
Primary and secondary resonances in pipes conveying fluid
with the fractional viscoelastic model

M. Javadi . M. A. Noorian . S. Irani

Received: 24 May 2019 / Accepted: 10 October 2019 / Published online: 26 October 2019

� Springer Nature B.V. 2019

Abstract Nonlinear forced vibrations of a fractional

viscoelastic pipe conveying fluid exposed to the time-

dependent excitations is investigated in the present

work. Attention is focused in particular on the primary

and secondary resonances with the Kelvin–Voigt

fractional order constitutive relationship model. The

nonlinear geometric partial differential equations due

to stretching effect have been expressed by assump-

tions with Von Karman’s strain-displacement relation

and Euler–Bernoulli beam theory. Viscoelastic frac-

tional model for damping and stiffness, and also plug

flow model for fluid flow are considered to derive the

equation of motion. Based on the Galerkin truncation,

the coupled Fluid-Solid interaction nonlinear equation

transferred to ordinary differential equations. The

method of multiple scales is adopted to analyze

steady-state solutions for the primary, superharmonic,

and subharmonic resonances. Finally, the detailed

parametric studies on the nonlinear dynamic behavior

are discussed. Results delineate that the fractional

derivative order and the retardation time have

significant effects on the oscillation exhibited for

different values of flow velocity.

Keywords Pipes conveying fluid � Fractional
viscoelastic model � Method of multiple scales �
Superharmonic resonance � Subharmonic resonance

1 Introduction

Pipes conveying fluid are one of the fundamental

elements which are extensively encountered in many

practical applications such as the oil extraction and

transmission, hydraulic oil tubes, lubrication pipes,

and military industries. There are numerous particular

conditions which pipes conveying fluid will be excited

by external excitations. In some cases, these external

excitations may lead to dangerous effects and anoma-

lous behaviors. The high amplitude excitations may

result in nonlinear behaviors. Specifically, nonlinear

resonances may be used in the field of damage

detection. In the literature several techniques have

been proposed to detect the damage and health

monitoring, using nonlinear techniques [1–6]. More

specifically, structural health monitoring based on the

analyzing sub- and superharmonic responses describes

and gives a physical interpretation to define parame-

ters suitable for damage detection. There are excellent

literature surveys that discuss comprehensively the

problem of pipes conveying fluid. Paı̈doussis [7]
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thoroughly examined many problems that existed in

the dynamics of pipes conveying fluid. The nonlinear

dynamics of a pipe conveying fluids subjected to

various supports have been studied completely in the

past years due to its wide applications [8–12]. The

forced vibration of an extensible curved pipe convey-

ing fluid resting on a nonlinear elastic foundation

subjected to external excitation was discussed by Ni

et al. [13]. They found that the amplitude of the

excitation can increase the amplitude of the response

and jump frequency significantly, while the damping

only has a significant effect on the peak value and the

level of nonlinearity only have a significant effect on

the jump frequency of steady-state responses, respec-

tively. Steady-state response of a fluid conveying pipe

with 3:1 internal resonance in the supercritical regime

studied by Mao et al. [14]. They used an analytical

method to solve the local responses around the

nontrivial equilibrium configuration and investigated

global bifurcations by the simulation method. They

found the responses change bifurcations in the special

region. Liu et al. [15] studied the forced oscillations of

a cantilevered pipe conveying fluid under base exci-

tations. They observed for low flow velocity, both the

first and second modes primary resonances can be

observed when the excitation frequency is either

increased or decreased successively. Based on the

absolute nodal coordinate formulation (ANC) and

transfer matrix method (TMM), an efficient Riccati

ANC–TMM was applied to nonlinear dynamics

analysis of pipe conveying fluid with large deforma-

tions by Rong et al. [16]. Tang et al. [17] employed

analytical methods to study the post-buckling behav-

ior and nonlinear dynamics of a fluid conveying pipe

made from a functionally graded material. They

showed nonlinear frequency of the FGM pipe is

increased with the increase of the initial amplitude but

is decreased with the increase of the flow velocity and

fluid density. Taylor et al. [18] used the methods of

nonlinear dynamics including time histories, phase

portraits, power spectra, and Poincaré sections to

characterize the stability and bifurcation regions of a

cantilevered pipe conveying fluid with symmetric

constraints at the point of contact.

In recent years, various viscoelastic models have

been taken into account to model the time-dependent

behavior of materials such as synthetics, rubbers, and

polymers. One of the models that perfectly describes

the effect of time and loading history on material

behavior, is fractional viscoelastic model [19–23].

Considering the accuracy of the viscoelastic fractional

model, many researchers had been vastly used this

model to describe the dynamic behavior of structures

[24–31]. Agrawal [32] presented a general analytical

technique for stochastic analysis of a continuous beam

whose damping characteristic is described using a

fractional derivative model. They emphasized this

approach is very similar to the integral derivative

model. A non-local two-dimensional foundation

model with fractional calculus proposed by Failla

et al. [33]. They found the volume forces are non-local

and assumed to depend on the relative displacement

between the interacting column elements through

power-law distance-decaying attenuation functions.

Therefore, they obtained the equilibrium equations in

fractional differential equations. The stochastic

response of fractionally damped beams studied by Di

Lorenzo et al. [34]. They examined the influence of the

fractional derivative order on the power spectral

density response. They observed the damping effect

in reducing the power spectral density amplitude for

higher values of the fractional derivative order. They

also found the fractional derivative term introduces in

the system dynamics both effective damping and

effective stiffness frequency-dependent terms. Spanos

et al. [35] investigated nonlinear random vibrations of

beams with fractional derivative elements which the

nonlinear term arises from the assumption of moder-

ately large beam displacements. They showed with

this model, the beam response can be determined

reliably via an optimal statistical linearization proce-

dure. The non-local fractional Euler–Bernoulli beam

theory formulated as a generalization of classical

Euler–Bernoulli beams, utilizing fractional calculus

presented by Sumelka et al. [36]. They showed this

new model can give, qualitatively and quantitatively

manner, a good approximation of the revealed exper-

imental results. Di Paola et al. [37] proposed finite

element method on fractional visco-elastic frames.

Freundlich [38] studied the dynamic response of a

simply supported viscoelastic beam of the fractional

derivative Kelvin–Voigt model which subjected to a

force traveling with a constant acceleration. They

found in the case of a force moving at a constant

velocity, the calculated maximum deflection of the

beam decreases with the increasing order of fractional

derivative. The dynamics of non-local fractional

viscoelastic beams under stochastic agencies was
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investigated by Alotta et al. [39]. They emphasized

due to the non-local terms in the involved coefficient

matrices the set of coupled fractional differential

equations can not be decoupled with the standard

method of modal analysis. For this reason, the

dynamic response of the beam studied using a

fractional-order state-variable expansion and a com-

plex modal transformation. Liaskos et al. [40] derived

implicit analytic solutions for the linear stochastic

partial differential beam equation with fractional

derivative terms. Freundlich [41] studied transient

vibrations of an Euler–Bernoulli cantilever beam with

a rigid mass attached at the end and subjected to the

base motion. The viscoelastic material properties

described with the fractional derivative model of the

Kelvin–Voigt type. He observed a decrease in the

derivative order causes an increase in the vibration

amplitudes of the beam. He also found the actual

parameters of the fractional Kelvin–Voigt model

should be determined by conducting appropriate

experimental investigations. More recently, some

scholars studied the dynamic stability of pipes

conveying fluid with the fractional viscoelastic model.

Sinir and Demir [42] modeled the pipe as an initially

straight cable and examined the dynamic behavior of

the pipe in the subcritical region. They observed the

fractional viscosity, unlike classic viscosity, has even

insignificantly changed the natural frequency of the

system insignificantly. Tang et al. [43] studied the

fractional dynamics of pipes excited by foundation

vibration based on the fractional order differential

theory. They found for the fractional models, as the

foundation vibration amplitude increases, the response

amplitude increases, but larger viscoelastic damping

and the nonlinear coefficient can reduce the response

amplitude. They also observed the ranges of the

stable steady-state responses for the polymer-like

material pipes, exhibit much larger than those of the

previous pipe models. Nonlinear free vibration anal-

ysis of a fractional dynamic model for the viscoelastic

pipe conveying fluid was examined by Tang et al. [44].

They showed that the amplitudes of the fluid convey-

ing pipe constituted by the fractional viscoelastic

material model display much higher than those

predicted by the previous models. Javadi et al. [45]

analyzed the stability of pipes conveying fluid with the

fractional viscoelastic model. They found fractional

order and the retardation time change the boundaries

of divergence and flutter instabilities. They also

showed for some fractional model parameters,

increasing the damping may result in decreasing the

system stability.

Due to the importance of the nonlinear resonance

analysis for health monitoring and damage detection,

this paper is devoted to examining nonlinear forced

vibrations of a pipe conveying fluid exposed to the

time-dependent excitations. Attention is focused on

the primary, superharmonic and subharmonic

responses with the Kelvin–Voigt fractional damping

model. The nonlinear geometric partial differential

equations due to stretching effect have been expressed

by assumptions with Von Karman’s strain-displace-

ment relation and Euler–Bernoulli beam theory.

Viscoelastic fractional model for damping and stiff-

ness, and also plug flow model for fluid flow are also

considered to derive the equation of motion. Using the

Galerkin method, the governing nonlinear partial

differential equations are reduced to nonlinear ordi-

nary differential equations. The perturbation tech-

nique is employed to analyze the steady-state solutions

for primary and secondary responses. Finally, some

numerical test cases have been examined to determine

the influences of the fractional derivative order, the

retardation time, the flow velocity, the harmonic

concentrated force position and physical parameters

on the nonlinear dynamic behavior.

2 Governing equation

The schematic diagram of a simply supported pipe

is shown in Fig. 1. The pipe has length of L, flexural

rigidity EI, mass per unit length m and cross-sectional

area A. The fluid is incompressible with the steady

flow velocity U and mass per unit length M. The

Cartesian coordinate system (x-z) is established where

the components of u and w stand for the longitudinal

and transverse displacements, respectively. As

regards, the fractional viscoelastic model describes

realistically dependence of response on deformation

history and time-independent elastic response. The

relationship between stress (r̂) and strain (ê) of the
fractional viscoelastic model can be expressed as:

r̂ ¼ Cðêþ gDaêÞ ð1Þ

where C , g and Da are the elastic constitutive matrix,

the retardation time and Caputo fractional operator
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respectively. The Caputo fractional operator is defined

as follows:

Daf ðtÞ ¼

1

Cð1� aÞ
d

dt

Z t

0

1

ðt � sÞa f ðsÞ ds 0\a\1;

d
dt
f ðtÞ a ¼ 1;

8>><
>>:

ð2Þ

whichCðaÞ is the Gamma function and a is the order of
the time fractional derivative. Newton’s second law

can be used in the lateral direction for two elements of

the pipe and the fluid. The wall normal reaction (Fz)

force is imposed on the fluid element. The equation

can be written as follows:

�Fz ¼ Mafz ð3Þ

where afz is the acceleration of the fluid element in the

lateral direction. Assuming the plug flowmodel for the

fluid flow, the acceleration of the fluid element can be

written as:

afz ¼
o2w

ot2
þ 2U

o2w

oxot
þ U2 o

2w

ox2
ð4Þ

Similarly, for the pipe solid element the Newton’s

second law can be expressed as:

o ~Q

ox
þ o

ox
T
ow

ox

� �
þ Fz þ Fðx; tÞ ¼ mapz ð5Þ

where Fðx; tÞ and ~Qðx; tÞ are the harmonic concen-

trated force and internal shear forces respectively. T is

the initial tension in the pipe which can be generated

when the pipe is constrained in the axial direction.

This is dependent on the difference between the pipe

length and the distance between axial supports and in

practical applications can be measured using strain

gauges. Due to mid-plane stretching, using Von-

Karman’s strain-displacement relation and assuming

weak nonlinearities, ~Qðx; tÞ for a simply supported

Euler–Bernoulli beam is given by [46]:

~Qðx; tÞ ¼ o ~M

ox
þ Nðx; tÞ ow

ox

¼ � E þ E� o

ot

� �
I
o3w

ox3
þ EA

2L

ow

ox

ZL

0

ow

ox

� �2

dx

ð6Þ

which ~Mðx; tÞ and N(x, t) are stress resultants which

can be obtained as

Nðx; tÞ ¼
Z

A

brdA ¼ EA

L

ZL

0

ow

ox

� �2

dx ð7Þ

Mðx; tÞ ¼
Z

A

brzdA ¼ E þ E� o

ot

� �Z

A

zdA

� E þ E� o

ot

� �
o2w

ox2

Z

A

z2dA

¼� E þ E� o

ot

� �
I
o2w

ox2

ð8Þ

Because the x-axis crosses into the centroid of the

cross-section of the pipe,
R
A

dA ¼ 0 and I ¼
R
A

z2dA.

The pipe has internal dissipation that E* is the

coefficient of Kelvin–Voigt damping model in mate-

rial. Assuming T and U are constants in the pipe

longitudinal direction and substituting Eq. (6) in

Eq. (5), the nonlinearity equation of motion in the

lateral direction can be derived as:

E þ E� oa

ota

� �
I
o4w

ox4
þM

o2w

ot2
þ 2U

o2w

oxot
þ U2 o

2w

ox2

� �

þ m
o2w

ot2
� T

o2w

ox2
� EA

2L

o2w

ox2

ZL

0

ow

ox

� �2

dx ¼ Fðx; tÞ

ð9Þ

Furthermore, for simplicity of the parametric studies,

the following dimensionless variables are defined:

Fluid out

x, u

z, w 

Fluid in

F(x, t) = F0 cos(Ωt) δ(x-x0) 

Fig. 1 Schematic of a

simply supported pipe

conveying fluid
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n ¼ x

L
; k ¼ w

L
; s ¼ t

L

T

m

� �1=2

; u ¼ U
M

TL

� �1=2

;

ev ¼ EA

T
;

b ¼ M

M þ m
; c ¼ EI

TL2
; g ¼ E�I

TL2
T

ML2

� �a=2

;

~F ¼ F
mL

MbT

� �

ð10Þ

By substituting Eq. (10) into Eq. (9), the dimensionless

form of equation can be obtained as:

o2k
os2

þ b c
o4k

on4
þ g

oa

osa
o4k

on4

� ��

þ 2u
o2k
oson

þ o2k

on2
u2 � 1� 1

2
ev
Z1

0

ok
on

� �2

dn

0
@

1
A
3
5

¼ ~Fðn; sÞ
ð11Þ

where associated boundary conditions are:

kð0; sÞ ¼ kð1; sÞ ¼ 0;
o2kð0; sÞ

on2
¼ o2kð1; sÞ

on2
¼ 0

ð12Þ

The solutions of Eq. (11) can be written in the

following modal expansion as:

kðs; nÞ ¼
X1
n¼1

wnðsÞ/nðnÞ ð13Þ

which wnðsÞ and /nðnÞ are generalized coordinates

and the mode shapes of the simply supported pipe,

respectively. For the nonlinear forced vibrations, when

the excitation frequency is equal to natural frequen-

cies, primary resonance with limited amplitude is

occurs. Whereas when the excitation frequency is a

distinct multiplier of natural frequencies, subharmonic

or superharmonic resonances may occur.

2.1 Primary resonance

To analyze the primary resonance, a concentrated

excitation with small amplitude in position n ¼ n0 is

applied. The external force subjected to the pipe

conveying fluid is given by:

~Fðn; sÞ ¼ e �F cosðXsÞdðn� n0Þ ð14Þ

which e, X, d and �F are the artificially introduced

perturbation parameter, frequency of external, Dirac

function and amplitude of force respectively. By

considering the first two modes which lead to accurate

and converged result [7] and substituting Eq. (14) into

Eq. (11) and applying the Galerkin method, the

following equations are obtained:

€w1ðsÞ þ c11w1ðsÞ þ c12w
3
1ðsÞ þ c13D

aw1ðsÞ
þ c14w1ðsÞw2

2ðsÞ þ c15 _w2ðsÞ ¼ f1
ð15Þ

€w2ðsÞ þ c21w2ðsÞ þ c22w
3
2ðsÞ þ c23D

aw2ðsÞ
þ c24w

2
1ðsÞw2ðsÞ þ c25 _w1ðsÞ ¼ f2

ð16Þ

where the constant coefficients can be expressed as:

cj1 ¼ b
Z1

0

Xmm
m¼1

½c/ð4Þ
m ðnÞ þ u2 � 1

� �
/00

mðnÞ�
( )

/jðnÞdn

ð17Þ

cj2 ¼ � 1

2
evb

Z1

0

Xmm
m¼1

/00
mðnÞ

Z1

0

/0
mðnÞð Þ2dn

8<
:

9=
;/jðnÞdn

ð18Þ

cj3 ¼ bg
Z1

0

Xmm
m¼1

/ð4Þ
m ðnÞ

( )
/jðnÞdn ð19Þ

cj4 ¼ � 1

2
evb

Z1

0

Xmm
m¼1

/00
mðnÞ

Z1

0

/0
mðnÞð Þ2dn

8<
:

9=
;/jðnÞdn

ð20Þ

cj5 ¼ 2bu
Z1

0

Xmm
m¼1

/0
mðnÞ

( )
/jðnÞdn ð21Þ

fj ¼
Z1

0

e �F cosðXsÞ/jðnÞdðn� n0Þdn ð22Þ
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where j = 1…2 and mm = 2. In the case of primary

resonance, the excitation frequency can be taken as:

X ’ xn þ rne ð23Þ

where rn is the detuning parameter that quantifies the

deviation of X from xn. Assuming the weak nonlin-

earity, the method of multiple scales is applied directly

to nonlinear ordinary differential equations to seek

approximate solutions. By considering the first order

expansion, solutions are assumed to be of the follow-

ing form:

w1ðs; eÞ ¼ w01ðT0; T1Þ þ ew11ðT0; T1Þ ð24Þ

w2ðs; eÞ ¼ w02ðT0; T1Þ þ ew12ðT0; T1Þ ð25Þ

which T0 ¼ s and T1 ¼ es are fast and slow scale times

respectively. The time derivatives are defined as

fallow:

d

ds
¼ D0 þ eD1 ð26Þ

d2

ds2
¼ D0 þ eD1ð Þ2 ¼ D0

2 þ e2D0D1 ð27Þ

da

dsa
¼ D0 þ eD1ð Þa ¼ D0

a þ eDa�1
0 D1 ð28Þ

which Dn ¼ o
oTn

and the parameter DaðeixnsÞ is

obtained by [46]

DaðeixnsÞ ¼ ðixnÞaeixns ð29Þ

Substituting Eqs. (24) and (25) in Eqs. (15) and (16)

and after the separation of zeroth- and first-order

problems of the multiple-scales perturbation series

yield: The order e0 :

D0
2w01ðT0;T1Þ þ c11w01ðT0; T1Þ ¼ 0 ð30Þ

D0
2w02ðT0;T1Þ þ c21w02ðT0; T1Þ ¼ 0 ð31Þ

At order e0, the general solution for Eqs. (30) and (31)
can be expressed as:

w01ðT0; T1Þ ¼ A1ðT1Þeix1T0 þ �A1ðT1Þe�ix1T0 ð32Þ

w02ðT0; T1Þ ¼ A2ðT1Þeix2T0 þ �A2ðT1Þe�ix2T0 ð33Þ

For the e1 order:

D0
2w11 þ x2

1w11

¼ �2½ðix1ÞA0
1ðT1Þeix1T0 þ ð�ix1Þ�A0

1ðT1Þe�ix1T0 �

� c12 A3
1ðT1Þe3ix1T0 þ �A

3

1ðT1Þe�3ix1T0
h

þ 3A2
1ðT1Þ�A1ðT1Þeix1T0 þ 3A1ðT1Þ�A1

2ðT1Þe�ix1T0
i

� c13 ðix1ÞaAðT1Þeix1T0 þ ðix1Þa �AðT1Þe�ix1T0
� �

� c14 A1ðT1Þeix1T0 þ �A1ðT1Þe�ix1T0
� �

A2
2ðT1Þe2ix2T0 þ �A

2

2ðT1Þe�2ix2T0 þ 2A2ðT1Þ�A2ðT1Þ
h i

� c15 ðix2ÞA0
2ðT1Þeix2T0 þ ð�ix2Þ�A0

2ðT1Þe�ix2T0
� �

þ f1

2
ðeiXt þ e�iXtÞ

ð34Þ

D0
2w21 þ x2

2w21

¼ �2 ðix2ÞA0
2ðT1Þeix2T0 þ ð�ix2Þ�A0

2ðT1Þe�ix2T0
� �

� c22 A3
2ðT1Þe3ix2T0 þ �A

3

2ðT1Þe�3ix2T0
h

þ 3A2
2ðT1Þ�A2ðT1Þeix2T0 þ 3A2ðT1Þ�A2

2ðT1Þe�ix2T0
i

� c23 ðix2ÞaA2ðT1Þeix2T0 þ ðix2Þa �A2ðT1Þe�ix2T0
� �

� c24 A2ðT1Þeix2T0 þ �A2ðT1Þe�ix2T0
� �

A2
1ðT1Þe2ix1T0

�
þ�A

2

1ðT1Þe�2ix1T0 þ 2A1ðT1Þ�A1ðT1Þ
i

� c25 ðix1ÞA0
1ðT1Þeix1T0 þ ð�ix1Þ�A0

1ðT1Þe�ix1T0
� �

þ f2

2
ðeiXt þ e�iXtÞ

ð35Þ

Eliminating the secular and small-divisor terms yield

the complex-valued modulation equation:

ð2ix1ÞA0
1ðT1Þ½ � þ c12 3A2

1ðT1Þ�A1ðT1Þ
� �

þ c13 ðix1ÞaAðT1Þ½ �

þ f1

2
ðeir1T1Þ þ c14 2A2ðT1Þ�A2ðT1ÞA1ðT1Þ½ � ¼ 0

ð36Þ

ð2ix2ÞA0
2ðT1Þ½ � þ c22 3A2

2ðT1Þ�A2ðT1Þ
� �

þ c23 ðix2ÞaA2ðT1Þ½ �

þ f2

2
ðeir1T1Þ þ c24 2A1ðT1Þ�A1ðT1ÞA2ðT1Þ½ � ¼ 0

ð37Þ

Assuming that the amplitude An can be written as the

polar form:

AnðT1Þ ¼
1

2
anðT1ÞeiQnðT1Þ ð38Þ
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Substituting A1ðT1Þ and A2ðT1Þ in Eqs. (36) and (37)

results in:

ðix1Þða01ðT1Þ þ ia1Q
0
1ðT1ÞÞ½ �eiQ1ðT1Þ

þ c12
3a31ðT1Þ

8
eiQ1ðT1Þ þ c13ðix1Þa

1

2
a1ðT1ÞeiQ1ðT1Þ

þ f1

2
eir1T1 þ c14

1

4
a1ðT1ÞeiQ1ðT1Þa22ðT1Þ ¼ 0

ð39Þ

ðix2Þða02ðT1Þ þ ia2Q
0
2ðT1ÞÞ½ �eiQ2ðT1Þ

þ c22
3a32ðT1Þ

8
eiQ2ðT1Þ þ c23ðix2Þa

1

2
a2ðT1ÞeiQ2ðT1Þ

þ f2

2
eir2T1 þ c24

1

4
a2ðT1ÞeiQ2ðT1Þa21ðT1Þ ¼ 0

ð40Þ

Equations (39) and (40) can be transferred to an

autonomous system by eliminating term T1

cnðT1Þ ¼ rnT1 � QnðT1Þ ð41Þ

Considering steady-state motion in this condition one

can write:

d

dT1
anðT1Þ ¼ 0 ð42Þ

d

dT1
cnðT1Þ ¼ 0 ð43Þ

For steady-state motion of the first mode, when T1 !
1 the amplitude of a2ðT1Þ ¼ 0 ,so Eq. (39) can be

simplified as:

� x1a1ðT1Þr1 þ c12
3a31ðT1Þ

8
þ c13ðix1Þa

1

2
a1ðT1Þ

þ 1

2
f1e

ic1 ¼ 0

ð44Þ

Similarly, steady-state motion of the second mode,

when T1 ! 1 the amplitude of a1ðT1Þ ¼ 0, so

Eq. (40) yields to:

� x2a2ðT1Þr2 þ c22
3a32ðT1Þ

8
þ c23ðix2Þa

1

2
a2ðT1Þ

þ 1

2
f2e

ic2 ¼ 0

ð45Þ

By separating the real and imaginary parts, eliminat-

ing c and squaring, two equations can be obtained as

follows:

r1x1a1ðT1Þ�c12
3a31ðT1Þ

8
�c13a1ðT1Þðx1Þa

2
ReðiÞa

� �2

þ c13a1ðT1Þðx1Þa

2
ImðiÞa

� �2

¼ f 21

ð46Þ

r2x2a2ðT1Þ �
c223a

3
2ðT1Þ
8

� c23a2ðT1Þðx2Þa

2
ReðiÞa

� �2

þ c23a2ðT1Þðx2Þa

2
ImðiÞa

� �2

¼ f 22

ð47Þ

2.2 Superharmonic resonance

As already mentioned, in Eqs. (15) and (16) the

nonlinear term x3 due to stretching effect induce

superharmonic (3:1) and subharmonic (1:3) reso-

nances. In the following of examination of secondary

resonance, an excitation with large amplitude is

considered and also the excitation frequency is away

from the natural frequency. For the superharmonic

resonances the excitation frequency can be taken as:

3X ’ xn þ rne ð48Þ

Again, the procedure of multiple scales method is

applied and equating coefficients of e0 and e1 yields:

The order e0:

D0
2w01ðT0;T1Þ þ c11w01ðT0; T1Þ ¼f1 cosðXtÞ ð49Þ

D0
2w02ðT0;T1Þ þ c21w02ðT0; T1Þ ¼f2 cosðXtÞ ð50Þ

which the general solutions Eqs. (49) and (50) can be

expressed as:

w01ðT0; T1Þ ¼A1ðT1Þeix1T0 þ �A1ðT1Þe�ix1T0

þ K1ðeiXt þ e�iXtÞ
ð51Þ

w02ðT0; T1Þ ¼A2ðT1Þeix2T0 þ �A2ðT1Þe�ix2T0

þ K2ðeiXt þ e�iXtÞ
ð52Þ

The terms of K1 and K2 can be obtained as:
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K1 ¼
1

2

f1

X2 � x2
1

 !
ð53Þ

K2 ¼
1

2

f2

X2 � x2
2

 !
ð54Þ

Substituting the general solutions in terms of the order

e1 and eliminating secular term and small devisors

yields:

ð2ix1ÞA0
1ðT1Þ þ c12 3A2

1ðT1Þ�A1ðT1Þ þ K3
1 þ 6A1ðT1ÞK2

� �
þ c13ðix1ÞaA1ðT1Þ ¼ 0

ð55Þ

ð2ix2ÞA0
2ðT1Þ þ c22 3A2

2ðT1Þ�A2ðT1Þ þ K3
2 þ 6A2ðT1ÞK2

2

� �
þ c23ðix2ÞaA2ðT1Þ ¼ 0

ð56Þ

Substituting the polar form of AnðT1Þ, into Eqs. (55)

and (56), and separating the real and imaginary,

the modulation equations can be obtained as

follows:

3K2
1c12

x1

� r

� 	
a1ðTÞ þ

3c12a
3
1ðT1Þ

8x1

þ c13a1ðT1Þðx1Þa�1

2
ReðiÞa

 !2

þ c13a1ðT1Þðx1Þa�1

2
ImðiÞa

 !2

¼ c12K
3
1

x1

� �2

ð57Þ

3K2
2c22

x2

� r2

� 	
a2ðTÞ þ

3c22a
3
2ðT1Þ

8x2

þ c23a2ðT1Þðx2Þa�1

2
ReðiÞa

 !2

þ c23a2ðT1Þðx2Þa�1

2
ImðiÞa

 !2

¼ c22K
3
2

x2

� �2

ð58Þ

2.3 Subharmonic resonance

Within the range of subharmonic excitation, one will

have:

X ’ 3xn þ rne ð59Þ

Setting the secular and small divisor terms equal to

zero, yields:

2ix1A
0
1ðT1Þ þ c12 3A2

1ðT1Þ�A1ðT1Þ þ 3�A
2

1ðT1ÞK1e
ir1eT0




þ 6A1ðT1ÞK2
1

�
þ c13ðix1ÞaA1ðT1Þ ¼ 0

ð60Þ

2ix2A
0
2ðT1Þ þ c22 3A2

2ðT1Þ�A2ðT1Þ þ 3A2
2ðT1ÞK2e

ir2eT0
�

þ 6A2ðT1ÞK
2
2

�
þ c23ðix2ÞaA2ðT1Þ ¼ 0

ð61Þ

Separating Eqs. (60) and (61) into the real and

imaginary parts and transferring to an autonomous

system by eliminating term T1 results in:

r1 �
c129K

2
1

x1

� c12
9a21ðT1Þ
8x1

� 3c13ðx1Þ
a�1

2
Re ið Þa

 !2

þ 3c13ðx1Þ
a�1

2
Im ið Þa

 !2

¼ 9K1a1ðT1Þ
4x1

� �2

ð62Þ

r2 �
c229K

2
2

x2

� c22
9a22 ðT1Þ
8x2

� 3c23ðx2Þa�1

2
Re ið Þa

 !2

þ 3c23ðx2Þa�1

2
Im ið Þa

 !2

¼ 81K2
2a

2
2ðT1Þ

16x2
2

ð63Þ

3 Numerical results and discussion

In order to prove the validity of the numerical results,

comparison study is done and after that, the effects of

the fractional derivative order, the retardation time,

harmonic concentrated force position and fluid veloc-

ity on the nonlinear dynamics are discussed.

3.1 Validation of the present study

To verify the proposed formulation and examine the

accuracy of the numerical results, the validation

process is performed with results available in the

open literature. The comparison study is accomplished

between the obtained results of this research and the

results reported by Tang et al. [44] which studied the
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nonlinear free vibration of a fractional dynamic model

for the viscoelastic pipe conveying fluid. They

obtained the dynamic equation of motions for pipe

by employing the Euler–Bernoulli beam theory and

generalized Hamilton’s principle. In this reference, the

multiple scale method is used to investigate the free

vibration of the pipe. The response amplitude of the

viscoelastic fractional pipe for the first mode has been

depicted in Fig. 2. The characteristics of the system

are: b = 0.7, u = 1.6, e = 0.005 and �g = c = v = 1 which

�g ¼ g=e and initial condition is assumed as a0 = 1. As

can be seen, a good agreement for different values of a
is obtained in this comparison.

3.2 Linear analysis

In order to find a better understanding of the physics of

the considered problem, linear analysis has been done.

In Fig. 3, the dimensionless dampings, and frequen-

cies versus dimensionless flow velocity have been

depicted for the viscoelastic model. As you can see, by

increasing the dimensionless fluid velocity, diver-

gence will occur for the first and second mode at

ucr1 � 3:3 and ucr2 � 6:4 respectively. The flow

velocity which the system experiences instability for

the first time is defined as critical velocity. Thus, sub-

critical flow velocity for this case is u\3:3. Typically,

the pipe at critical flow velocity undergoes a static

pitchfork bifurcation and the amplitude of the buckled

pipe. Therefore at the rest of the manuscript and in all

of the numerical results and evaluations, flow velocity

will be considered lower than critical flow velocity

(u\ucr).

3.3 Primary resonance

The effects of the fractional derivative order, the

retardation time, the location of the harmonic concen-

trated force and flow velocity on the primary responses

of pipes conveying fluid will be discussed in this

subsection. In order to investigate these effects,

numerous test cases with assuming e ¼ 0:005 and c
= v = 1 are considered.

Fig. 2 Comparison study of response amplitude versus the time

for different values of the fractional order

Fig. 3 Dimensionless dampings and frequencies versus dimen-

sionless flow velocity for a = v = 1, b = 0.2, e = g = 0.005 and

Fðx; tÞ ¼ 0
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3.3.1 Effect of the fractional model

Figures 4 and 5 show the response amplitude for

the condition �g = 1, u = 2, �F = 10 and b = 0.7. In Fig. 4

the effect of fractional derivative order (a) on the

response amplitude have been analyzed. The harmonic

concentrated force is also applied at n0 ¼ 0:5 and X is

close to the first natural frequency. It is found, by

decreasing the value of a, the peak amplitude

increases. This result is expectable, because by

decreasing a, the fractional viscoelastic model will

be close to elastic model without any damping. In

Fig. 5 the response amplitude curve are indicated

which the excitation frequency is close to the first and

second natural frequency. In this case, investigation

have been considered for a = 0.5 and n0 ¼ 0:25. In

Figs. 6 and 7 which correspond to the �g = 1, u = 2, �F =

10 and r = 0.1, the response amplitude versus b are

represented. In Fig. 6 the effects of a on the behavior

of the response amplitude versus b for n0 = 0.5 are

depicted. As you can see, by increasing b, the response
amplitude decreases but the rate of decrease in the

viscoelastic model is higher. This result can be

justified by the fact that increasing b, the total mass

of the system is also increasing which can be led to

decreasing the response amplitude. The response

amplitude versus b when the excitation frequency is

close to the first and second natural frequency for a =

0.3 and n0 ¼ 0:25 is presented in Fig. 7. As you can

see for both cases, by increasing b the response

amplitude decreases. Next, to assess the influence of

the excitation amplitude on the response amplitude,

other test cases have been considered. For these cases,

properties are �g = 1, u = 2, r = 0.1 and b = 0.7. Effect of

the excitation amplitude for different values of a has

been depicted in Fig. 8 which correspond to n0 ¼ 0:5.

As is shown for small fractional derivative orders, the

deviation of the system from linear behavior occurs in

smaller values of the excitation amplitude. For a=0.3 a

Fig. 4 Primary response amplitude for different values of a
with n0 ¼ 0:5, �g = 1, u = 2, b = 0.7, �F = 10 and X ¼ x1 þ er

Fig. 5 Primary response amplitude for the first and second

modes with n0 ¼ 0:25, a = 0.5, �g = 1, u =2, b = 0.7 and �F = 10

Fig. 6 Primary response amplitude versus b for different values
of a, with n0 = 0.5, �g = 1, u = 2, r = 0.1, �F = 10 andX ¼ x1 þ er
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nonlinear oscillation hysteresis is observed. When
�F\48 the system has a single small stable limit cycle

oscillation (LCO). For 48\ �F\67 two LCO can be

found and for �F[ 67 only a large stable LCO can be

observed. To clarify the effects of g on the response

amplitude, another test case has been considered. As

illustrated in Fig. 9, by decreasing �g the peak response
amplitude increases whereas the deviation of response

frequency from excitation frequency decreases. It

means, increasing damping results in more nonlinear-

ity behavior.

3.3.2 Effects of flow velocity

Figure 10 represents the response amplitude curve for

different values of u. As the flow velocity increases,

the response amplitude increases too. As illustrated

when the flow velocity reaches to near the critical

velocity, the rate of increase is considerable. As stated

earlier (see Fig. 3), by increasing the flow velocity, the

structural stiffness is decreased which justify the

system behavior shown in Fig. 10.

3.4 Superharmonic resonance

This subsection deals with the investigation on the

effect of the fractional model, the location of the

harmonic concentrated force and flow velocity on

superharmonic responses.

3.4.1 Effect of the fractional model

Figures 11 and 12 depict superharmonic response

amplitude with for �g = 1, u = 3, b = 0.7. The effect of a
on the response amplitude is demonstrated in Fig. 11

which corresponds to K1 = 1. As you can see, by

decreasing the value of a, the peak amplitude increases

and shifts to the right. It is interesting that with the

Fig. 8 Primary response amplitude versus the excitation

amplitude for different values of a, with n0 ¼ 0:5, �g = 1, u =

2, r = 0.1, b = 0.7 and X ¼ x1 þ er

Fig. 9 Primary response amplitude for different values of �g,
with n0 = a =0.5, u = 2, b = 0.7, �F =10 and X ¼ x1 þ er

Fig. 7 Primary response amplitude versus b for the first and

second modes with a = 0.3, n0 ¼ 0:25, �g = 1, u = 2, r = 0.1 and �F
= 10
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fractional model, superharmonic response amplitude

is considerable in comparison with the conventional

viscoelastic model. Figure 12 shows the comparisons

between the response amplitude when the excitation is

close to one-third of the first and second modes,

respectively. In this case, parameters are assumed as:

K1 =
ffiffiffi
2

p
=2 , K2 = 1 = 1, a = 0.3 and n0 = 0.25. It is

observed when the excitation frequency is close to

one-third of second mode natural frequency, the peak

response amplitude and deviation of response fre-

quency are bigger in comparison with the case that the

excitation frequency is close to the one-third of the

first mode natural frequency. Figure 13 discusses the

variation of the response amplitude versus the exci-

tation amplitude for different values of a for n0 = 0.5, �g
= 2, u = 3, r=0.5, b = 0.7 andK1 = 1. It is worth noting

at the first, the rate of increase of the amplitude for

smaller values of a is considerable. Figures 14 and 15
show the superharmonic response amplitude versus b
with �g = 1, u = 2 and r = 0.3. The effects of a on the

response amplitude versus b has been presented in

Fig. 14 which corresponded toK1 = 1 and n0 = 0.5. As

illustrated in this graph, for larger values of b the rate

of increase for fractional model is higher than

viscoelastic model. To analyze the effect of b on the

behavior of the system when the excitation frequency

is close to the three times of the first and second natural

frequency, another test case has been considered with

a = 0.7, K2 = 1 and K1 =
ffiffiffi
2

p
=2 . It is observed from

Fig. 15 that with increasing b the response amplitude

which corresponded to 3X ¼ x1 þ er , is also

increased whereas the response amplitude which

corresponded to 3X ¼ x2 þ er , for b[ 0:15 is

decreased. Figure 16 is depicted to clarify the effects

of �g on the response amplitude. This figure shows like

primary resonance, the peak amplitude increases as the

�g decreases.

Fig. 11 Superharmonic response amplitude for different values

of awith n0 = 0.5, �g = 1, u = 3, b = 0.7,K1 = 1 and 3X ¼ x1 þ er

Fig. 12 Superharmonic response amplitude for the first and

second modes with n0 = 0.25, a = 0.3, �g = 1, u = 3, b = 0.7,K2 = 1

and K1 =
ffiffiffi
2

p
=2:

Fig. 10 Primary response amplitude for different values of

u with n0 = a = 0.5, �g = 1, b = 0.7, �F = 10 and X ¼ x1 þ er
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3.4.2 Effect of the flow velocity

The next example is dedicated to assess the effect of

u on the response amplitude with n0 = a = 0.5 and �g =

K1 = 1. It is observed from Fig. 17 by increasing the

flow velocity the peak amplitude increases too.

Furthermore, the rate of increase of the peak amplitude

for the values u which are near to the critical level is

much more. Figure 18 represents the response ampli-

tude versus the excitation amplitude for different

values of u. It is observed by increasing the flow

velocity the peak amplitude diminishes.

3.5 Subharmonic resonance

The effects of the fractional model, the location of the

harmonic concentrated force and the flow velocity on

subharmonic responses are studied in this subsection.

Fig. 14 Superharmonic response amplitude versus b for

different values of a with n0 = 0.5, �g = 1, r = 0.3, u = 2, K1 =

1 and 3X ¼ x1 þ er

Fig. 15 Superharmonic response amplitude for the first and

second modes versus with n0 = 0.25, a = 0.7, �g = 1, u = 2, r = 0.3,

K2 = 1, K1 =
ffiffiffi
2

p
=2

Fig. 16 Superharmonic response amplitude for different values

of �g with n0 = a = 0.5, b = 0.7, u = 3, K1 = 1 and 3X ¼ x1 þ er

Fig. 13 Superharmonic response amplitude versus the excita-

tion amplitude for different values of a with n0 = 0.5, �g = 2, r =

0.5, u = 3, b = 0.7 and 3X ¼ x1 þ er
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3.5.1 Effect of fractional model

Subharmonic response amplitude with �g = 1, u = 3

and b = 0.7 is presented in Figs. 19 and 20. In Fig. 19,

the effect of a on the subharmonic response amplitude

are depicted withK1 = 1. As you can see, there are two

amplitude for each detuning parameters in subhar-

monic response. It is observed for fractional model the

region where the nontrivial solution exists, has been

increased. Figure 20 also shows the response ampli-

tude when the excitation frequency is close to the three

times of the first and second natural frequency, a = 0.3,

K1 ¼
ffiffiffi
2

p
=2, K2 ¼ 1 and n0 ¼ 0:25. It is observed

when the excitation frequency is close to the three

times of the first natural frequency, the region where

the nontrivial solution exists, is larger. Figure 21

shows the effects of a on subharmonic response

amplitude versus the excitation amplitude with

Fig. 18 Superharmonic response amplitude versus the excita-

tion amplitude for different values of u with n0 = a =r =0.5, b =

0.7, u = 3, �g = 2 and 3X ¼ x1 þ er

Fig. 19 Subharmonic response amplitude for different values

of a with n0 = 0.5, b = 0.7, u = 3, �g = K1 = 1 and X ¼ 3x1 þ er

Fig. 20 Subharmonic response amplitude for the first and

second modes with n0 = 0.25, a = 0.3, u = 3, b = 0.7, �g = K2 = 1

and K1 =
ffiffiffi
2

p
=2:

Fig. 17 Superharmonic response amplitude for different values

of u with n0 = a = 0.5, b = 0.7, u = 3 and �g = K1=1 and

3X ¼ x1 þ er
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n0 ¼ 0:5, �g = 2, r = 4, u = 3 and b = 0.7. It can be seen

for the larger values of a, the region where the

nontrivial solution exists, has been decreased. Fig-

ure 22 shows the effects of b on the response

amplitude versus b with r = 0.3, u = 2, �g = K1 = 1

and n0 ¼ 0.5. As you can see, for the fractional model,

the region where the nontrivial solution exists, is

larger than viscoelastic model. The the response

amplitude versus b when the excitation frequency is

close to the three times of the first and second natural

frequency is plotted Fig. 23 with r=0.3, u = 2, n0 =

0.25,K1 =
ffiffiffi
2

p
=2 andK2 = �g = 1. In Fig. 24 the effect of

�g on the subharmonic response amplitude is plotted

with a = 0.5, n0 = 0.5, u = 3, b = 0.7 and K1 = 1. The

region for nontrivial solution increases as �g decreases.
It is also found the upper branch unlike the lower

branch changes significantly by changing fractional

parameters.

Fig. 21 Subharmonic response amplitude versus the excitation

amplitude for different values of awith n0 = 0.5, �g = 2, r = 4, b=
0.7, u = 3 and X ¼ 3x1 þ er

Fig. 22 Subharmonic response amplitude versus b for different

values of a with n0 = 0.5, u = 2, r = 0.3, �g = K1=1 and

X ¼ 3x1 þ er

Fig. 23 Subharmonic response amplitude versus b with n0 =

0.25, a = r = 0.3, u = 2, b = 0.7, �g = K2 =1 and K1=
ffiffiffi
2

p
=2

Fig. 24 Subharmonic response amplitude for different values

of �g with n0 = a =0.5, u = 3, b = 0.7, K1 = 1 and X ¼ 3x1 þ er
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3.5.2 Effect of the flow velocity

The influence of the flow velocity on the subhar-

monic response amplitude is presented in Fig. 25 with

a = 0.5, �g = 1, n0 = 0.5, b = 0.7 andK1 = 1 . It is obvious

by increasing the flow velocity, the region where the

nontrivial solution exists, does not change remarkably

whereas by decreasing u two responses amplitudes

increase. Figure 26 illustrates the subharmonic

response amplitude versus the excitation amplitude

for different values of the flow velocity, with n0 = a =

0.5, �g = 2, b = 0.7 and r = 4. It can be seen by

increasing u the region where the nontrivial solution

exists, decrees and both upper and lower branches

have been changed.

4 Conclusion

The main effort of this paper is devoted to the

nonlinear response analysis of the pipe conveying fluid

under primary, superharmonic and subharmonic res-

onance conditions. The emphasis is on the effects of

the fractional derivative order and the retardation time

on the nonlinear response. Based on the numerous test

cases, the main conclusions obtained are as follows:

Primary resonance

(i) It is observed, by decreasing the value of the

fractional derivative order and retardation

time, the peak amplitude will be increased

(Fig. 4).

(ii) It is found, when the excitation frequency is

close to the first natural frequency, the

response amplitude is much larger than the

response amplitude when the excitation fre-

quency is close to the second natural fre-

quency (Fig. 5).

(iii) With increasing the value of b, the response

amplitude will be decreased and the rate of

decreasing in the viscoelastic model is more

than the fractional model (Fig. 6).

(iv) It is shown, by increasing the flow velocity,

the peak amplitude will be increased and the

rate of increase for the velocities which are

close to the critical velocity, is higher

(Fig. 10).

Superharmonic resonance

(i) The results demonstrate, by decreasing the

value of the fractional derivative order and

the retardation time, the peak amplitude will

be increase and shift to the right (Fig. 11).

(ii) It is found, when the excitation frequency is

close to one-third of the second natural

frequency, the response amplitude is much

larger than the response amplitude when the

Fig. 25 Subharmonic response amplitude for different values

of u with g with n0 = a = 0.5, �g = 1, b = 0.7, K1=1 and

X ¼ 3x1 þ er

Fig. 26 Subharmonic response amplitude versus the amplitude

of excitation for different values of uwith n0 = a = 0.5, �g = 2, b =
0.7, r = 4 and X ¼ 3x1 þ er
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excitation frequency is close to one-third of

the first natural frequency (unlike primary

resonance, Fig. 12).

(iii) With increasing the value of b, the response

amplitude, will be increased and the rate of

increase in the fractional model is higher than

the viscoelastic model (unlike primary reso-

nance, Fig. 14).

Subharmonic resonance

(i) It is observed by decreasing the value of the

fractional derivative order and the retardation

time, the region where the nontrivial solution

exists, will be increased (Fig. 19).

(ii) It is found by changing flow velocity the

region where the nontrivial solution exists,

does not change remarkably (Fig. 25).

(iii) The investigation of the response amplitude

versus the excitation amplitude for the frac-

tional model shows, with increasing the flow

velocity, the region where the nontrivial

solution exists and the response amplitudes,

will be decreased (Fig. 26).

In total, it can be concluded that the effects of the

fractional damping model parameters are more obvi-

ous in sub- and superharmonic resonances in compar-

ison with primary resonance. This phenomenon would

be beneficial to further development in dynamic

control damage detection and health monitoring of

the rubber, polymeric and synthetic pipes conveying

fluid.
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