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Abstract The paper presents four direct numerical

simulations of an open channel flow with geometri-

cally resolved particles heavier than the fluid. In each

simulation the same number of mono-disperse parti-

cles is considered, with the shape of the particles

varied between the simulations, while conserving the

volume. Three simulations are reported with non-

spherical particles, here prolate ellipsoid, oblate

ellipsoid, and Zingg-ellipsoid, and compared to a

fourth one with spherical particles. The influence of

the particle shape on the average fluid motion and on

the disperse particle phase is investigated in the regime

of low particle loading. It is found that the Reynolds

stresses with spherical particles are much smaller

compared to those with non-spherical particles. Of

these, they are maximum in the case of oblate

particles. Furthermore, the oblate spheroids are

prominently found in the near-wall region and hardly

roll. This behavior differs markedly from the behavior

of the spherical particles, which preferably bounce and

roll. The other two cases, with prolate ellipsoids and

Zingg-ellipsoid behave between the two extreme cases

of spherical and oblate particles. The oblate spheroids

orient such that their symmetry axis is parallel to the

wall-normal direction, whereas the prolate spheroids

orient with their symmetry axis parallel to the

streamwise direction. The Zingg-ellipsoids orient with

their longest axis parallel to the streamwise direction

and their smallest axis parallel to the wall-normal

direction. This preferred orientation is more dominant

in the near wall region. All effects mentioned are

supported by quantitative evaluation of statistics and

can serve as reference for future validations.

Keywords Direct numerical simulation � Sediment

transport � Non-spherical particles � Particle laden
flows

1 Introduction

Bed load transport of particles in a viscous fluid,

mostly under turbulent conditions designates the

situation where non-buoyant particles are transported

along a smooth or rough bottom wall with fluid forces

and gravity in a relation such that the fluid forces are

strong enough to move the particles while gravity is

strong enough to retain the particles within a compar-

atively small elevation from the bottom wall. Exam-

ples are sediment transport in rivers [7, 35] and oceans

[42] in case of current near the bed, transport in

pipelines [39] or by hydraulic transport in process
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engineering [44], as well as pneumatic transport of

particles by an air stream [43], to name but a few.

Bed-load transport of particles can be observed in

liquids and gases, as illustrated by the list of examples.

With usual particles, like sand etc., the situations is,

however, somewhat different in these two cases because

of the larger density difference with gas flows which

often result in higher Stokes numbers and reduced

dependency on viscous forces. While occasionally

addressing pneumatic or aeolian transport where appro-

priate, this paper focuses on hydraulic transport, i.e. the

situation where viscous forces are important and need to

be accounted for by a computational model.

With bedload transport the trajectory of a moving

particle consists of three phases. (1) Entrainment, (2)

dislocation, which in turn can be subdivided into rolling,

sliding, and jumping, and (3) deposition.The fact that the

overall trajectory as well as the individual phases named

depend on the particle shape has been observed in a huge

number of studies, e.g. [1, 12, 32, 34, 38].

Entrainment Most often in the literature, entrain-

ment is assessed by the critical Shields stress, which

quantifies the ratio of the shear stress due to fluid to the

particle weight. However, experiments exhibit a wide

spread results for a particular particle Reynolds number

defined using themedian grain size of the sediment bed

in the original experiments of [49]. This can be

explained by the fact that particles of different shapes

but same weight experience different drag forces at the

sameparticleReynolds number [8, 20, 45].Hottovy and

Sylvester [20] reported a 100% increase in drag

coefficient in case of irregular shapes, compared to a

spherical particle. Additionally, the drag also depends

upon the orientation of a particle [8, 45].

Dislocation Numerous experiments have been

conducted to examine the actual particle motion

during bedload transport, e.g. [1, 7, 34, 35, 43]. One

of the earliest studies was conducted by Krum-

bein [34] using ellipsoids made of cement mortar,

where he observed that the spherical particles have the

largest streamwise particle velocity for a given Froude

number, while disk shaped particles moved slowest

among the shapes investigated. Lane and Carlson [35]

reported that the spherical particles are easier to move

than disk shaped particles of equal weight. In contrast,

Bradley et al. [7] in his study on Knik river, Alaska,

US observed that the platy shaped particles were the

most transportable among the three lithologies exam-

ined. Interestingly, Abbott and Francis [1] reported a

mere 2% variation in the saltation height and length of

three different shaped particles.

Deposition Whether a jumping particle gets

deposited or not depends to a large extent on the fact

whether the collision with the sediment bed is elastic

or inelastic. Many authors noticed that the collision

between non-spherical particles are prominently

inelastic [1, 15]. Under the same hydraulic conditions,

only 5 impacts out of 59 were seen to result in a clear

rebound observed in the experiments of Abbott and

Francis [1]. On the contrary, only few authors reported

that the collisions are partially elastic with a small

rebound of the colliding particle, like Niño et al. [38].

Schmeeckle et al. [47] proposed that the collisions are

mainly inelastic due to off-center collisions, in which

the particle center keeps moving towards the wall even

if there is a rebound of the contact point after the

collision. The present authors explored the phe-

nomenon numerically and found that, indeed, the

effective restitution coefficient depends upon the

orientation of the colliding particles [24].

All the phenomena mentioned above are influenced

by the orientation of a non-spherical particle. Recently

conducted numerical studies on particles with smaller

density, i.e. non-buoyant particles have revealed a

particular orientation of the particles in the near wall

region depending upon their shape [4, 5, 17, 18]. It was

found that oblate spheroids are aligned with their

symmetry axis in the wall-normal direction. In con-

trast, prolate spheroids orient their axis in the stream-

wise direction. Additionally, this preferential

orientation becomes more prominent as the particles

approach the wall. Such a phenomenon, if noticed also

in case of heavy particles at higher Stokes number,

together with the results presented in [24], can explain

why in many experiments a particle did not rebound

after a collision.

Not only are the particle transport properties influ-

enced by the particle shape, also the behavior of the

surrounding fluid phase changes drastically depending

on the particle shape [6, 16, 26, 46, 48]. The wake

behind a single fixed spherical, oblate, and prolate

particle was examined by Johnson and Patel [26],

Shenoy andKleinstreuer [48], and El Khoury et al. [16]

atmoderate particle Reynolds numberRep of up to 300.

Shenoy and Kleinstreuer [48] reported double-sided

hairpin vortices shed from diametrically opposite

locations in the wake of a disk at Rep � 155. Also,
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the separation zone was periodically rotating making

the flow three-dimensional and more turbulent. These

observations are in contrast to the one-sided shedding

of vortices noticed in the wake of a sphere [26, 46].

Similarly, the wake observed past a prolate with its

maximum projection area oriented perpendicularly to

the flow is noticeably different from the wake seen

behind a sphere [16]. The difference in the wake

behind amoving particle in bedload transport due to its

shape can create three dimensional fluid structures in

the near wall region. Furthermore, the strong non-

uniformity in vertical direction and the presence of

surrounding particles introduce additional complex-

ity. The momentum transferred by such instantaneous

turbulent forces is important in determining the

entrainment of a sediment grain [14, 55].

The impact of particle shape on bed-load transport

so far has mostly been studied experimentally. To the

best of the authors’ knowledge, there are only two

simulations of bed-load transport with non-spherical

particles in the literature [19, 51]. In both simulations,

the fluid phase is resolved using large-eddy simulation

and a non-spherical particle was represented as a

cluster of spherical particles. In the first reference, the

trajectories of a spherical and a non-spherical particle

were compared. It was found that the trajectory of a

non-spherical particle is more dispersive and has more

jumps as compared to the trajectory of a spherical

particle [19]. In the second reference, it was seen that

the spherical particles have the least rotational velocity

among the shapes simulated [51]. Recently conducted

direct numerical simulations with resolved particles

on sediment transport provide high fidelity datasets to

understand the physics of particle-laden flow, e.g.

[11, 23, 30, 31, 41, 50, 55]. These, however, only relate

to monodisperse spherical particles. In the present

work, the numerical framework of DNS combined

with Immersed Boundary Method (IBM) is applied to

systematically explore the effect of particle shape on

its motion in case of small particle loading.

2 Numerical method and collision model

2.1 Fluid phase

The continuous phase is governed by the unsteady,

three-dimensional Navier-Stokes equations for incom-

pressible fluids

ou

ot
¼ �r � ðu� uÞ þ 1

qf
r � sþ fv þ fIBM ; ð1Þ

r � u ¼ 0: ð2Þ

A coordinate system is defined such that x, y, and z are

the streamwise, wall-normal, and spanwise directions,

respectively. The notation u ¼ ðu; v;wÞT designates

the velocity vector with its components in x-, y-, and z-

direction, respectively, p is the pressure, qf the fluid

density, and t the time. The particle-fluid interaction is

modeled by a new IBM which is based on a judicious

determination of the coupling force fIBM located at the

phase boundaries, i.e. the particle surfaces [52]. The

flow is driven by a spatially constant specific volume

force fvðtÞ. The hydrodynamic stress tensor s is

s ¼ �p Iþ lf ðr uþ r uð Þ>Þ : ð3Þ

Here, lf is the dynamic viscosity of the fluid, and I the

identity matrix. These equations are solved on a

staggered Cartesian grid using a second-order Finite

Volume Method in space and time as described in

[29]. The stepsize in space, Dx, is identical in all three
directions. The convective term in Eq. (12) is handled

using an explicit three-step third-order low-storage

Runge-Kutta scheme and a Crank-Nicolson scheme is

executed for the viscous terms in each substep, as well

as a pressure correction step in each substep.

2.2 Disperse phase

The equations of motion of a particle are

mp

dup
dt

¼
Z
C
s � n dSþ fc þ f lub

þ Vp ðqp � qfÞ ðgþ fvÞ ;
ð4Þ

dðipxpÞ
dt

¼
Z
C
r� s � nð Þ dSþmc þmlub ; ð5Þ

which are solved for each individual particle. Here,

mp;Vp, and qp are the mass, volume, and density of the

particle, respectively, up the particle velocity, C the

particle surface, n the outward-pointing unit normal

vector on C, g the gravitational acceleration, fv the

same specific volume force as in Eq. (12), fc the

collisional force, and f lub the lubrication force. In the

angular momentum balance ip is the tensor of inertia of

the particle, xp the angular velocity, r the position
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vector connecting the particle center of mass with a

point on the particle surface. Finally, mc and mlub are

the torques caused by the collision and the lubrication

forces, respectively.

The fluid-particle coupling is achieved by a newly

developed Immersed Boundary Method (IBM) [52].

This allows the numerically efficient simulation of a

large number of mobile particles with spatially

resolved geometry.

To numerically represent the fluid-particle interac-

tion NL Lagrange marker points were distributed over

the surface of the particles. For this purpose, an open

source code provided by Persson and Strang [40] was

used.

2.3 Collision model

For particle-particle interaction via collisions, a con-

straint-based collision model was employed account-

ing for all forces acting during the entire collision

process. It comprises normal contact force, tangential

frictional force during contact, and lubrication force.

The contact model employed here, accounting for the

laps of time when particle surfaces actually touch, is

an extension of the approach of Tschisgale et al. [53]

to particulate flow and was published in a companion

paper [24]. For the normal contact force, the Poisson

hypothesis is used stating that the normal relative

speed at the contact point of a colliding pair of

particles after the collision, unr;n, equals the restitution

coefficient ed;n times the normal relative speed before

collision, un�1
r;n , i.e.

unr;n ¼ �ed;n u
n�1
r;n : ð6Þ

Analogously, the tangential frictional force is calcu-

lated using a tangential restitution coefficient ed;t.

Later, the tangential frictional force is adjusted in

order to allow the sliding of the particles using the

well-known Coulomb friction law, which states that

the particles stick if ft � ls fn and slide otherwise.

Here, fn and ft are the magnitudes of the contact forces

in normal direction, i.e. in direction of n, and in

tangential direction, with t the appropriate tangential

unit vector, respectively. The factor ls represents the
static coefficient of friction which in the present work

is assumed to equal the kinetic coefficient of friction,

lk. In the case of sticking, the force calculated earlier

is a good approximation, whereas in the case of

sliding, the tangential frictional force is modified to

ft ¼ lk fn : ð7Þ

Prior and after particle surfaces truly touch, lubri-

cation forces act between the particles during

approach and rebound as soon as the surfaces come

close. These forces need to be captured by a so-called

lubrication model. A new model of this kind was

recently developed by the present authors. In contrast

to other models, such as the ones of Cox and Brenner

[10], Jeffrey [25], Kempe and Fröhlich [28], Izard

et al. [22], Costa et al. [9], in this model the lubrication

forces are taken to be constant over distance conserv-

ing the integral of the force over the unresolved

distance, as illustrated by Fig. 1. As a result, the force

is constant in time during the approach. This model

offers numerical robustness and physical realism, as

demonstrated in [24]. A detailed description and a

thorough validation can be found in that as well.

3 Computational setup

3.1 Channel geometry and resolution

In the present work, a turbulent open channel flowwith

periodic boundary conditions in streamwise and

spanwise direction is considered with a free-slip

condition at the top, also called rigid lid, and a no-

slip condition at the bottom wall and at the particle

surfaces. The size of the computational domain is

Lx � Ly � Lz, with Nx � Ny � Nz the corresponding

number of grid points. A set of Np;mob particles with

density qp and relative submerged density q0 ¼ ðqp �

Δx 2Δx

ζ

0

|f l
u
b
|

Cox & Brenner (1967)
Jain et al.

Fig. 1 Lubrication model as a function of the distance f
between the colliding surfaces, Dx is the stepsize of the Eulerian
grid. Dotted line: relation of Cox and Brenner [10]. Solid line:

relation proposed by Jain et al. [24]

123

302 Meccanica (2020) 55:299–315



qfÞ=qf travel over a rough bottom wall made of

immobile particles of the same diameter Deq. This

rough wall is constituted of a single layer of Np;sed

fixed spheres in a hexagonal packing. To introduce

non-uniform roughness, the wall-normal position of

the fixed particles was varied by a random displace-

mentDy;p, as described in [23]. The chosen interval for

the displacement is �0:5Deq\Dy;p\0:5Deq. For all

positive displacements, another particle was intro-

duced underneath the displaced one to fill the hole as

depicted in Fig. 2. The importance of such a bed was

thoroughly discussed in the cited reference.

In the simulations, a spatially constant volume

force fvðtÞ is applied to drive the flow, and is adjusted

instantaneously in time to maintain the desired flow

rate, so that a constant bulk Reynolds number Reb is

imposed. The friction velocity us is calculated by

extrapolating the linear profile of the total shear stress

of a simulation without mobile particles down to the

interface between the mean height of the fixed

particles and the flow, i.e. at a distance Hsed ¼ 1Deq

from the bottom wall (Fig. 2), which is taken as the

origin of the wall-normal coordinate y. The same

methodology was used in [30] and [54]. The physical

parameters of the present simulations are summarized

in Table 1. The bulk Reynolds number Reb ¼ UbH=mf
was imposed to be 3010 with the bulk velocity defined

as Ub ¼ 1
H

RH

0
huiðyÞ dy and the submergence height

H ¼ Ly � Hsed. Angular brackets indicate averaging

as specified below. The Reynolds number based on the

above friction velocity is Res ¼ usH=mf ¼ 270 yield-

ing a diameter in wall units of Dþ
eq ¼ usDeq=mf ¼ 30.

Another important nondimensional parameter in

particulate flow is the Galileo number, which is

defined as the ratio of gravity forces to viscous forces,

i.e. Ga ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0gD3

eq

q
=m � 138. To provide the same

roughness from the fixed bed in all simulations the

same arrangement of spherical particles was used

throughout. The particle volume fraction in all sim-

ulations is � 7:5%. The domain was discretized with

1024� 197� 512 grid cells. As a result, the particle

discretization is Deq=Dx ¼ 19:7. The resolution in

terms of wall units is Dxþ ¼ usDx=mf ¼ 1:54. The

time step was adaptively adjusted to yield a CFL

number of 0.6.

3.2 Mobile particles

The mobility of a particle at the top of a sediment bed

is commonly assessed by the Shields number

Sh ¼ u2s=ðq0gDeqÞ : ð8Þ

Here, q0 ¼ 1:5, i.e. qp=qf ¼ 2:5 was used as this is a

good approximation for quartz sand in water. With

g ¼ 0:115U2
b=Deq it yields Sh ¼ 0:047 which is above

the critical value of incipient motion, Shcrit ¼ 0:034,

taken from the graph presented in the original paper of

Shields [49] and, hence, suggests that the particles are

mobile.

A total of four different simulations were conducted

each differing only in the shape of the mobile particles

(Table 2). In particular the volumetrically equivalent

diameter Deq and the relative density q0 were taken to

be identical. The shapes considered are ellipsoids with

a� b� c designating the three half axes, so that

Deq ¼ 2
ffiffiffiffiffiffiffi
abc3

p
. The axes ratios b / a and c / b are the

parameters used by Zingg [56] to classify the shape of

a particle into four categories (disk, equant, blade,

rod). For a quantitative comparison of particles, this

classification is one of the most valuable schemes [2]

and still widely used today. After measuring approx-

imately 300 particles, the ellipsoid with b=a ¼ 0:67

and c=b ¼ 0:67 was found to be the average shape in

the parameter space spanned by b / a and c / b. The

ratio 0.67 was then used by Zingg to divide both axes,

b / a and c / b, for a quantitative definition of the four

categories of shapes mentioned [56]. This shape is

employed here for reference and is addressed as

‘‘Zingg-ellipsoid’’ in the following.
Fig. 2 Schematics of the flow above the irregular sediment bed

in an open channel with transport of few mobile particles

investigated in the present study and physical parameters

describing the problem
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The sphere as well as prolate and oblate particles

are special cases of an ellipsoid with a ¼ b ¼ c, b ¼ c,

and a ¼ b, respectively. These three shapes are listed

in Table 2 with the parameters employed here. The

values of a, b, and c of all the non-spherical particles

were calculated such that the volume is the same as

that of the sphere with diameter Deq. Furthermore, the

sphericity of these particles is the same, w ¼ 0:66,

according to the definition of Krumbein [33]

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Volume of an ellipsoid

Volume of the envoloping sphere

3

s
¼

ffiffiffiffiffi
bc

a2
3

r
:

ð9Þ

The snapshots in Fig. 4 below provide a visual

impression of the different shapes considered. The

number of Lagrange points used to represent different

types of particles are assembled in Table 2. Beyond

the relative density the mechanical properties of the

particles are characterized by the restitution coeffi-

cient e of the material. Here, it is taken to be e ¼ 0:95

which is representative of glass [27], i.e. close to that

of quartz sand. The coefficient of static friction was set

to ls ¼ 0:15 [21].

3.3 Bedload regime

With the selected values of the physical parameters,

the particles travel in bedload regime, i.e. they remain

very close to the bottom wall being mobilized,

dislocated, occasionally deposited, and remobilized,

according to the particular local and instantaneous

situation. The regime addressed in this paper is the one

of small particle loading [13]. A number of Np;mob ¼

500 mono-disperse and single-shaped mobile particles

according to Table 2 were used in all four simulations,

along with Np;sed ¼ 2331 fixed spherical particles

constituting the bottom wall.

For small particle loading, the situation differs from

the one of a thick sediment layer as described by

Dietrich et al. [13]. Detailed simulations in this regime

were conducted, for example, by Vowinckel et al. [54]

for a Shields number of Sh ¼ 0:40 and a bulk

Reynolds number of Reb ¼ 2941. In this reference,

monodisperse spheres were considered and only the

particle loading was changed, with all other physical

and numerical parameters identical. Indeed, for dif-

ferent particle loading, markedly different particle

structures were observed ranging from pronounced

ridges in streamwise direction in case of very few

particles to pronounced spanwise clusters when more

particles were transported. On this background the

purpose of the simulations presented here is to provide

a quantitative assessment of the impact of the particle

shape on the motion of particles in the regime of small

particle loading.

4 Results

4.1 Initialization and averaging procedures

Initially, the Np;mob mobile particles were placed

randomly in the entire computational domain. Over a

short laps of time the particles settled down while

moving forward with the fluid and then continued

moving in bed-load mode.

Table 1 Domain size, spatial resolution, and other common parameters in all the simulations

Lx=Deq Ly=Deq Lz=Deq Nx Ny Nz Np;sed Np;mob Deq=Dx Dþ
eq Dxþ

52 10 26 1024 197 512 2331 500 19.6 30.3 1.54

Table 2 Geometrical parameters of the mobile particles in the cases simulated with a, b, c the half-axes of the ellipsoid, w its

sphericity and NL the number of Lagrange markers on the particle surface

Case a=Deq b=Deq c=Deq a : b : c w NL

Zingg-ellipsoid 0.75 0.5 0.33 1:0.67:0.44 0.66 10218

Prolate 0.78 0.4 0.4 1:0.51:0.51 0.66 10914

Oblate 0.75 0.75 0.22 1:1:0.29 0.66 11572

Sphere 0.5 0.5 0.5 1:1:1 1 9039
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Before starting any averaging, it is important to

assure that there is no influence of the initial conditions

on the statistical quantities. In general, the time scale

over which particle structures develop, if any, is

substantially larger than the time taken in the devel-

opment of fluid structures. Therefore, the temporal

variation of the second order statistics of the stream-

wise particle velocity up and spanwise angular veloc-

ity of the particles, xp;z was observed. Averaging was

started when the standard deviation in up and xp;z

calculated according to Eq. (11) was no more corre-

lated with time. This condition ensures that erosion

and deposition are in equilibrium.

Technically, this was implemented starting from

the average particle velocity at a given time defined as

�upðtÞ ¼
1

Np;mob

XNp;mob

i¼1

up;iðtÞ ; ð10Þ

where i is the index of an individual particle. The

resulting standard deviation in up then is

rupðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np;mob

XNp;mob

i¼1

ðup;iðtÞ � �upðtÞÞ2
vuut : ð11Þ

The standard deviation of the spanwise angular

velocity, rxp;z
, was calculated analogously. For

illustration, rup and rxp;z
are plotted against time in

Fig. 3 for the cases Sphere and Zingg-ellipsoid.

Subsequently, a linear regression analysis using the

least square method was performed and the Pearson

correlation coefficient r determined. First, the entire

dataset was used. Then, if r 6¼ 0, the start of the data in

the analysis was changed to a later instant. This was

repeated until�10�4 � r� 10�4 implying that the two

variables, i.e. rup and t, are not correlated to each

other. Three such iterations are shown in Fig. 3b for

illustration. The starting point obtained in this way

was retained for all subsequent averages in a particular

simulation. The starting time for averaging tin and the

averaging period Tav of all simulations are tabulated in

Table 3.

With tin being fixed, averages of fluid quantities

were computed over the streamwise direction, the

spanwise direction, and in time on the Eulerian grid,

i.e. on the staggered grid of the flow solver. For

technical reasons the data were then linearly interpo-

lated to the grid constituted by the cell centers, so that

all fluid statistics were available on the same grid.

Points lying inside the particles were excluded from

this average. This was implemented defining a poros-

ity field /ðx; tÞ such that / ¼ 0 in a cell if the cell

centre lies within a particle, and/ ¼ 1 else. Therefore,

an averaged fluid-related quantity h is

0 500 1000 1500 2000

tUb/Deq

0.1

0.2

0.3

0.4

σ
u
p
/
U

b
;

σ
ω
p

,z
D

eq
/
U

b

σup/Ub σωp,z Deq/Ub

0 500 1000 1500 2000

tUb/Deq

0.1

0.2

0.3

0.4

σ
u
p
/
U

b
;

σ
ω
p

,z
D

eq
/
U

b

σup/Ub σωp,z Deq/Ub

(b)(a)

Fig. 3 Standard deviation of the streamwise particle velocity

and the spanwise angular velocity as defined in (11). a Case

Sphere, and b Case Zingg-ellipsoid. The black solid line is the

regression line of the data starting from a time when the Pearson

correlation coefficient r � 0. In (b) two regression lines are

drawn with an earlier start and r 6¼ 0 for illustration
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hhiðyÞ ¼ 1

Tf

1

Vf

ZtinþTav

tin

Z

V0

/ðx; tÞ hðx; tÞ dV dt ; ð12Þ

where TfVf ¼
R tinþTav
tin

R
V0
/ðx; tÞ dV dt. Here, Vf is the

part of the volume V0 occupied by fluid and Tf is the

total time when the volume V0 was occupied by fluid

even briefly. Such an averaging procedure is known as

intrinsic averaging [37]. According to Jain et al. [23],

an averaging volume V0 ¼ Lx � 4Dy� Lz was used.

The particle-related fields were calculated using

hpðx; tÞ ¼
XNp;mob

i¼1

ð1� /iðx; tÞÞ hipðtÞ : ð13Þ

with / i the mask /ðx; tÞ generated by the ith particle,

and hip any physical quantity of the ith particle. Then,

the intrinsic averaging as in Eq. (12) was applied to

determine the average particle-related quantities.

4.2 Qualitative observations

Visualizations show that the movement of all four

types of particles along the bed is strongly affected by

their shape. For spherical particles the following is

observed. While saltating they are lifted up, then fall

steadly and mostly rebound after an impact with the

bed. This is followed by a rolling motion before

coming to rest until a new lift off takes place. In

contrast, the oblate particles have a flatter and

lengthier trajectory followed by a collision with

stronger damping and a sliding motion.

Prolates and Zingg-ellipsoids, once lifted, show a

steady fall with slightly prolongated trajectory. In

these cases the rebound is minimal and both rolling

and sliding behavior is noticed, depending upon the

particle orientation. Four instantaneous pictures

obtained from the four simulations are shown in

Fig. 4. They indicate that the spheres jump quite high,

whereas the other three types of particles stay closer to

the bed. The non-spherical particles seem to orient

with their maximum projection area parallel to the

flow. Their orientation on the bed is highly influenced

by the fixed particles as they pivot around them.

Additionally, larger fluctuations in the streamwise

fluid velocity can be noticed in the cases with non-

spherical particles, as visualized by the iso-surfaces in

Fig. 4.

4.3 Mean flow and Reynolds stresses

Figure 5 displays the mean velocity profile for all

cases investigated. These data show that the particle

shape has almost no effect on the mean velocity in this

flow. This can be due to the small volume fraction of

mobile particles with most of the channel roughness

introduced by the fixed bed which is the same in all the

simulations. Recently, Eshghinejadfard et al. [18] also

found that in simulations with spherical and oblate

particles at low concentration the mean profiles of the

streamwise fluid velocity exhibited only subtle differ-

ences. Only when the concentration of oblate

spheroids was increased in that reference, there were

recognizable changes close to the channel center.

Figure 6 shows the four non-vanishing components

of the Reynolds stress tensor normalized with the bulk

velocity. In Fig. 6a it is observed that the streamwise

Reynolds stress hu0u0i in the case Sphere is approx-

imately 25% smaller than for the other three cases in

the region of particle presence. While the profiles are

similar in the upper region of the channel. Also, there

is not much difference between the profiles obtained

with the different non-spherical particles compared to

the results for spheres. In Fig. 6b, the wall-normal

fluctuations hv0v0i are plotted. They are maximum in

the case Oblate and minimum in the case Sphere. Not

only are the peak values different, but also the location

of the peaks is shifted towards the channel center,

from sphere to oblate. The profiles of the case Zingg-

ellipsoid and Prolate lie between those of the other

cases. The Reynolds shear stress hu0v0i shows a similar

behavior as hv0v0i. The spanwise component hw0w0i is
very much the same for all non-spherical particles,

exhibiting a marked difference from the result

obtained with spheres.

Table 3 Initial time tin before the averaging procedure was

started and the time interval Tav during which statistical aver-

aging was conducted for the different cases

Zingg-ellipsoid Prolate Oblate Sphere

tin Ub=Deq 436.08 735.8 862.11 897.51

Tav Ub=Deq 1546.97 917.40 1130.54 1099.02
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4.4 Mean particle position and mean velocity

Figure 7 shows the wall normal profile of the volume

fraction occupied by the mobile particles. It is

seen that the spherical particles travel up to

y � 5Deq, whereas the highest particle position

obtained for the other three shapes is y � 4Deq. The

volume occupied by the spherical particles at y ¼
2Deq is almost twice the volume occupied by particles

of the other shapes. Instead, non-spherical particles are

more frequently observed in the near-wall region,

0\y=Deq\1. The differences in the peaks of hci for
oblate, prolate, and Zingg-ellipsoid particles are due to

their pivoting position around protruding particles

constituting the fixed bed. Animations show that some

of the Zingg-ellipsoids can occasionally enter the

troughs of the irregular sediment bed, whereas oblate

particles mainly rest on top of them. The probability of

finding the non-spherical particles in this region is

almost the same.

The averaged streamwise particle velocity is plot-

ted against the wall normal coordinate in Fig. 8a.

Since the number of particles above y ¼ 3Deq is too

small to obtain converged statistics the curves are only

shown in the region �Hsed\y\3Deq. The graph

demonstrates that the spherical particles move faster

near the bed than the other three types of particles,

(a)

(c) (d)

(b)

Fig. 4 Instantaneous snapshots of the four simulations pre-

sented using the same plot style at an arbitrary instant in time

with flow from left to right. a Zingg-ellipsoids, b prolates,

c oblates, d spheres. The contour plots show the streamwise

velocity field at this instant while iso-surfaces represent the

velocity fluctuations. Fixed and mobile particles are colored

light and dark gray, respectively
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Fig. 5 Effect of particle shape on averaged streamwise

component of the fluid velocity normalized with the bulk

velocity
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whereas in the clear water the spheres, prolates, and

Zingg-ellipsoids have a similar translational velocity

and oblate spheroids move slowest among all the

particles. Above y � 1Deq, oblate spheroids have the

largest relative velocity with respect to the fluid, since

they move slowest, with a marked difference. The

relative mean particle velocity was determined

according to huri ¼ hupi � hui, as discussed in detail

by Santarelli and Fröhlich [46], and is shown in

Fig. 8b. The Zingg-ellipsoids have the largest relative

velocity with respect to the fluid in the near wall region

y � 0:5Deq and spheres have the smallest. In contrast,

spheres move fastest, so that their relative velocity is

smaller. The Reynolds number Rep ¼ jhurijDeq=m, is
Rep � 62 at the elevation y ¼ 0:57Deq in the case

Zingg-ellipsoid and is Rep � 49 in the case Sphere at

the same elevation. The negative relative particle

velocity near the wall at y ¼ 0:5Deq is in contrast with

the results for neutrally buoyant particles reported in

0.00 0.02 0.04 0.06

u u /U2
b

0

2

4

6

8

y
/
D

eq

Zingg-ellipsoid
Prolate
Oblate
Sphere

0.000 0.005 0.010 0.015

v v /U2
b

0

2

4

6

8

y
/
D

eq

Zingg-ellipsoid
Prolate
Oblate
Sphere

0.00 0.01 0.02

w w /U2
b

0

2

4

6

8

y
/
D

eq

Zingg-ellipsoid
Prolate
Oblate
Sphere

−0.010 −0.005 0.000

u v /U2
b

0

2

4

6

8

y
/
D

eq

Zingg-ellipsoid
Prolate
Oblate
Sphere

(b)(a)

(d)(c)

Fig. 6 Wall normal profiles of Reynolds stresses normalized with the bulk velocity. a Streamwise component hu0u0i=U2
b , bwall-normal

component hv0v0i=U2
b , c spanwise component hw0w0i=U2

b , and d shear stress hu0v0i=U2
b
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[3] where a larger mean particle velocity, compared to

the mean fluid velocity, was observed.

The wall-normal profile of the spanwise angular

velocity for the cases simulated is shown in Fig. 9. The

data reveal that the preferred mode of transport

changes substantially between the different particle

shapes. Spherical particles roll, whereas oblate

spheroids predominantly slip. These results are sup-

ported by the experimental observations of Krumbein

[34] and Rice [43], for example. The small magnitude

of the angular velocity near the bed in the case Oblate

is caused by two different effects, which is backed by

corresponding animations analyzed by the authors.

One is that a hit with the irregular sediment bed often

causes an oblate particle with high momentum to

rotate. Second, an oblate spheroid may roll if it is

pivoting such that its maximum projected area is

roughly parallel to the xy-plane. A prolate spheroid, in

contrast, is prone to rotate if its longest axis is oriented

in spanwise direction. A higher value of the angular

velocity in the case Prolate, furthermore, suggest that

more prolate spheroids than oblates are in rolling

motion. The Zingg-ellipsoids have an angular velocity

in between the other cases. These observations can be

traced back to the preferential orientation of the

particles, so that this is now studied in detail.

4.5 Second moments of the particle velocities

The second central moments of the particle velocities

along with the covariance between up and vp are

shown in Fig. 10. For the spherical particles the vari-

ance in the streamwise particle velocity, hu0pu0pi=U2
b , is

the largest among the four cases inside the irregular

sediment bed, i.e. for y\0:5Deq and it is the smallest

for y[ 1Deq (Fig. 10a). Among all non-spherical

cases, the oblate spheroids have the smallest fluctua-

tions in the near wall region 0:5Deq\y\2Deq. The

mean squared fluctuations in the wall-normal particle
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Fig. 7 Effect of particle shape on the average particle position.

Wall-normal profiles of the PDF of the wall-normal coordinate

of the particle center
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Fig. 8 Mean particle velocity. a Averaged streamwise particle velocity, b averaged streamwise particle velocity relative to the mean

streamwise fluid velocity
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velocity, hv0pv0pi=U2
b , are largest in the case Sphere

throughout the channel height as shown in Fig. 10b.

The difference between the spherical and the non-

spherical cases is maximum in the near wall region,

e.g. at y � 0:6Deq. Here, the variance hv0pv0pi=U2
b with

spherical particles is approximately 2.5 times the

value observed in the non-spherical cases. The second

moment of the spanwise particle velocity, hw0
pw

0
pi=U2

b ,

is shown in Fig. 10c. This quantity is also an

indication to the dispersive nature of a particle

trajectory [36], termed ‘‘diffusion’’ in that reference.

For y\1:1Deq the fluctuations in wp are largest in the

case Sphere, whereas above y � 1:1Deq the trajecto-

ries of oblate spheroids are more dispersive. Analo-

gous to Fig. 10b, the covariance between up and vp is

largest in the case of spherical particles, as shown in

Fig. 10d. The profiles for the case Zingg-ellipsoid and

Prolate are similar in all sub-figures shown in Fig. 10.

4.6 Statistics of particle orientation

The results shown in the previous subsection give rise

to further questions: How often do particles orient

themselves such that they can roll? Does the shearing

flow have a sizable impact in case of such an

orientation or does this happen randomly after a

collision with the bed?, etc. To explore the particle

orientation in detail, two sets of unit vectors are

defined as shown in Fig. 11a, ex pointing in the

streamwise direction and ey in the wall-normal

direction. The unit vectors aligned with the longest

and the shortest axis of a particle are d1 and d3,

respectively. Then, the absolute value of the scalar

products jd1 �exj and jd3 �eyj can be used to assess the

particle orientation. Observe that any alignment of a

particle on the surface of the cone shown in Fig. 11b

gives the samemagnitude of the scalar product jd1 �exj.
First, the PDF of jd1 �exj is plotted in Fig. 12a. It

was obtained using 100 bins for the values jd1 �exj. In
the case Sphere, the PDF is unity for all angles, as it

should be, demonstrating that no numerical bias is

present. The probability of prolate spheroids and

Zingg-ellipsoids to align their longest axis in the

streamwise direction is higher than for aligning it

perpendicular to the flow. Because of its shape, a

prolate with its smaller axis oriented in the xy-plane is

easier to roll by the shearing flow than a prolate with

its longest axis in the streamwise direction. Since the

probability of an alignment in the latter position is

higher than for the other orientations the prolates have

less spanwise angular velocity xp;z. Figure 12b with

the PDF of jd3 �eyj can be interpreted in a similar way.

The oblate spheroids orient such that their symmetry

axis, i.e. their shorter axis, points in the wall-normal

direction. An oblate with such an orientation is

difficult to roll.

Comparing Fig. 12a, and Fig. 12b shows that the

oblate spheroids having an orientation which hinders

the rolling motion in the streamwise direction is more

probable than a prolate in an analogous orientation.

The probability of jd3 �eyj[
ffiffiffi
2

p
=2 in the case Oblate

is� 72%, whereas jd1 �exj[
ffiffiffi
2

p
=2 in the case Prolate

is � 52%. In other words, the probability of the oblate

particles having an orientation that eases the rolling

motion is only � 28% in comparison to the value of

� 48% in the case of prolate spheroids. Therefore, the

angular velocities are so different, even though both

particles are circular in a plane. Zingg-ellipsoids

preferentially move with their longest axis directed

along the streamwise direction and the shortest axis

along the wall-normal direction, on average.

The curve for oblates is not plotted in Fig. 12a since

with the short axis fixed the ‘‘long axis’’ can have an

arbitrary orientation in the plane perpendicular to the

short axis and, hence, carries no new information. The

same holds for the ‘‘short axis’’ of the prolate particles

so that this curve was removed from Fig. 12b. For the

Zingg-ellipsoid with three different axes such an

Fig. 9 Mean angular velocity in the spanwise direction plotted

against distance from the wall
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argument does not hold so that the curves are retained

in both graphs.

To see the effect of the shearing fluid on the particle

orientation, the wall-normal profiles of hjd1 �exji and
hjd3 �eyji are plotted in Fig. 13. To determine these

quantities, the height of the channel was divided into a

set of bins. If a particle center lies inside a bin, jd1 �exj
and jd3 �eyj of the particle are assigned to this bin. As

suggested by Kempe et al. [30], the width of the bin

was set to Deq=10. It is clearly seen that the particles

align themselves in their preferential orientations well

above the wall with an increasing trend towards the

wall. Prolates orient their long axis in streamwise

direction, oblates orient their short axis normal to the

mean flow. This tendency is most pronounced near the

bottom and reduces in upward direction but is still seen

at y � 3Deq. Again, the line corresponding to the case

Zingg-ellipsoid is in between the cases Oblate and

Sphere. The values for the sphere are 0.5 uniform, as

they should.
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Fig. 10 Wall normal profiles of the second moments of particle velocity normalized with the bulk velocity. a Streamwise component

hu0pu0pi=U2
b , b wall-normal component hv0pv0pi=U2

b , c spanwise component hw0
pw

0
pi=U2

b , and d covariance between up and vp, hu0pv0pi=U2
b
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Similar results were found for non-buoyant, i.e.

non-sedimenting, prolate spheroids in [17] and for

oblate spheroid in [18]. Based on the fact that the mean

shear is more prominent than the turbulence in the

near-wall region, these authors hypothesized that the

preferential orientation is due to the mean shear. In

their study, the averaged orientation, i.e. hjd1 �exji in
the case Prolate and hjd3 �eyji in the case Oblate, goes
towards 0.5 in clear water, where the Reynolds shear

stress is the biggest contributor to the total shear stress,

representing a random orientation. The present sim-

ulations, however, show a different picture since the

particles still have a preferential orientation even at

y ¼ 3Deq. The situation here is complex due to the

interaction of several mechanisms. First, the parti-

cles are heavier than the fluid, thus experiencing

frequent contact with the rough wall, so that a vertical

orientation of the long axis is less favoured, for

example. Second, the particles collide with the bottom

and rebound during their transport also changing their

angular momentum. Third, the particles exhibit a

pronounced relative velocity in contrast to the non-

buoyant particles in [3]. This influences their orienta-

tion similar to sedimentation. Fourth, the fluid velocity

exhibits a strong gradient near the bottom, so that the

particle resides in a shear flow. All of these effects

(a) (b)

Fig. 11 Sketches illustrating the assessment of the particle

orientation. a Unit vectors in streamwise and wall-normal

direction, ex and ey, respectively, together with the unit vectors

in direction of the longest and shortest axis of a particle, d1 and
d3, respectively. b Possible orientations of a particle in 3D that

result in the same value of jd1 �exj

(a) (b)

Fig. 12 Statistics of particle orientation. a PDF of jd1 �exj.
Three exemplary orientations of the prolate-shaped particle are

shown on top of the graph with jd1 �exj ¼ 0,
ffiffiffi
2

p
=2, and 1. b PDF

of jd3 �eyj. Three exemplary orientations of the oblate-shaped

particle are shown with jd3 �eyj ¼ 0,
ffiffiffi
2

p
=2, and 1. The vertical

dashed line indicates the value
ffiffiffi
2

p
=2 corresponding to an

inclination by 45 degrees
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interact. Distinguishing between them and quantifying

each of them, however, seems impossible.

5 Conclusions

Direct numerical simulations of bed-load transport

with geometrically resolved non-spherical particles

were presented addressing the regime of low particle

loading. Three simulations each with 500 mobile

particles in the transitionally rough regime at Dþ
eq �

30 (Reb ¼ 3010) differing only in the particle shape

were compared with a simulation conducted with

spherical particles. In all simulations the particles have

the same volume-equivalent diameter. The shape of

the mobile particles appears to have a minor effect on

the mean flow. However, the Reynolds stresses in the

case of non-spherical particles are much higher

compared to the case of spherical particles. The

difference is particularly prominent in the near-wall

region. The fluctuations of the streamwise and span-

wise velocities in all three non-spherical cases exhibit

rather small differences. The Reynolds stress compo-

nents hv0v0i and hu0v0i are maximum in the caseOblate

and minimum in the case Sphere. The values in the

cases Zingg-ellipsoid and Prolate are in between the

two other cases. The largest differences are noticed in

the particle statistics. The probability of finding a

spherical particle at higher elevations is much higher

than the probability of finding a non-spherical particle

in this region. The spheres bounce higher with mostly

a rebound after the collision with the wall, whereas

non-spherical particles mostly glide near the wall and

hardly rebound after a collision.

The average streamwise particle velocity in the

case of spherical particles is highest near the wall,

mainly due to the high angular velocity. The oblate

spheroids have the least spanwise angular velocity but

the second highest streamwise translational velocity

near the wall. This implies that the spherical particles

prefer to roll, because of their shape, whereas the

oblates predominantly slide. The Zingg-ellipsoids

have an angular velocity in between these two ideal

cases. The oblate spheroids preferentially orient

themselves with their long axis being horizontal. The

prolate particles exhibit preferential orientation with

their longest axis in streamwise direction. These

preferential orientations are most prominent near the

wall and still observed further above the sediment bed,

with particle Reynolds numbers, defined with the

mean relative velocity, in the range of 50.
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Fig. 13 Wall normal profiles of average particle orientation

a mean scalar product between unit vector in streamwise

direction, ex, and unit vector along the longest axis of a particle,

d1, and b averaged scalar product between unit vector in wall

normal direction, ey, and unit vector along the shortest axis of a
particle, d3
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The results obtained provide new, quantitative data

on the impact of the particle shape on the mode of bed-

load transport. Substantial differences were found,

already for moderate variations in the shape and

uniform equivalent particle diameter within each

simulation. The setup is well reproducible while being

close enough to a laboratory experiment, so that it can

be used as a benchmark and to further exploit the

parameter range concerning particle shape and

composition.
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