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Abstract A model has been proposed to estimate the

average number of fragments produced by ductile

fracture of a rapidly expanding ring with arbitrary

cross-section. The model uses a minimum number of

constants characterizing the material properties of the

ring. We assume that material of the ring is incom-

pressible with the density q and its mechanical

behavior obeys the ideal rigid-plastic model with

yield stress Y. It is shown that the average number of

fragments weakly depends on the cross-sectional

shape, if characteristic size of the cross-section does

not change. The results obtained by the model are

compared with the experiments of Grady and Benson

(Exp Mech 23:393–400, 1983) where the aluminum

and copper rings were tested. The comparison shows

good agreement with the experiments with the copper

rings over the entire range of strain rates realized in

these experiments. For the aluminum rings, such

agreement is observed only for high strain rates.

Keywords Fragmentation model � Rapidly

expanding ring � The average number of fragments �
Ductile fracture

1 Introduction

Dynamic fragmentation of solids caused by impact or

explosion has been studied for years. Typical exper-

imental situations in which these phenomena take

place correspond to collisions in atomic physics [1],

collision of macroscopic bodies [2] (including projec-

tile impact on a massive target [3, 4]), shell fragmen-

tation upon explosion and impact [5–8], and projectile

fragmentation during high-velocity perforation of a

thin shield [9, 10].

At the same time, with the development of numer-

ical methods, such as the finite element method,

discrete element methods and the smoothed particle

hydrodynamics method, great success was achieved in

numerical modeling of the fragmentation problems of

solids and shells (see, for example, [4, 9–11]).

However, in modeling fragmentation, it is also of

interest to construct simple analytical models that use

the lowest possible information about the material of

the fragmented solid or shell and their geometric

parameters. Such models are useful both for engineer-

ing purposes and for experimental studies, since
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without special expenses they can in some cases

evaluate the results of planned experiments.

The most known models of this kind are two one-

dimensional fragmentation models of rapidly expand-

ing metal cylinders. First is the statistics-based theory

of Mott [6, 7] and second is the energy-based theory of

Grady [7]. The models allow one to estimate both the

average fragment length and the number of fragments.

It is important to note that in work [7] these models are

generalized to the case of the expanding rings in a

trivial way due to their one-dimensionality.

In recent paper [8] we proposed a two-dimensional

energy-based model of fragmentation of rapidly

expanding cylinder in conditions of the ductile behavior

of the material and under plane strain. The model

allowed us to estimate the average fragment length and

the number of fragments produced by ductile fracture

of the cylinder. They obey the two-thirds power

dependence on strain rate like the energy-based model

of Grady. However, there is a significant difference

between our model and Grady’s model. The difference

consists in the presence of the cylinder-wall thickness

into expressions for the average fragment length and the

number of fragments. In present note we show that the

proposed approach [8] can be used to estimate the

number of fragments in a problem of fragmentation of

an expanding ring with arbitrary cross-section.

2 Fragmentation model of a rapidly expanding ring

The model under consideration uses a minimum

number of constants characterizing the material prop-

erties of the ring. We assume that material of the ring is

incompressible with the density q and its mechanical

behavior obeys the ideal rigid-plastic model with yield

stress Y. We also assume that the linear dimensions of

the cross-section of the ring are much smaller than the

ring radius R. The ring undergoes a uniform radial

expansion with a velocity Vr at the center of mass of

the cross-section.

A key element of the problem is the model of the

neck formation and evolution during rod stretching.

2.1 Model of necking

We consider a homogeneous rod, the cross-section of

which is a convex contour having a center of

symmetry (it coincides with the center of mass of the

cross-section). The origin of a coordinate system

(x;y) lies in the center of symmetry of the cross-

section; the axis z is parallel to the axis of the rod.

Let _exx; . . . _eyz; rxx; . . .ryz are the components of the

strain rate tensor and the stress tensor, respectively.

The power of internal forces per unit volume is defined

as w ¼ rij _eij. It is easy to show that for the accepted

material properties it can be written in the form

w ¼
ffiffiffi

2

3

r

� Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_e2
xx þ _e2

yy þ _e2
zz þ 2 _e2

xy þ _e2
xz þ _e2

yz

� �

r

:

ð1Þ

A discontinuity of the tangential velocity equal to

v½ � on some surface produces (according to (1)) the

power of internal forces per unit surface which is equal

to

wr ¼
1
ffiffiffi

3
p Y v½ � ð2Þ

Suppose that a continuous velocity field appeared in

the rod in the form:

ux ¼ uy ¼ 0; uz ¼ V1 at z[w1ðx; yÞ and ux ¼ uy
¼ 0; uz ¼ V2 at z\w2ðx; yÞ:

The velocity field between surfaces

w2ðx; yÞ\z\w1ðx; yÞ is arbitrary and it satisfies the

continuity condition on these surfaces. We denote by

D a plane region in the section of the rod. Let us

estimate the total power of internal forces W taking

into account the incompressibility condition,

exx þ eyy ¼ �ezz:

W ¼
ZZ

D

dxdy

Z

w1

w2

ffiffiffi

2

3

r

� Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_e2
xx þ _e2

yy þ _e2
zz þ 2 _e2

xy þ _e2
xz þ _e2

yz

� �

r

dz

�
ffiffiffi

2

3

r

� Y
ZZ

D

dxdy

Z

w1

w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_e2
xx þ _e2

yy þ _e2
zz

q

dz

�
ffiffiffi

2

3

r

� Y
ZZ

D

dxdy

Z

w1

w2

ffiffiffiffiffiffiffiffi

3

2
_e2
zz

r

dz

� Y

ZZ

D

dxdy

Z

w1

w2

ouz

oz

�

�

�

�

�

�

�

�

dz

¼ Y

ZZ

D

V1 � V2j jdxdy ¼ Y V1 � V2j j2S

ð3Þ

Thus, we have an estimate that gives the minimum

possible power of internal forces in the problem under
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consideration: Wmin ¼ Y V1 � V2j j2S, where 2S is the

cross-sectional area of the rod. The solution of the

model problem of neck formation when the rod is

stretched under the conditions of plane deformation, as

described in [8], gives for the total power of the

internal forces

W ¼ Y V1 � V2j j 4
ffiffiffi

3
p S ð4Þ

Note that the difference between (4) and the

minimum possible power (3) is only * 15%.

Consider the rod in which the following velocity

distribution is given at the initial instant:

ux ¼ 0; uy ¼ 0;

uz ¼ V1 at 0\z\l1; ux ¼ 0; uy ¼ 0; uz
¼ V2 at � l2\z\0:

ð5Þ

We assume that a plane velocity field perpendicular

to the x-axis analogous to the velocity field, which we

considered in [8], is formed in the rod. This assump-

tion, generally speaking, is valid if the rod cross-

section is strongly elongated along the x-axis, i.e.

aspect ratio a/h � 1 (see Fig. 1). However, the

distinction of the solution (4) (that is taken from [8])

from the minimum possible power (3) by only 15%

tells us that we do not make a big mistake taking the

plane velocity field for the case when aspect ratio a/

h * 1.

We introduce a function sðyÞ that has the meaning

of the current area of the deformable part of the rod

(neck), which is cut off from the cross-section of the

rod by a straight line parallel to the x-axis (Fig. 1). It is

assumed that 0\y\h, where h is the ordinate of the

furthest point of the right half of the rod section from

the x-axis.

We believe that at the current moment the deformed

zone has shifted by an amount y. Then the value of the

power of internal forces N is

N ¼ Y V1 � V2ð Þ 4
ffiffiffi

3
p sðyÞ; ð6Þ

where for definiteness we put V1 [V2. From the law

of momentum conservation it follows that

l1
dV1

dt
þ l2

dV2

dt
¼ 0 ð7Þ

From the law of energy conservation it follows that

dE

dt
þ N ¼ 0 ð8Þ

where E ¼ qSl1V2
1 þ qSl2V2

2 is the kinetic energy of

the rod. From (8) it follows that

2qSl1V1

dV1

dt
þ 2qSl2V2

dV2

dt
¼ �Y V1 � V2ð Þ 4

ffiffiffi

3
p sðyÞ

ð9Þ

dy

dt
¼ V1 � V2

2
ð10Þ

Initial conditions at

t ¼ 0 : V1 ¼ V10; V2 ¼ V20; y ¼ 0. From (7, 9, 10)

we obtain

4qS
l1l2

l1 þ l2

d2y

dt2
¼ �Y

4
ffiffiffi

3
p sðyÞ ð11Þ

with initial conditions at t ¼ 0 : y ¼ 0; dy
dt
¼ V10�V20

2
.

Integrating (11) we obtain

2qS
l1l2

l1 þ l2

dy

dt

� �2

�2qS
l1l2

l1 þ l2

V10 � V20

2

� �2

¼ �Y
4
ffiffiffi

3
p

Z

y

0

sðzÞdz ð12Þ

Fig. 1 The geometric meaning of the function sðyÞ
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A complete break of the rod occurs when y ¼ h.

Consequently, the condition

2qS
l1l2

l1 þ l2

V10 � V20

2

� �2

� Y
4
ffiffiffi

3
p

Z

h

0

sðzÞdz ð13Þ

must be satisfied for breaking the rod.

Let the moment t ¼ s correspond to the moment of

discontinuity. Integrating power (6) with respect to

time and taking into account relation (10) we obtain

the work Af necessary to break the rod:

Af ¼
4
ffiffiffi

3
p Y

Z

s

0

ðV1 � V2ÞsðyÞdt ¼
8
ffiffiffi

3
p Y

Z

h

0

sðyÞdy

ð14Þ

We note that the integral
R

h

0

sðyÞdy ¼ Syc can be

represented as S � yc where yc is the coordinate of the

center of mass of the right half of the rod section, and S

is its area. It can be seen that the value of the integral

depends on the selected direction of the x-axis. For

example, let us consider a square with a side 2a. If the

x-axis is parallel to the square side, then h = a and

R

h

0

sðyÞdy ¼ a3, if the x-axis is directed diagonally, then

h ¼
ffiffiffi

2
p

a and
R

h

0

sðyÞdy ¼ 2
ffiffiffi

2
p

a3=3. The choice of the

direction of the x-axis is determined from the condi-

tion of the minimum of the integral
R

h

0

sðyÞdy. It can be

shown that the value of the integral 2
ffiffiffi

2
p

a3=3 is

minimal for the case considered above when the rod

has the square cross-section with the side 2a.

2.2 Fragmentation model

Let’s consider a uniform expansion of the ring with the

velocity Vr at the center of mass of the cross-section

selecting a fragment in the form of a segment of the

ring with an angle 2b. When the ring is broken down

into n identical fragments, b ¼ p=n. We assume that

the linear dimensions of the ring cross-section are

small in compared to its initial radius R and b � 1.

We also assume that the fracture at both ends of the

segment occurs instantaneously and in the same way.

Over time after the formation, the fragment will move

as a rigid body with constant velocity. Using the laws

of conservation of energy and momentum is easy to

estimate the reduction of kinetic energy of the

fragment DE as a result of the velocity equalizing

over the volume of the fragment:

DE ¼ 2

3
qV2

r RSb
3 ð15Þ

In paper [8] it was shown that the potential energy

of the fragment can be neglected compared to its

kinetic energy. Therefore, the energy balance for the

problem under consideration has the form of an

equality between the decrease in the kinetic energy of

the fragment (15) and the minimum work of formation

of the breaking surface (14): DE ¼ ðAf Þmin. As a

result, we obtain the desired expression for the average

number of fragments:

n ¼ pR
q _e2

/S

4
ffiffiffi

3
p

Y
R

h

0

sðyÞdy
� �

min

0

B

B

B

@

1

C

C

C

A

1=3

; ð16Þ

where _e/ ¼ Vr=R. Thus, the proposed model and the

obtained formula (16) allow us to estimate the average

number n and the average length of fragments s ¼
2pR=n that are formed upon rapid expansion of a ring

of arbitrary cross-section.

We estimate the ratio

Jm ¼
Z

h

0

sðyÞdy

0

@

1

A

min

,

S ð17Þ

entering in (16) for two cases of the ring cross-

sections:

(1) Rectangle cross-section 2a 9 2h where 2a and

2h are the height and thick of ring, respectively:

(a) for a � h one gets that Jm= h/2;

(b) for a = h one gets that Jm= h
ffiffiffi

2
p

=3;

(c) for a � h one gets that Jm= a/2.

(2) Circular cross-section of radius R: Jm=4R/

(3p).

It is easy to see that in all cases Jm ¼ kf � L where L

is a linear size of the cross-section of the ring and kf is

the coefficient responsible for the cross-sectional

shape. The coefficient kf depends weakly on the shape

of the cross section (it changes within 15% only). We

also note that the case 1 (a), as expected, yields the
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formula (16) for the number of fragments, which

coincides with that for the cylinder [8]:

n ¼ pR
q _e2

2
ffiffiffi

3
p

Yh

� �1=3

: ð18Þ

For the case 1 (b) the formula (16) gives the number

of fragments for the ring with the square cross section:

n ¼ pR

ffiffiffi

3
p

q _e2

4
ffiffiffi

2
p

Yh

� �1=3

ð19Þ

3 Comparison with experimental data

Let us compare the fragment number determined by

the Eqs. (18) and (19) with that obtained in experi-

ments by Myagkov et al. [12], Zhang and Ravi-

Chandar [5], and Grady and Benson [13]. Type of the

experiment, material used in the experiment, the

experimental fragment number and the fragment

number determined by (18) and (19) are shown in

Table 1. We see that the estimates obtained are in

close agreement with the experimental data (last two

columns in Table 1). The comparison with the exper-

iments of Grady and Benson is taken out from the

table in Fig. 2.

The data from the experiments by Myagkov et al.

[12] and Zhang and Ravi-Chandar [5] require com-

ments. Modeling of the experiments with ejecta [12]

supposes that an annular layer of material flowing

from the crater is fractured due to the radial velocity

component. The fragment number in these experi-

ments is fixed by number of deep holes in the low-

density collector that captures the ejecta flow. We

have evaluated the number of fragments in the

experiments on the fragmentation of cylinders [5]

using the images provided in this paper (see Fig. 14 of

the paper).

Table 1 Comparison with experimental data

No. The experiment Material R, mm 2a 9 2h or 2h

(if a � h)

_e/, s-1 Average

number of

fragments

(experiment)

Average number of

fragments,

Eqs. (18) or (19)

1 Ejecta destruction [12] AMg6 M 11.5 *1.0 mm 1.2 9 105 21 18

2 Fragmentation of cylinders

[5]

Al 6061-0 15.25 0.5 mm 1.02 9 104 8 9

0.96 9 104 5 8

1.12 9 104 10 9

1.11 9 104 7–8 9

3 Fragmentation of rings [13] Al 1100-0 16 1.0 mm 9 1.0 mm See Fig. 2

Cu OFHC

Fig. 2 The average number

of fragments depending on

the radial expansion velocity

of the ring for a aluminum

alloy 1100-0 and b OFHC

copper. The proposed model

[Eq. (19)] is compared with

the experimental data of

Grady and Benson [13], and

Grady’s theory [7]
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A comparison of the number of fragments obtained

by formula (19) with the experiments of Grady and

Benson [13] where the aluminum and copper rings

were tested is shown in Fig. 2. One can see good

agreement with the experiments with the copper rings

over the entire range of strain rates obtained in the

experiments. For the aluminum rings, such agreement

is observed only for high strain rates. Comparison with

Grady’s theory [7] is also presented in Fig. 2.

4 Conclusions

The model that allows us to estimate the average

number of fragments and the average length of

fragments produced by ductile fracture of a rapidly

expanding ring with arbitrary cross-section is pro-

posed in the present work. This model is a general-

ization of the approach developed by the authors in

[8].

The result of the estimates, as can be seen from the

final formula (16), depends on the value of the integral

Jm (17). One can see that in all cases Jm ¼ kf � L where

L is a linear size of the cross-section of the ring and kf
is the coefficient responsible for the cross-sectional

shape. The coefficient kf depends weakly on the shape

of the cross section (it changes within 15% only). It

should also be noted that the case when the height of

the ring significantly exceeds its thickness, as

expected, yields formula (18) for the number of

fragments, which coincides with the formula for the

cylinder fragmentation [8].

Comparison of obtained results with published

experimental data on the fragmentation of the alu-

minum and copper rings and cylinders shows that they

are in good agreement. Comparison of the number of

fragments obtained by formula (19) with the experi-

ments of Grady and Benson [13] where the aluminum

and copper rings were tested is shown in Fig. 2. One

can see good agreement with the experiments with the

copper rings over the entire range of strain rates

obtained in the experiments. For the aluminum rings,

such agreement is observed only for high strain rates.
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