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Abstract In this work, a stochastic finite element

method based on first order perturbation approach is

developed for the probabilistic flutter analysis of

aircraft wing in frequency domain. Here, both bending

and torsional stiffness parameters of the wing are

treated as Gaussian random fields and represented by a

truncated Karhunen–Loeve expansion. The aerody-

namic load on the wing is modeled using Theodor-

sen’s unsteady aerodynamics based strip theory. In

this approach, Theodorsen’s function, which is a

complex function of reduced frequency, is also treated

as a random field. The applicability of the present

method is demonstrated by studying the probabilistic

flutter of cantilever wing with stiffness uncertainties.

The present method is also validated by comparing

results with Monte Carlo simulation (MCS). From the

analysis, it is observed that torsional stiffness uncer-

tainty has significant effect on the damping ratio and

frequency of the flutter mode as compared to bending

stiffness uncertainty. The probability density func-

tions of damping ratio and frequency using

perturbation technique and MCS are also discussed

at various free stream velocities due to stiffness

uncertainties. Furthermore, the flutter probability of

the cantilever wing is studied by defining implicit limit

state function in conditional sense on flow velocity for

the flutter mode. Both perturbation and MCS are

considered to study the flutter probability of the wing.

From the cumulative distribution functions of flutter

velocity, it is noticed that the presence of uncertainty

in torsional rigidity lowers the predicted flutter

velocity in comparison to uncertainty in bending

rigidity.

Keywords Perturbation approach � MCS � Random
process � K–L expansion � Flutter probability

1 Introduction

Aeroelasticity is the study of the effect of aerodynamic

forces on elastic structures. The critical aeroelastic

phenomena which have major concern in the design of

air vehicles are Divergence and Flutter. Divergence is

a steady state aeroelastic phenomenon related to the

lift redistribution on lifting surfaces in which, exces-

sive elastic deformation leads to unstable wing. Flutter

is a dynamic aeroelastic instability phenomenon due to

interaction of unsteady aerodynamic, inertial, and

elastic forces which results in unstable self excited
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oscillations of lifting components (Fung [13]). Here,

the power pumped into the aeroelastic system by

interaction of aerodynamic loads is not completely

dissipated by the system dissipative mechanisms

which often leads to catastrophic structural failure of

lifting components. The power balance between

aerodynamic and dissipative system leads to constant

amplitude harmonic oscillation for one of the aeroe-

lastic modes. The velocity at which this balance occurs

is called the flutter velocity and the frequency

corresponding to its harmonic oscillation is called

the flutter frequency.

Every phenomena observed in nature is essentially

uncertain. The most acceptable classification of

uncertainty was described by Melcher [27]: aleatory

or irreducible uncertainty, the most common example

for which is uncertainty in system’s parameter and

epistemic uncertainty, which is related to lack of the

knowledge about physical phenomena being

observed, and uncertainty due to human error. In

general aleatory uncertainty is handled by probabilis-

tic description of the system parameters. Traditionally,

deterministic flutter analysis is carried out for single

aircraft which represents a set of aircraft of same

series. However, it doesn’t capture the flutter behavior

of the whole series of aircraft because of variation in

aircraft weight, inertia, stiffness etc. [30]. In order to

address the effect of system’s parameter uncertainty

on the response of aeroelastic system, probabilistic

aeroelastic analysis must be carried out. Pettit [29]

addressed the importance and challenges of uncer-

tainty quantification in aeroelasticity viz. LCO of

airfoils and panels subjected to parametric uncertainty.

The aeroelastic analysis by considering structural

uncertainty was carried out by many researchers

[5, 26, 36]. Castravete and Ibrahim [7] investigated

the influence of bending and torsional stiffness

parameters uncertainty modeled as Gaussian random

fields on the flutter of cantilever wing in time domain.

Kurdi et al. [24] modeled the aircraft wing as box type

structure consisting of 3 spars and 11 ribs. The

thickness of each upper and lower wing skins, spars,

ribs, and area of posts, spars, and ribs caps were

modeled as Gaussian random variables. The proba-

bilistic flutter analysis using MSC-Nastran, ZONA 6

module for flutter, and MCS, showed that wing with

tip store mass was highly sensitive in transonic regime,

and indicated trimodal probability density function

(pdf) of flutter velocity. Khodaparast et al. [22]

considered same aircraft wing discussed in [24] and

carried out both probabilistic based perturbation

method and non probabilistic based interval and fuzzy

logic methods for determining flutter velocity pdf and

bounds of flutter velocity respectively. Danowsky

et al. [10] used a reduced order model based on high

fidelity combined CFD–FEM nonlinear aeroelastic

model to carryout aeroelastic uncertainty analysis of

AGARD 445.6 wing subjected to structural and

aerodynamic uncertainty using MCS, Response sur-

face, and l methods in subsonic and transonic flow

regimes. Beran et al. [3] addressed the limit cycle

oscillation of rigid airfoil supported by pitch and

plunge structural coupling, with nonlinearities in pitch

component. The uncertainty in the system was intro-

duced through cubic torsional stiffness coefficient and

initial pitch angle. The stochastic response was

obtained using Weiner Hermite based intrusive, and

Haar wavelet and B-Spline based non-intrusive meth-

ods. Desai and Sarkar [11] studied the bifurcation

behavior of pitch plunge airfoil subjected to paramet-

ric uncertainties in cubic spring and viscous damping

using polynomial chaos expansion (PCE) based on

both intrusive and non-intrusive techniques. They

observed that due to uncertain damping, bifurcation

point was shifted towards lower value. Dai and Yang

[9] gave comprehensive idea about both probabilistic

and non-probabilistic aeroelasticity with greater

emphasis on the robust aeroelastic study based on

structured singular value (l-method). Riley et al. [34]

presented a methodology for the quantification of

modeling uncertainty using adjustment factor

approach and Bayesian model averaging method.

The mean and standard deviation of flutter velocity

obtained from Bayesian model averaging approach is

better than average adjustment factor approach as, it

can accommodate experimental datasets. Riley and

Grandhi [33] developed an approach for quantification

of modeling induced uncertainty and parametric

uncertainties using Bayesian model averaging

approach. The developed approach provides a greater

insight to designer to address the uncertain system

response arising from model, parametric, and predic-

tive uncertainties. Wu and Livne [40] presented two

approaches to aerodynamic modeling uncertainty. In

the first approach, uncertainty modeling was based on

difference between Aerodynamic Influence coeffi-

cients (AICs) obtained from CFD and linear aerody-

namic theory. In the second approach aerodynamic
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uncertainty was based on Rational functional approx-

imation matrices. Both approaches were demonstrated

by analyzing AGARD 445.6 wing in subsonic and

transonic regimes. It was observed that largest uncer-

tainty in flutter velocity and frequency prediction

occurred in transonic regime. Recently, Beran et al. [2]

reviewed the published articles on uncertainty quan-

tification of aeroelastic system based on both tradi-

tional and computational aeroelastic techniques to

study various phenomena such as flutter, LCO,

bifurcation etc.

In the field of aeroelasticity, several authors carried

out the aeroelastic reliability study. Cheng and Xiao

[8] proposed a hybrid method based on Response

surface method (RSM), FEM, andMCS to carryout the

probabilistic free vibration and flutter analysis of

suspension bridges. Borello et al. [4] studied the effect

of structural uncertainty (as Gaussian RVs) on clas-

sical wing flutter, and results were presented in terms

of Cumulative distribution function (CDF) of flutter

speed. The interval based nonprobabilistic reliability

method was developed byWang and Qiu [39] for wing

flutter reliability assessment based on flutter wind

speed and natural wind speed interference model.

Verhoosel et al. [38] proposed perturbation and

importance sampling based methods to carryout

aeroelastic uncertainty analysis of panel, where the

elastic modulus of panel was represented by one

dimensional Lognormal field. Canor et al. [6] inves-

tigated the flutter probability of long span bridge using

various numerical techniques such as perturbation,

collocation, and Galerkin approaches and indicated

the advantages and limitation of each method.

Recently, Pourazarm et al. [31] carried out the

reliability analysis of wind turbine blade failure due

to flutter having uncertainty in sectional lift coefficient

and torsional natural frequency with Uniform and

Gaussian distributions. For the reliability analysis

First order reliability method (FORM), Second order

reliability method (SORM), FORM-C and proposed

Weighted average reliability method (WARM) were

used. Among them, WARM was found to be the most

accurate. It is noted that in these methods, the

expansion of eigenvalue was carried out about the

mean value of random parameters. The reliability

sensitivity analysis of axially moving beam and a plate

interacting with stochastic axial flow were carried out

by Yao and Zhang [41] and Yao et al. [42] respectively

using Mean value first order second moment

(MVFOSM) method for divergence type instability.

The reliability sensitivity analysis was carried out by

taking derivative of reliability function with respect to

mean and standard deviation of random variables

separately.

From the literature survey presented above, it is

noticed that studies carried out in the area of proba-

bilistic aeroelasticity and reliability analysis of struc-

tures are limited to uncertain parameters modeled as

random variables. It is also noted that uncertain

parameter modeling as random fields has taken little

consideration from aeroelastic analysis point of view,

especially in frequency domain. This has motivated

the authors to develop frequency domain approach by

treating stiffness parameters as random fields to

carryout probabilistic flutter analysis and extend it to

reliability analysis.

In this paper, a novel approach based on stochastic

finite element method (SFEM) for the probabilistic

flutter analysis of wing is proposed. The uncertain

stiffness parameters such as bending and torsional

rigidities are modeled as second order Gaussian

random fields with exponential isotropic covariance

function. These random fields are expressed using

truncated Karhunen–Loeve (K–L) expansion, based

on spectral decomposition of covariance function, for

their accurate representation with better convergence

properties. The unsteady aerodynamic load on the

wing is modeled by Theodorsen’s aerodynamics based

strip theory, which is a complex function of reduced

frequency. A first order perturbation approach is

applied to study the probabilistic flutter characteristics

of cantilever wing. The effect of bending and torsional

stiffness uncertainties on the statistics of frequency

and damping ratio of various modes of cantilever wing

is studied and compared with Monte Carlo simula-

tions. Furthermore, the flutter probability of the

cantilever wing is studied using perturbation and

MCS approaches by defining implicit limit state

function in conditional sense on flow velocity for the

flutter mode.

2 Mathematical modeling

A uniform cross section straight cantilever wing [16]

with random stiffness characteristics is shown in

Fig. 1. Here, the wing is modeled as a 1-D beamwhere

the geometric coupling in the beam arises due to non-
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coincidence of elastic and inertia axes. In this figure,

point O represents the origin of the axes system and

points F, G, and H denote the locations of aerody-

namic center, center of gravity, and shear center of

cross-section respectively. The span of wing is repre-

sented by l and the distances of inertia and elastic axes

from the leading edge of the wing are ð1þ eÞb and

ð1þ aÞb respectively, where a and e are dimension-

less parameters ranging from - 1 to 1 and b is semi-

chord length. h and a represent the heave and pitch

displacements of the wing respectively. L and M are

the aerodynamic lift and moment acting on the wing

respectively.

The kinetic energy of the wing can be written as:

T ¼ 1

2

Z l

0

Ip _a
2dyþ 1

2

Z l

0

m _h2dyþ
Z l

0

mxab _h _ady

ð1Þ

where Ip, m, and xað¼ e� aÞ are mass moment of

inertia per unit span about elastic axis, mass per unit

span, and dimensionless static unbalance respectively

and the dot (_) denotes time derivatives.

The potential energy of the wing can be written as:

V ¼ 1

2

Z l

0

EI
o2h

oy2

� �2

dyþ 1

2

Z l

0

GJ
oa
oy

� �2

dy ð2Þ

where EI and GJ are bending and torsional rigidities

respectively.

The external virtual work done by the aerodynamic

lift (L) and moment (M) can be expressed as:

dWext ¼ �
Z l

0

Ldydhþ
Z l

0

Mdyda ð3Þ

where M ¼ M1=4 þ Lð1=2þ aÞb about elastic axis

andM1=4 is the moment per unit span at quarter chord.

Now using Hamilton’s principle:

Z t2

t1

½dðT � VÞ þ dWext�dt ¼ 0 ð4Þ

After substituting Eqs. (1–3) in Eq. (4) and per-

forming integration by parts, the governing equation

of aeroelastic system can be expressed as:

m€hþ mxab€aþ
o2

oy2
EI

o2h

oy2

� �
þ L ¼ 0 ð5Þ

Ip€aþ mxab€h�
o

oy
GJ

oa
oy

� �
�M ¼ 0 ð6Þ

According to Theodorsen’s unsteady aerodynamics

based strip theory [35], the lift and moment (per unit

span) at the aerodynamic center which is located at

quarter chord of the section can be written as:

L ¼ 2pq1bUCðkÞ Uaþ _hþ b
1

2
� a

� �
_a

� �

þ pq1b2 €hþ U _a� ba€a
� � ð7Þ

M1=4 ¼ � pq1b3
1

2
€hþ U _aþ b

1

8
� a

2

� �
€a

� �
ð8Þ

where q1, U, and C(k) are free stream density, free

stream velocity, and Theodorsen’s function (Complex

Fig. 1 Schematic representation of a generic cantilever wing
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function of reduced frequency) [35] respectively.

After obtaining weak form of governing differential

Eqs. (5) and (6), and substituting suitable finite ele-

ment approximation for heave (h) and pitch ðaÞ
displacements, the finite element equations for ith

element can be expressed as:

MSB½ �f €weg þ MAB½ �f €weg þ MSC½ �f€aeg þ MAC½ �f€aeg
þ CAB½ �f _weg þ C12

AC

� �
f _aeg

þ KAC½ �faeg þ KSB½ �fweg ¼ fFig
ð9Þ

MST½ �f€aeg þ MAT½ �f€aeg þ MSC½ �f €weg þ MAC½ �f €weg
þ CAT½ �f _aeg þ C21

AC

� �
f _weg þ KAT½ �faeg

þ KST½ �faeg ¼ fsig
ð10Þ

where ½MSB�, ½MSC�, and ½MST � are elemental structural

bending, bending-torsional structural coupled, and

torsional inertia matrices respectively; ½MAB�, ½MAC�,
and ½MAT � are aerodynamic bending, bending-tor-

sional aerodynamic coupled, and aerodynamic tor-

sional inertia matrices respectively. Similarly, ½KSB�
and ½KST � are elemental structural bending and

torsional stiffness matrices respectively; ½KAC� and

½KAT � are aerodynamic bending-torsion coupled and

aerodynamic torsional stiffness matrices respectively.

Furthermore, ½CAB� and ½CAT � are elemental aerody-

namic bending and torsional dampingmatrices respec-

tively, and ½C12
AC� is aerodynamic bending-torsion

coupled damping matrix. Here, fFig and fsig are the

internal load vectors, which vanish completely after

assembly of elemental equations and application of

boundary conditions. The elemental bending and

torsional degrees of freedom for ith element are

denoted as fweg ¼ bhi; ohioy
; hiþ1;

ohiþ1

oy
cT and faeg ¼

bai; aiþ1cT respectively. The detailed formulation and

the expression for each term in Eqs. (9) and (10) are

given in ‘‘Appendix’’.

3 Stochastic modeling

The aleatory uncertainties present in the structural

systems such as bending stiffness (EI) and torsional

stiffness (GJ) are considered as random parameters,

and modeled by second order stationary Gaussian

random process. The stochastic bending and torsional

stiffness parameters can be represented as:

EIðy; hÞ ¼EI þcEIðy; hÞ ð11Þ

GJðy; hÞ ¼GJ þ cGJðy; hÞ ð12Þ

where EI and GJ are the mean values of the bending

and torsional stiffness parameters respectively.

cEIðy; hÞ and cGJðy; hÞ are zero mean Gaussian random

processes with same covariance kernel as EI and GJ.

The isotropic exponential covariance function ðjÞ
considered for random process can be expressed as:

jðy; y1Þ ¼ �r2ecjy�y1j ð13Þ

where �r is the standard deviation of the process and c

is the reciprocal of correlation length (lcor). Here,

correlation length is considered as wing span length

(l). The random process with known covariance kernel

can be expressed by the truncated Karhunen–Loeve

expansion [19] in N dimensional space as:

v y; hð Þ ¼ vþ
XN
n¼1

ffiffiffiffiffi
kn

p
nnðhÞfnðyÞ ð14Þ

where v is the mean of the process vðy; hÞ, and kn and
fnðyÞ are the nth eigenvalue and eigenfunction of the

process. nnðhÞ are zero mean ðEðnnðhÞÞ ¼ 0Þ and

orthonormal random variables EðnmðhÞ; nnðhÞÞ ¼ dmn
with respect to Gaussian basis, where dmn ¼ 1 when

ðm ¼ nÞ and ¼ 0 when ðm 6¼ nÞ. The eigenvalues and
eigenfunctions of the process can be obtained by

solving the fredholm integral of equation of second

kind [37] represented in kernel form as:

Z
l

jðy; y1Þfnðy1Þdy1 ¼ knfnðyÞ ð15Þ

The eigenfunctions show the condition of orthonor-

mality as follows:Z
l

fmðyÞfnðyÞdy ¼ dmn ð16Þ

Equation (15) can be solved for eigenvalues and

eigenfunctions both analytically (for limited covari-

ance kernel) and numerically. Here, in the present

case, analytical procedure is adopted for obtaining

eigenvalues and eigenfunctions of the covariance

function [15, 37]. The eigenfunction obtained from

the kernel Eq. (15) is optimal in the sense of mean
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square error resulting from finite representation of the

process [15]. The expression for eigenvalue can be

written as [15, 37]:

kn ¼
2�r2c

c2 þ -2
n

ð17Þ

where -n is a parameter obtained by solving Eqs. (18)

and (19) for odd and even values of n respectively.

tanð-n

l

2
Þ � c

-n

¼ 0 ð18Þ

tanð-n

l

2
Þ þ -n

c
¼ 0 ð19Þ

The eigenfunctions corresponding to the odd and

even values of subscript n can be written as:

fnðyÞ ¼
cosð-nyÞ
l
2
þ sinð-nlÞ

2-n

ð20Þ

fnðyÞ ¼
sinð-nyÞ
l
2
� sinð-nlÞ

2-n

ð21Þ

It is important to note that eigenvalues are in

descending order with increasing n. Having obtained

eigenvalues and eigenfunctions of covariance func-

tion, and substituting the spectral representation of EI

and GJ in elemental stiffness matrices KSB½ � and KST½ �
in Eqs. (50) and (51), the elemental structural stiffness

matrices can be expressed as:

KSB½ � ¼EI

Z yiþ1

yi

bN 00

wc
TbN 00

wcdy

þ
XN
n¼1

ffiffiffiffiffi
kn

p
nn hð Þ

Z yiþ1

yi

fnðyÞbN
00

wc
TbN 00

wcdy

ð22Þ

KST½ � ¼GJ

Z yiþ1

yi

bN 0

ac
TbN 0

acdy

þ
XN
n¼1

ffiffiffiffiffi
kn

p
nn hð Þ

Z yiþ1

yi

fnðyÞbN
0

ac
TbN 0

acdy

ð23Þ

where ½KSB� and ½KST � are stochastic elemental stiff-

ness matrices due to uncertain bending and torsional

rigidity respectively. Here, the above expressions can

be rewritten as ½KSB� ¼ ½ �Ke
B� þ

PN
n¼1½Ke

B;n�nnðhÞ and

½KST � ¼ ½ �Ke
T � þ

PN
n¼1½Ke

T ;n�nnðhÞ, where the first term

represents the mean and the second term is random

term by virtue of K–L expansion. Now assembling the

elemental Eqs. (9) and (10), and using Eqs. (22) and

(23) we can get the assembled form of stochastic finite

element equations as:

½MS� þ ½MA�ð Þf€qg þ U½CA� þ UCðkÞ½CAx�ð Þf _qg

þ ð½ �KB� þ
XN
n¼1

nn hð Þ½KB;n� þ ½ �KT � þ
XN
n¼1

nn hð Þ½KT ;n�

þ U2CðkÞ½KAx�Þfqg ¼ f0g
ð24Þ

where ½MS� and ½MA� are the structural and aerody-

namic inertia matrices respectively. U½CA� is the

aerodynamic damping matrix, and ðUCðkÞ½CAx�Þ and
ðU2CðkÞ½KAx�Þ are the frequency dependent aerody-

namic damping and stiffness matrices respectively.

½ �KB� and ½ �KT � are the mean structural bending and

torsional stiffness matrices respectively, andPN
n¼1 nnðhÞ½KB;n� and

PN
n¼1 nnðhÞ½KT ;n� are random

structural bending and torsional stiffness matrices

respectively. fqg is the generalized displacement

vector containing three DOFs (h; oh
oy

and a) at each

node. Now, substituting fqg ¼ fqog exp ðctÞ in

Eq. (24), we get second order random eigenvalue

problem as:

ðc2 ½MS� þ ½MA�ð Þ þ c U½CA� þ UCðkÞ½CAx�ð Þ

þ ð½ �KB� þ
XN
n¼1

nn hð Þ½KB;n� þ ½ �KT � þ
XN
n¼1

nn hð Þ½KT ;n�

þ U2CðkÞ½KAx�ÞÞfqog ¼ f0g
ð25Þ

where c ¼ �fxþ ix, f and x are the damping ratio

and frequency of the aeroelastic system. The above

equation will be solved using perturbation approach in

the next section.

4 Perturbation approach

There are various techniques available for uncertainty

propagation through aeroelastic model such as random

perturbation approach [23], stochastic collocation

technique [25], and PCE based Galerkin methods

[14, 15]. In this study, perturbation approach is used

because of its relative simplicity to the mathematical
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formulation and low computational cost compared to

other methods [6]. For small dispersion, the first order

Taylor series is a good approximation where all

random response quantities are expanded about their

mean values [23]. Since the bending and torsional

stiffness are treated as random parameters, the

response quantities such as eigenvalues, eigenvectors,

and Theodorsen’s function of the aeroelastic system

must be random. Hence, the random response quan-

tities of the jth mode expanded via Taylor series

retaining only first order term can be expressed as:

cj ¼ �cj þ
XN
n¼1

ocj
onnðhÞ

� �
nnðhÞ¼0

nnðhÞ ð26Þ

fqogj ¼f�qogj þ
XN
n¼1

ofqogj
onnðhÞ

� �
nnðhÞ¼0

nnðhÞ ð27Þ

CðkjÞ ¼Cð�kjÞ þ
b

U

XN
n¼1

oCðkjÞ
okj

oImðcjÞ
onnðhÞ

� �
nnðhÞ¼0

nnðhÞ

ð28Þ

where �cj, f�qogj, and Cð�kjÞ are the mean values of

eigenvalue, eigenvector, and Theodorsen’s function of

the jth mode respectively, kj ¼ bImðcjÞ=U is the

reduced frequency of the mode and its derivative
okj
onn

¼ b
U

oImðcjÞ
onn

. Here, nn are the same random variables

as obtained by K–L expansion. Now, substituting

Eqs. (26)–(28) in Eq. (25) and separating zeroth and

first order terms, we get zeroth and first order

equations as:

Zeroth order:

ð �cj2 ½MS� þ ½MA�ð Þ þ �cj U½CA� þ UCð�kjÞ½CAx�
� �

þ ð½ �KB� þ ½ �KT � þ U2Cð�kjÞ½KAx�ÞÞf�qogj ¼ f0g
ð29Þ

First order:

ð �cj2 ½MS� þ ½MA�ð Þ þ �cj U½CA� þ UCð�kjÞ½CAx�
� �

þ ð½ �KB� þ ½ �KT � þ U2Cð�kjÞ½KAx�ÞÞ
ofqogj
onn

þ
ocj
onn

2 �cj ½MS� þ ½MA�ð Þ þ U½CA� þ UCð�kjÞ½CAx�
� �� �

f�qogj

þ
oImðcjÞ
onn

� b
U

oCðkjÞ
okj

�cjU½CAx� þ
b

U

oCðkjÞ
okj

U2½KAx�
�

f�qogj ¼ � ½KB;n� þ ½KT;n�
� �

f�qogj
ð30Þ

The zeroth order is a mean flutter equation which is

solved by pkmethod [18, 21] to obtain the mean flutter

velocity and frequency of the aeroelastic system. To

obtain the statistics of the frequency and damping

ratio, we premultiply both sides of Eq. (30) by mean

adjoint vector or transpose of the left eigenvector of jth

mode f�qlgT [1, 12, 17, 28] obtained from coefficient

matrix of Eq. (29) as:

f�qlg
T
j ð �cj2 ½MS� þ ½MA�ð Þ þ �cj U½CA� þ UCð�kjÞ½CAx�

� �

þ ð½ �KB� þ ½ �KT � þ U2Cð�kjÞ½KAx�ÞÞ
ofqogj
onn

þ
ocj
onn

f�qlg
T
j

2 �cj ½MS� þ ½MA�ð Þ þ U½CA� þ UCð�kjÞ½CAx�
� �� �

f�qogj

þ
oImðcjÞ
onn

f�qlgTj
� b
U

oCðkjÞ
okj

�cjU½CAx�

þ b

U

oCðkjÞ
okj

U2½KAx�
�

f�qogj ¼ �f�qlgTj ½KB;n� þ ½KT ;n�
� �

f�qogj
ð31Þ

Here, the first term of Eq. (31) becomes zero.

Hence, Eq. (31) can be rewritten as:

ocj
onn

f�qlgTj 2 �cj ½MS� þ ½MA�ð Þ þ U½CA� þ UCð�kjÞ½CAx�
� �� �

f�qogj þ
oImðcjÞ
onn

f�qlgTj
� b
U

oCðkjÞ
okj

�cjU½CAx�

þ b

U

oCðkjÞ
okj

U2½KAx�
�
f�qogj ¼ �f�qlgTj

�
½KB;n� þ ½KT ;n�

�
f�qogj

ð32Þ

The various terms of Eq. (32) can be represented

as:

f�qlgTj 2 �cj ½MS� þ ½MA�ð Þ þ U½CA� þ UCð�kjÞ½CAx�
� �� �

f�qogj ¼ eþ ib

ð33Þ

f�qlgTj
� b
U

oCðkjÞ
okj

�cjU½CAx� þ
b

U

oCðkjÞ
okj

U2½KAx�
�

f�qogj ¼ wþ i#

ð34Þ

� f�qlg
T
j ½KB;n� þ ½KT ;n�
� �

f�qogj ¼ gþ iu ð35Þ
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Since cj ¼ ReðcjÞ þ i ImðcjÞ and substituting it in

Eq. (32) with terms represented by Eqs. (33)–(35), we

get the eigenvalue derivative as:

oReðcjÞ
onn

¼ uðw� bÞ � gð#þ eÞ
bðw� bÞ � eð#þ eÞ

oImðcjÞ
onn

¼ gb� ue
bðw� bÞ � eð#þ eÞ

ð36Þ

Since cj ¼ � fjxj þ ixj, where the damping ratio

ðfjÞ is the stability parameter, its value equal to zero

represents stability boundary. The derivative of

damping ratio and frequency can be written as:

ofj
onn

¼ � 1

�xj

oReðcjÞ
onn

þ �fj
oImðcjÞ
onn

� �

oxj

onn
¼

oImðcjÞ
onn

ð37Þ

where �fj and �xj are the mean values of the damping

ratio and frequency of the jth mode. Now, the variance

of damping ratio ðfjÞ and frequency ðxjÞ can be

written as:

VarðfjÞ ¼
XN
n¼1

ofj
onn

� �2

VarðxjÞ ¼
XN
n¼1

oxj

onn

� �2
ð38Þ

5 Flutter probability

The flutter velocity of aeroelastic system is defined as

the flow velocity at which damping ratio of one of the

modes (say jth mode) becomes zero. If the damping

ratio ðfj [ 0Þ, the aeroelastic system is stable. Hence,

the probability of failure of the aeroelastic system due

to flutter (or flutter probability) can be defined in

conditional sense (on flow velocity) as [6, 31]:

Prflutter ¼ Pr fjðnnÞ� 0jUflutter¼U

	 

ð39Þ

where nn are orthonormal random variables as defined

in Sect. (3). The flutter probability can be calculated

using perturbation approach by linearizing the limit

state function ðfjðnnÞ ¼ 0jUflutter¼UÞ based on the first

order Taylor’s series approximation as discussed in

Sect. (4). Here, the flutter probability can be written

as:

Prflutter ¼ U �bRð Þ ð40Þ

where bR ¼
�fjffiffiffiffiffiffiffiffiffiffiffi

VarðfjÞ
p and U is the standard normal

Table 1 Properties of

Goland wing [20]
Parameters Description Values

EI Span-wise bending stiffness 9:77� 106m2 Nm2

GJ Span-wise torsion stiffness 0:988� 106m2 Nm2

m Mass per unit span 35.719 kg/m

xa Dimensionless static unbalance 0.33

a Elastic axis location parameter � 0:2

b Semi-reference chord 0.9144 m

l Span 6.09 m

Ip Mass moment of inertia per unit span 6:5704m2kgm2=m

q1 Free stream density 1:225m2kg=m3

Fig. 2 Mean damping and frequency of cantilever wing at

various free stream velocities
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cumulative distribution function. The flutter probabil-

ity can also be calculated using MCS based on the

number of samples ðnsÞ satisfying the above condi-

tional statement (Eq. (39)) at each flow velocity as:

Prflutter ¼
nsðfj � 0Þ

Ns

ð41Þ

where Ns is total number of samples.

6 Results and discussion

In this section, the effects of various uncertain stiffness

parameters on the probabilistic flutter characteristics

of cantilever wing are investigated. Here, the bending

and torsional stiffness properties of the cantilever

wing are considered as Gaussian random fields with

the coefficient of variation (C.O.V) varying from 0.01

(a) (b)

Fig. 3 First four eigenvalues and eigen functions of exponential covariance function

(a) (b)

Fig. 4 Convergence of SD of a damping ratio and b frequency with various K–L expansion terms for the flutter mode (Mode 2) of

cantilever wing at U ¼ 125 m/s due to 5% C.O.V in EI
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to 0.05. The efficiency of the proposed method is also

demonstrated by comparing the present results with

MCS. The wing with fixed-free boundary conditions is

discretized into ten finite elements for the analysis.

The mean flutter analysis is carried out using the

numerical data given in Table 1 [20].

The Complex Theodorsen’s function [20] used in

the present analysis can be written as:

CðkÞ ¼ 1þ 0:1757

1þ ð1:099
k
Þ
� 0:6724

1þ ð0:243
k
Þ

þ 2:41

1þ ð0:214
k
Þ �

2:41

1þ ð0:156
k
Þ

 !
i

ð42Þ

The variation in mean frequency and damping ratio for

different modes (Mode 1—Bending,Mode 2—Torsional)

of cantilever wing at various free stream velocities is

shown in Fig. 2. From the figure, it is observed that the

second eigen mode crosses zero damping line at free

stream velocity of ðUÞ ¼ 137:38 m/s leading to flutter

and the corresponding eigen frequency is 82:53 rad=s.

Henceforth, the second mode is called as the flutter

mode. The present mean flutter velocity of cantilever

wing is also compared with those given in [20] which

matches well with each other.

Furthermore, the eigenvalues and eigenfunctions of

the exponential covariance function used to represent

random processes are discussed. Figure 3 shows the

first four eigenvalues and the corresponding

(a) (b)

Fig. 5 Convergence of SD of a damping ratio and b frequency with various K–L expansion terms for the flutter mode (Mode 2) of

cantilever wing at U ¼ 125 m/s due to 5% C.O.V in GJ

Table 2 Variation of mean and SD of damping ratio and frequency with free stream velocity for the flutter mode (Mode 2) of

cantilever wing due to C.O.V in EI ¼ 5%

Velocity Perturbation approach Monte Carlo simulation (with 20,000 samples)

Mean ð�fÞ Mean ð �xÞ SD ðfÞ SD ðxÞ Mean ð�fÞ Mean ð �xÞ SD ðfÞ SD ðxÞ

100 0.0524 113.8010 0.0009

(0.0009)

0.4296

(0.4153)

0.0524 113.8036 0.0009 0.4301

125 0.0615 96.2131 0.0021

(0.0021)

0.4924

(0.4399)

0.0615 96.2209 0.0021 0.4930

135 0.0230 84.9500 0.0029

(0.0035)

0.6719

(0.5692)

0.0231 84.9601 0.0029 0.6719
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eigenfunctions of the exponential covariance function

obtained by solving Eq. (15).

The convergence of standard deviation (SD) of

eigenvalues with various K–L expansion terms for the

flutter mode (Mode 2) of wing with C.O.V of EIð¼
5%Þ and GJð¼ 5%Þ at flow velocity (U ¼ 125m=s)

are shown in Figs. 4 and 5 respectively. From the

figures, it is observed that the SD of frequency and

damping ratio of the flutter mode of the aeroelastic

system converges well with four K–L expansion

terms. Hence, based on this study, all subsequent

stochastic analyses are performed using four K–L

expansion terms.

Next, Table 2 shows the comparison of mean and

SD of damping ratio and frequency obtained using

perturbation approach and MCS at various free stream

velocities. The SD of damping ratio and frequency

computed using deterministic C(k) function are also

shown in the table in bracket. It is observed that the

mean and SD of damping ratio and frequency for

flutter mode of wing match well with MCS due to 5%

C.O.V in EI. However, the SD of damping ratio and

frequency obtained using deterministic C(k) show

small deviations with MCS results (values shown in

bracket).

(a) (b)

Fig. 6 C.O.V of a damping ratio and b frequency for the flutter mode (Mode 2) of cantilever wing obtained from Perturbation approach

and MCS due to variation in EI at U ¼ 135 m/s

Table 3 Variation of mean and SD of damping ratio and frequency with free stream velocity for the flutter mode (Mode 2) of

cantilever wing due to C.O.V in GJ ¼ 5%

Velocity Perturbation approach Monte Carlo simulation (with 20,000 samples)

Mean ð�fÞ Mean ð �xÞ SD ðfÞ SD ðxÞ Mean ð�fÞ Mean ð �xÞ SD ðfÞ SD ðxÞ

100 0.0524 113.8010 0.0007

(0.0004)

3.2648

(3.1560)

0.0523 113.7508 0.0007 3.2755

125 0.0615 96.2131 0.0042

(0.0043)

4.4143

(3.9439)

0.0599 96.0771 0.0059 4.4283

135 0.0230 84.9500 0.0283

(0.0237)

4.5518

(3.8563)

0.0187 85.2392 0.0271 4.3707
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Furthermore, Fig. 6 shows the variation of C.O.V

of eigenvalue of wing due to variation in EI at U ¼
135m=s which matches well with MCS. Here, a small

uncertainty in EI with 1% C.O.V induces about 2.5 %

variation in the damping ratio of flutter mode (Mode

2).

Similarly, Table 3 shows the comparison of mean

and SD of eigenvalues of cantilever wing due to

variation in GJ at various free stream velocities. It is

observed that the mean and SD of frequency and

damping ratio for flutter mode of wingmatch well with

MCS at lower velocity. However, at higher velocity, a

small discrepancy in the mean and SD of eigenvalue

between the two methods is observed. Furthermore,

the discrepancy is found to be more when C(k) is

treated as deterministic (values shown in bracket).
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Fig. 7 C.O.V of a damping ratio and b frequency for the flutter mode (Mode 2) of cantilever wing obtained from Perturbation approach

and MCS due to variation in GJ at U ¼ 135 m/s
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(b) C.O.V of GJ = 5%

Fig. 8 C.O.V of damping ratio and frequency of cantilever wing obtained from perturbation approach at various free stream velocities

due to 5% C.O.V in a EI and b GJ
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Figure 7 shows the variation of C.O.V of eigenvalue

of cantilever wing due to variation in GJ at

U ¼ 135m=s. It is observed that the C.O.V of

eigenvalue obtained from perturbation approach

matches well with MCS upto 3% C.O.V of GJ.

Beyond this range, the 1st order perturbation approach

shows deviations with MCS results indicating limita-

tions of the present approach. Here, a small uncer-

tainty in GJ with 1% C.O.V induces about 25 %

variation in the damping ratio of flutter mode (Mode

2).

The C.O.V of damping ratio and frequency for

various modes of wing at different free stream

velocities due to 5% C.O.V in EI and GJ is presented

in Fig. 8. It is observed that C.O.V of frequency is

higher for Mode 1 as compared to Mode 2 due to

variation in EI and follows similar trend as those of

mean frequency. The C.O.V of damping ratio for

Mode 2 is very small throughout and shows very high

values (a spike) near the flutter point.

This is due to the fact that the mean value of

damping ratio is very small near (approaching zero)
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Fig. 9 Pdfs of damping ratio and frequency for the flutter mode (Mode 2) of cantilever wing obtained from MCS and Perturbation

approach due to 5% C.O.V in EI at U ¼ 100 m/s
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Fig. 10 Pdfs of damping ratio and frequency for the flutter mode (Mode 2) of cantilever wing obtained from MCS and Perturbation

approach due to 5% C.O.V in GJ at U ¼ 100 m/s
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flutter point. It is also observed that the uncertainty in

GJ has more influence on the damping ratio and

frequency of flutter mode as compared to EI.

The probability density functions (pdfs) of damping

ratio and frequency of flutter mode of cantilever wing

obtained using perturbation approach and MCS are

shown in Figs. 9, 10, 11, 12 and 13 for up to 5% C.O.V

in EI and GJ at two different flow velocities. A

suitable distribution model curve fit for MCS data are

also shown in the figure. At U ¼ 100 m/s (away from

flutter velocity), it is observed that the pdfs of damping

ratio and frequency of flutter mode follow Gaussian

distributions (Figs. 9 and 10) due to 5% variation in EI

and GJ. Here, the skewness of each pdf obtained from

MCS are also examined and found to be close to 0.

Since, the pdf of damping ratio doesn’t become

negative, there is a negligible chance of occurrence

of flutter at this velocity due to uncertainty considered

in bending and torsional rigidity.

(a) (b)

Fig. 11 Pdfs of damping ratio and frequency for the flutter mode (Mode 2) of cantilever wing obtained from MCS and Perturbation

approach due to 5% C.O.V in EI at U ¼ 135 m/s

(a) (b)

Fig. 12 Pdfs of damping ratio and frequency for the flutter mode (Mode 2) of cantilever wing obtained from MCS and Perturbation

approach due to 3% C.O.V in GJ at U ¼ 135 m/s
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At U ¼ 135 m/s with 5% C.O.V in EI, the pdfs of

damping ratio and frequency of flutter mode follow

Gaussian distributions (Fig. 11) with skewness value

close to 0. Here, the pdf of damping ratio doesn’t

become negative, indicating no chance of flutter at this

velocity due to uncertainty in EI. However, due to 3%

variation in GJ, the pdfs of damping ratio and

frequency of flutter mode (Mode 2) obtained from

MCS, follow nearly Gaussian distribution (Fig. 12)

with small skewness values - 0.55 and 0.21 respec-

tively. Furthermore, some region of the pdf of

damping ratio of flutter mode (Mode 2) becomes

negative which indicates that there is a chance of

occurrence of flutter at this velocity due to uncertainty

in GJ. Similar interpretation can be made for Fig. 13,

when C.O.V inGJ is 5% at flow velocity U ¼ 135 m/s

with skewness of damping ratio and frequency of

flutter mode (Mode 2)- 0.74 and 0.30 respectively. It

is also observed that pdf of damping ratio of flutter

mode (Mode 2) shows wide band density function near

mean flutter point as compared to pdf at lower velocity

(away from mean flutter point).

Next, the flutter probability of the cantilever wing is

discussed by calculating cumulative distribution func-

tion (CDF) of the flutter velocity as discussed in

Sect. (5). Figure 14 shows the CDFs of flutter velocity

obtained using perturbation approach and MCS due to

dispersion in EI and GJ. From Fig. 14a, it is observed

that the CDF of flutter velocity obtained using

perturbation approach matches well with MCS due

to 5% C.O.V in EI. Furthermore, with 3% C.O.V in

GJ, CDF obtained from the perturbation approach

shows good comparison with MCS results as the pdf of

damping ratio shows nearly Gaussian characteristics.

However, due to 5% C.O.V inGJ, a discrepancy in the

tail region of the CDF between perturbation approach

and MCS is observed. The above discrepancy in the

flutter probability (with 5% C.O.V in GJ) can be

reduced by considering second order perturbation

approach and improved structural reliability methods.

From the figures, it may be noted that the flutter

velocity of wing is more sensitive to uncertainty in

torsional rigidity as compared to bending rigidity

which is similar to those observed in [4].

7 Conclusions

In this paper, a novel approach based on Stochastic

Finite Element Method is proposed for the probabilis-

tic flutter analysis of aircraft wing in frequency

domain. Here, the uncertainty modeling of the input

random parameters as random fields are based on

truncated Karhunen–Loeve expansion. The uncer-

tainty propagation is based on first order perturbation

approach which efficiently handles the expansion of

(a) (b)

Fig. 13 Pdfs of damping ratio and frequency for the flutter mode (Mode 2) of cantilever wing obtained from MCS and Perturbation

approach due to 5% C.O.V in GJ at U ¼ 135 m/s
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implicit frequency dependent Theodorsen’s function

of the unsteady aerodynamics. The method is demon-

strated by analyzing the probabilistic flutter charac-

teristics of a cantilever wing having random stiffness

properties and comparing results with MCS. Here, the

bending and torsional stiffnesses of the wing are

treated as second order Gaussian random fields. It is

observed that the perturbation method is very accurate

for all levels of bending stiffness uncertainty studied.

However, the method loses its accuracy, when C.O.V

in torsional rigidity is considered more than 3%. It is

also observed that the uncertainty in torsional rigidity

has greater influence on the damping ratio and

frequency of flutter mode as compared to bending

rigidity. It is also shown that the SD of damping ratio

and frequency obtained using random C(k) function

(a)

(b) (c)

Fig. 14 CDFs of flutter velocity of cantilever wing due to a 5% C.O.V in EI, b 3% C.O.V in GJ, c 5% C.O.V in GJ
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agree well with MCS results as compared to those

obtained using deterministic C(k) function. Further-

more, the pdfs of damping ratio and frequency for

flutter mode of cantilever wing show Gaussian char-

acteristics at low flow velocity. However, at higher

flow velocity, the pdfs show wide band variation in

damping and frequency. The flutter probability of

cantilever wing is also studied by defining limit state

function in conditional sense on flow velocity. It is

observed that the CDFs of flutter velocity using

perturbation approach match well with MCS with 5%

and 3% C.O.V in EI and GJ respectively. The lower

prediction of flutter velocity in the presence of

uncertainty in torsional rigidity shows that this is a

more sensitive parameter in comparison of bending

rigidity. This indicates that in the design of air vehicle,

the dispersion in torsional rigidity should be controlled

to avoid flutter conditions.
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Appendix

The weak forms of the governing Eqs. (5) and (6) are

obtained by multiplying weight functions v1 and v2

respectively and integrating over an ith element length

as [32]:

Z yiþ1

yi

v1 m€hþ mxab€aþ
o2

oy2
EI

o2h

oy2

� �
þ L

� �
dy ¼ 0

ð43Þ
Z yiþ1

yi

v2 Ip€aþ mxab€h�
o

oy
GJ

oa
oy

� �
�M

� �
dy ¼ 0

ð44Þ

Substituting the expressions for lift (L) and moment

(M), and performing integration by parts, the above

equations can be expressed as:

Z yiþ1

yi

v1m€hdyþ
Z yiþ1

yi

v1pq1b2€hdyþ
Z yiþ1

yi

v1mxab€ady

�
Z yiþ1

yi

pq1b3a€adyþ
Z yiþ1

yi

v1UCðkÞ2pq1b _hdy

þ
Z yiþ1

yi

v1Upq1b2 _ady

þ
Z yiþ1

yi

v1UCðkÞpq1b2ð1� 2aÞ _ady

þ
Z yiþ1

yi

v1U
2CðkÞ2pq1bady

þ
Z yiþ1

yi

o2v1

oy2
EI

o2h

oy2

� �
dy

þ �v1S
b � ov1

oy
Mb

� �
?yiþ1

yi
¼ 0

ð45Þ
Z yiþ1

yi

v2Ip€adyþ
Z yiþ1

yi

v2pq1b4
1

8
þ a2

� �
€ady

þ
Z yiþ1

yi

v2mxab€hdy�
Z yiþ1

yi

v2pq1b3a€hdy

�
Z yiþ1

yi

v2Upq1b3 � 1

2
þ a

� �
_ady

�
Z yiþ1

yi

v2UCðkÞpq1b3
1

2
þ a

� �
1� 2að Þ _ady

�
Z yiþ1

yi

v2UCðkÞ2pq1b2
1

2
þ a

� �
_hdy

�
Z yiþ1

yi

v2U
2CðkÞ2pq1b2

1

2
þ a

� �
ady

þ
Z yiþ1

yi

ov2

oy
GJ

oa
oy

� �
dy� v2s?yiþ1

yi
¼ 0

ð46Þ

whereMb, Sb, and s are bending moment, shear force,

and torsional moment respectively and can be written

as:

Mb ¼EI
o2h

oy2

Sb ¼ � o

oy
EI

o2h

oy2

� �

s ¼GJ
oa
oy
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Now by using finite element approximation func-

tions, the heave (h) and pitch ðaÞ displacements can be

expressed as:

hðy; tÞ ¼ bNwcfweðtÞg
aðy; tÞ ¼ bNacfaeðtÞg

ð47Þ

where bNwc ¼ bN1;N2;N3;N4c and bNac ¼ b �N1; �N2c
are Hermite and Lagrange shape functions [32]

respectively and fweg and faeg are the bending and

torsional degrees of freedom respectively. The weight

functions v1 and v2 can be also written as v1 ¼ bNwcT

and v2 ¼ bNacT respectively. On substitution of the

above approximation functions and weight functions,

the elemental equations can be written in notational

form as:

MSB½ �f €weg þ MAB½ �f €weg þ MSC½ �f€aeg þ MAC½ �f€aeg
þ CAB½ �f _weg þ C12

AC

� �
f _aeg þ KAC½ �faeg

þ KSB½ �fweg ¼ fFig ð48Þ

MST½ �f€aeg þ MAT½ �f€aeg þ MSC½ �f €weg þ MAC½ �f €weg
þ CAT½ �f _aeg þ C21

AC

� �
f _weg þ KAT½ �faeg

þ KST½ �faeg ¼ fsig ð49Þ

where fFig ¼ b�Sbyi ;�Mb
yi
; Sbyiþ1

;Mb
yiþ1

cT and fsig ¼
b�syi ; syiþ1

cT . The terms involved in Eq. (48) are:

MSB½ � ¼m

Z yiþ1

yi

bNwcTbNwcdy

MAB½ � ¼ pq1b2
Z yiþ1

yi

bNwcTbNwcdy

MSC½ � ¼mxab

Z yiþ1

yi

bNwcTbNacdy

MAC½ � ¼ � pq1b3a

Z yiþ1

yi

bNwcTbNacdy

CAB½ � ¼UCðkÞ2pq1b

Z yiþ1

yi

bNwcTbNwcdy

C12
AC

� �
¼Upq1b2

Z yiþ1

yi

bNwcTbNacdy

þ UCðkÞpq1b2ð1� 2aÞ
Z yiþ1

yi

bNwcTbNacdy

KAC½ � ¼U2CðkÞ2pq1b

Z yiþ1

yi

bNwcTbNacdy

KSB½ � ¼
Z yiþ1

yi

EIbN 00

wc
TbN 00

wcdy

ð50Þ

and the terms in Eq. (49) can be written as:

MST½ � ¼ Ip

Z yiþ1

yi

bNacTbNacdy

MAT½ � ¼ pq1b4 a2 þ 1

8

� �Z yiþ1

yi

bNacTbNacdy

MSC½ � ¼mxab

Z yiþ1

yi

bNacTbNwcdy

MAC½ � ¼ � pq1b3a

Z yiþ1

yi

bNacTbNwcdy

CAT½ � ¼ � Upq1b3ð�0:5þ aÞ
Z yiþ1

yi

bNacTbNacdy

� UCðkÞpq1b3ð0:5þ aÞð1� 2aÞZ yiþ1

yi

bNacTbNacdy

C21
AC

� �
¼ � UCðkÞ2pq1b2ð0:5þ aÞ

Z yiþ1

yi

bNacTbNwcdy

KAT½ � ¼ � U2CðkÞ2pq1b2ð0:5þ aÞ
Z yiþ1

yi

bNacTbNacdy

KST½ � ¼
Z yiþ1

yi

GJbN 0

ac
TbN 0

acdy

ð51Þ
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