e
ih � �v01e

�ih
	 


exp
k0

2
v1 � �v1ð Þ

� ��

� exp
k0

2
�v1 � v1ð Þ

� ��

ð20Þ

Applying orthogonal function expansion technique,

we multiply e�imh by both sides of Eq. (18) and make

integration on the interval �p; pð Þ to solve undeter-

mined coefficients An

X

1

n¼�1
Annmn ¼ nm; m ¼ n ¼ 0;�1;�2; . . . ð21Þ

where
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nmn ¼
1

2p

Z

p

�p

nne
�imhdh;

nm ¼ 1

2p

Z

p

�p

ne�imhdh

ð22Þ

4.2 Dynamic stress concentration factor (DSCF)

In order to analyze the dynamic stress around the

cylindrical cavity, dynamic stress concentration factor

is defined, which has the form of

s�hz ¼ s �ð Þ
hz =s0

�

�

�

�

�

�
ð23Þ

where s �ð Þ
hz ¼ s ið Þ

hz þ s rð Þ
hz þ s sð Þ

hz which can be obtained

by Eq. (16) and s0 ¼ lbk0w0 is the stress amplitude of

incident wave.

5 Numerical results and discussion

In order to investigate the influence of wave frequency

on stress distribution around the cavity, DSCF under

different reference wave number are shown in Figs. 2,

3, 4, 5, 6 and 7. In the numerical results, the reference

wave number is named as k0 ¼ k. Then, the dimen-

sionless reference wave number is 0.5, 1.0, 1.5 and 2.0,

and the depth of the cavity is h=R ¼ 2:0. Because of

the symmetry of the model, the DSCF are symmetric

distributed in the results. When the inhomogeneous

parameter is small (b\0:5), the distribution of DSCF

is simple, and the value of DSCF are small under

different wave numbers. Specially, when b ¼ 0:1, the

distribution of DSCF is similar with each other under

different reference wave number. In Figs. 2, 3 and 4,

the maximum of DSCF mostly occurs from h ¼ 0 to

h ¼ p due to the amplification of mass density at the

lower half part of the cavity is much larger than the one

at the upper half part. However, when the inhomoge-

neous parameter increases (b� 0:5), the mass density

of the half space becomes larger, the distribution of

DSCF becomes complicated, and the dynamic stressesFig. 2 Distribution of DSCF with different wave number

(b ¼ 0:1)

Fig. 3 Distribution of DSCF with different wave number

(b ¼ 0:3)

Fig. 4 Distribution of DSCF with different wave number

(b ¼ 0:5)

123

Meccanica (2019) 54:2411–2420 2415



around the cavity enhance at the same time. Moreover,

the maximum of DSCF has a tendency to move

towards the direction of surface of the half space when

the inhomogeneous parameter becomes larger. That

may because the interaction of the scattering wave and

the surface to raise the dynamic stress. Hence, it can be

inferred that this kind of interaction have a bigger

impact on the maximum of DSCF than the changes of

mass density.

Figures 8, 9, 10 and 11 demonstrate the influence of

depth of the cavity with different reference wave

number on distribution of DSCF. The inhomogeneous

parameter is b ¼ 1:0, Alike the condition of the half

space is homogeneous, the value of DSCF decreases

with the depth increasing. Since the density difference

between the upper and the lower parts are stable, the

DSCF with different depth is mainly affected by the

interaction between the scattering wave (induced by

the cavity) and the surface. When the reference wave

number is small (in Figs. 8 and 9), the maximum of

DSCF is similar when the depth of the cavity

increases. That may because the condition is similar

to the static state. Even the reference equals to 1.0 (In

Fig. 9), the maximum of DSCF decreases no more

than 25% when the depth raises from 2.0 to 3.0. When

the reference wave number turns bigger (in Figs. 10

and 11), the effect of the depth becomes evident. With

Fig. 5 Distribution of DSCF with different wave number

(b ¼ 0:8)

Fig. 6 Distribution of DSCF with different wave number

(b ¼ 1:0)

Fig. 7 Distribution of DSCF with different wave number

(b ¼ 1:2)

Fig. 8 Distribution of DSCF with different depth (kR ¼ 0:5)
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the condition of kR ¼ 1:5 and kR ¼ 2:0, the maximum

of DSCF decreases more than 50% even more than

100% with the depth increasing. That indicates when

the depth of the cavity increases, the higher the wave

frequency is, the bigger the interaction (between the

cavity and the surface) decline is.

Since the half space is vertically inhomogeneous,

the influences of the inhomogeneity on the distribution

of DSCF need to be investigated. Figures 12, 13, 14

and 15 demonstrate the distribution of DSCF around

the cavity with different inhomogeneous parameters

under incident SH wave. The dimensionless wave

numbers equal to 0.5, 1.0, 1.5 and 2.0, respectively.

Generally speaking, the inhomogeneous parameter

mainly play its role in changing the value of DSCF.

That because the mass density of the half space varies

with the inhomogeneous parameter. Moreover, it

affects the distribution of DSCF as well. When the

reference wave number equals to 0.5, the changing of

inhomogeneous parameter can hardly influence the

distribution of DSCF. However, when the reference

wave number becomes larger, both influences on the

distribution and maximum of DSCF by the inhomo-

geneous parameter are significant.

Variation of DSCF around the cavity with increas-

ing inhomogeneous parameters under different refer-

ence wave number is presented in Fig. 16. The

location chosen of the cavity is at h ¼ 0. With the

inhomogeneous parameter augments, the value of

Fig. 9 Distribution of DSCF with different depth (kR ¼ 1:0)

Fig. 10 Distribution of DSCF with different depth (kR ¼ 1:5)

Fig. 11 Distribution of DSCF with different depth (kR ¼ 2:0)

Fig. 12 Distribution of DSCF with different inhomogeneous

parameter (kR ¼ 0:5)
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DSCF tends to increase when b\1:0. After that, the

DSCF fluctuates when the inhomogeneous parameter

increases. That may be caused by the complicated

interaction between the scattering wave and the

surface. Especially, in the range of 0:3\b\0:7

(marked by dotted box), the value of DSCF varies

little with inhomogeneous parameter with four differ-

ent reference wave numbers. Besides, if the reference

wave number is big, the DSCF usually fluctuates more

evidently than the condition of a small reference wave

number.

Figure 17 presents the variation of DSCF when

the reference wave number increases from 0.1 to 6.

Three different inhomogeneous parameters (b ¼
0:8; 0:9 and 1:0) are considered. The variations of

DSCF are absolutely opposite between 0:1\kR\2:0

and 2:0\kR\4:0. When reference wave number

bigger than 4.0, the DSCF begins to fluctuate with the

wave number increasing because of the same reason in

Fig. 16. With the condition of 0:1\kR\2:0, a

bigger inhomogeneous parameter has a faster increas-

ing tendency of DSCF. Similarly, the decreasing

slope of the curve has positive correlation with

inhomogeneous parameter as well with the condition

of 2:0\kR\4:0.

Fig. 13 Distribution of DSCF with different inhomogeneous

parameter (kR ¼ 1:0)

Fig. 14 Distribution of DSCF with different inhomogeneous

parameter (kR ¼ 1:5)

Fig. 15 Distribution of DSCF with different inhomogeneous

parameter (kR ¼ 2:0)

Fig. 16 Variation of DSCF with increasing inhomogeneous

parameters (h=R ¼ 2:0, h ¼ 0)
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6 Conclusions

Based on complex function method and multi-polar

coordinates system, dynamic stress concentration

factor (DSCF) around a cylindrical cavity in inhomo-

geneous half space is investigated. In order to solve the

governing equation with variable coefficients, the

conformal mapping method is applied. Then, by

utilizing the boundary condition at the cavity, wave

fields and corresponding stresses are solved. Finally,

DSCF around the cavity is obtained and discussed, and

some conclusions are summarized:

(1) The distribution of DSCF is mainly influenced

by reference wave number and inhomogeneous

parameter. The increase of kR and b causes the

distribution of DSCF to be complicated and may

change the position of maximum of DSCF.

Moreover, the distribution of DSCF is influ-

enced by depth of the cavity as well.

(2) The enhancement on DSCF by the interaction

between the scattering wave and the surface

surpasses the one by the increase of mass

density of the half space.

(3) The decline of the interaction (between the

scattering wave and the surface) grows with the

wave frequency.

(4) The influence of the interaction (between the

scattering wave and the surface) on DSCF

becomes complicated with high mass density

(b[ 1) and wave frequency (kR[ 4).
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