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Abstract The scope of this paper is to evaluate the

performance and computational efficiency of various

stochastic simulation methods for a stochastic based

reliability assessment of railway bridges subjected to

high-speed trains. Depending on the degree of sophis-

tication, application of crude Monte Carlo simulation

to a realistic mechanical model of the uncertain

bridge-train interacting dynamical system can be

prohibitively expensive. Thus, three alternative

stochastic methods, i.e. line sampling, subset simula-

tion, and asymptotic sampling, are tested on two

example problems. These examples represent two

classes of bridges with different dynamic response

characteristics. While in the one class of bridges

distinctive resonance peaks govern the dynamic peak

response, the random response amplification of the

second group of bridges is primarily induced by track

irregularities. The studies are conducted on a simpli-

fied mechanical model, composed of a plain beam

representing the bridge and a planar mass-spring-

damper system representing the train. This modeling

strategy captures the fundamental characteristics of

dynamic bridge-train interaction, and thus, facilitates

the desired assessment of the stochastic methods with

reasonable computational effort. It is shown that both

line sampling and subset simulation reduce signifi-

cantly the computational expense for the first class of

bridges, while maintaining the accuracy of the

predicted bridge reliability. To ensure accuracy and

efficiency, these methods need to be modified when

applied to systems where track irregularities dominate

the random response. For the latter class of bridges,

subset simulation proved to be a suitable method for

assessing the reliability of this dynamic interacting

system when appropriately modified.

Keywords Reliability assessment � Bridge-train
interaction � Probability of failure � Stochastic
simulations

1 Introduction

High-speed rail traffic operates significantly faster

than traditional rail transport. Its development poses

new challenges to the designer of structures along

these lines. For instance, some bridges are excited to

excessive vibrations when crossed by trains with high

speed, and the ultimate bridge deck acceleration may

be exceeded. As a consequence, the ballast becomes

unstable, the rail quality is impaired, and the hazard of

train derailment increases. Basically, it can be
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distinguished between two sources that may lead to

excessive bridge vibrations. Excitation to bridge

resonance at critical speeds is the result of repetitive

axle loading of the crossed bridge, transferred through

the train wheels to the structure. In this case, at a

critical speed, where the frequency of the moving

repetitive axle loads or a multiple of it is close to one

natural bridge frequency [14], the dynamic bridge

response exhibits a distinct resonance peak. The

second substantial source of large bridge vibrations

are track irregularities [27]. Track irregularities

increase the dynamic response not only at certain

critical speeds but in a large range of train speeds.

Although track irregularities are limited by regulations

[11], it should be considered that the track quality

decreases with time, and if insufficiently maintained,

track irregularities may become large.

From this short discussion it becomes apparent that

bridge and high-speed train represent a highly

dynamic interacting system, whose reliability should

be investigated in more detail by the design engineer.

Uncertainties of the train-bridge interaction problem,

which considerably influence the structural response,

are dispersing material parameters (in particular

damping), track irregularities, and environmental

effects [16, 23]. For instance, if ballast and subsoil

start to freeze due to the prevailing temperature

conditions, the global stiffness of the bridge, and

consequently, its natural frequencies increase. A

summary of the identified uncertainties of ballasted

railway bridge-train interaction and their quantifica-

tion and assumed distribution is provided in Salcher

[20] and Salcher et al. [24]. As outlined in several

studies, such as Gulvanessian et al. [13] and Ülker-

Kaustell and Karoumi [26], the bridge acceleration

response is often the limiting and decisive quantity

when a dynamic assessment of this interacting system

is necessary, whereas the ultimate load bearing

capacity of the bridge is usually not exceeded. In a

comprehensive reliability analysis, a stochastic simu-

lation method is applied, based on a sufficiently

sophisticated mechanical model of the bridge-train

interaction problem, and considering structural, envi-

ronmental and excitation uncertainties. The computa-

tional effort of crude Monte Carlo simulation (MCS),

which is robust, reliable, and conceptually the most

simple stochastic method to predict failure probabil-

ities of highly non-linear problems, becomes rapidly

prohibitively large when evaluating the nonlinear limit

state function of the considered problem for the

required small failure probabilities. Therefore, it is

desirable to use more efficient stochastic methods to

deal with high-dimensional reliability problems

including many uncertainties, such as line sampling

(LS) [15, 19], subset simulation (SS) [1], and asymp-

totic sampling (AS) [4], among others. In comparison

to crude MCS, depending on the considered problem,

those stochastic methods reduce the variance of the

probability and simultaneously also the number of

computationally expensive limit state function evalu-

ations. There are, however, problems where these

methods do not necessarily predict the actual proba-

bility of failure efficiently or even fail to predict the

failure probability. It is, thus, the objective of the

present contribution to evaluate suitability and effi-

ciency of LS, SS, and AS for assessing the reliability

of the bridge-train interaction problem.

In the simplest possible modeling approach, where

dynamic interaction between bridge and train is

explicitly considered, an uncertain beam represents

the bridge structure, and the train is described by an

uncertain planar mass-spring-damper (MSD) system.

In this approach, which is employed in this study,

coupling between the beam and the MSD system is

achieved through the so-called corresponding

assumption [29]. This modeling strategy captures all

essential characteristics of uncertain dynamic bridge-

train interaction with lowest possible numerical effort,

and thus, the problems can be solved for the required

number of samples. A brief summary of different

bridge-train models of various sophistication is, for

instance, provided in Cantero et al. [6].

In the present study, two bridge models subjected to

the Austrian high-speed train type Railjet serve as

example problems. The dynamic acceleration

response of one bridge is governed by a distinctive

resonance peak induced by the repetitive loads of the

Railjet train. In the second example problem, where in

the considered speed range no pronounced resonance

peak is observed, the dynamic response amplification

due to track irregularities becomes critical. These

example problems represent two classes of the bridge-

train interaction systems with fundamentally different

dynamic response characteristics that lead to an

exceedance of the ultimate bridge deck acceleration.

The paper is organized as follows. At first, a short

description of the utilized bridge-train interaction

model, and its uncertainties and random variables is
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provided. For the two example problems, reliability

analyses are conducted utilizing crude MCS. The

outcomes of these computationally expensive analyses

serve as reference solution for the subsequent evalu-

ation of LS, SS, and AS applied to predict the

reliability of the example problems. The paper is

concluded by a critical discussion about advantages

and drawbacks of LS, SS, and AS when applied to

dynamic train-bridge interaction systems.

2 Modeling approach

2.1 Mechanical bridge-train interaction model

Based on the substructure approach, the equations of

motion are specified for both the bridge and the train

subsystem model separately, and then coupled by

imposing coupling conditions at the interface of the

subsystems.

In this study, the bridge substructure is modeled as a

simply supported continuous Euler–Bernoulli beam

depicted in Fig. 1. Beam deflection w(x, t) of the

undamped Euler–Bernoulli beam bridge with uniform

bending stiffness EI and mass per unit length qA

subjected to a series of Nw concentrated forces F
ðiÞ
b ðtÞ,

i ¼ 1; . . .;Nw, moving with constant speed v is gov-

erned by the following partial differential equation of

motion [8, 28],

qA €wðx; tÞ þ EIw;xxxxðx; tÞ

¼
XNw

i¼1

F
ðiÞ
b ðtÞdðx� niÞ½Hðt � t

ð0Þ
i Þ � Hðt � t

ðEÞ
i Þ�

ð1Þ

Position ni ¼ vt � si of the ith interaction force F
ðiÞ
b ðtÞ

between track and the ith wheel pair of the train at time

t is indicated by delta function dðx� niÞ, see Fig. 1.

Heaviside functions H control the arrival and depar-

ture, respectively, of F
ðiÞ
b ðtÞ on the beam model at time

instants t
ð0Þ
i ¼ si=v and t

ðEÞ
i ¼ ðsi þ LÞ=v, respectively.

Modal expansion of w(x, t) by considering only the

first NU eigenfunctions UnðxÞ, wðx; tÞ �
PNU

n¼1

UnðxÞqnðtÞ, decouples the partial differential equation
of motion into NU ordinary single degree-of-freedom

oscillator equations in terms of modal coordinates

qnðtÞ [30],

€qn þ 2fnxn _qn þ xn
2qn ¼ pn; n ¼ 1; . . .;NU ð2Þ

with

pn ¼
1

mn

XNw

i¼1

F
ðiÞ
b ðtÞUnðx� niÞ½Hðt � t

ð0Þ
i Þ � Hðt � t

ðEÞ
i Þ�;

xn ¼
np
L

� �2

ffiffiffiffiffiffi
EI

qA

s

; Un ¼ sin
npx
L

; mn ¼
qAL
2

ð3Þ

In Eq. 2 bridge damping fn has been added modally.

The NU modal equations of motion written in matrix

form,

Mb €qb þ Cb _qb þKbqb ¼ pb ð4Þ

represent the mechanical model of the bridge subsys-

tem. Herein, Mb, Cb, Kb, pb denote the modal mass,

damping and stiffness matrix, and modal interaction

force vector, respectively,

Mb ¼ diag½m1; . . .;mNU �; Cb ¼ diag½2f1m1x1; . . .; 2fNU
mNUxNU �;

Kb ¼ diag½m1x
2
1; . . .;mNUx

2
NU
�; pb ¼ fm1p1; . . .;mNUpNUg

T

ð5Þ

In the present study, the dynamic response of the

considered bridge structures is approximated by seven

modes (i.e. NU ¼ 7), verified in convergence studies.

The Nc vehicles of the train subsystem are modeled

as planar MSD systems consisting of rigid bodies with

mass, which represent passenger stage, two bogies and

and four wheel pairs, connected by spring-dashpot

elements. As such, the interaction between the bridge

and the vehicle can be considered, and consequently,

also the effect of track irregularities. Figure 2 shows

the MSD system, representing both the power car and

the passenger cars of the Austrian high-speed train

type Railjet used in this study as reference high-speedFig. 1 Euler–Bernoulli beam bridge model, modified from

Salcher [20]
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train. In total, this vehicle model exhibits ten degrees-

of-freedom (DOFs), i.e. seven translational DOFs,

u
ðjÞ
p ; u

ð2j�1Þ
b ; u

ð2jÞ
b ; u

ð4j�3Þ
w ; u

ð4j�2Þ
w ; u

ð4j�1Þ
w ; u

ð4jÞ
w , and three

rotational DOFs, uðjÞ
p ;uð2j�1Þ

b ;uð2jÞ
b , here written for

the jth vehicle (j ¼ 1; . . .;Nc), see Fig. 2.

The equations of motion of the jth vehicle are, for

instance, derived by Lagrangian equations [30]. In a

common assumption that horizontal interaction

between the vehicles can be neglected, the equations

of motion of the train subsystem are expressed as [20]

Mc €uc þ Cc _uc þKcuc ¼ fc ð6Þ

where mass matrix Mc, damping matrix Cc, and

stiffness matrixKc are composed of the corresponding

vehicle submatrices

Mc ¼ diag½Mð1Þ
c ; . . .;MðjÞ

c ; . . .;MðNcÞ
c �;

Cc ¼ diag½Cð1Þ
c ; . . .;CðjÞ

c ; . . .;CðNcÞ
c �;

Kc ¼ diag½Kð1Þ
c ; . . .;KðjÞ

c ; . . .;KðNcÞ
c �

ð7Þ

Vehicle matrices MðjÞ
c , CðjÞ

c , and KðjÞ
c are found in

Salcher [20]. Displacement vector u
ðjÞ
c ¼ ½uðjÞpb; u

ðjÞ
w �T

concatenates all DOFs of the jth vehicle and is

composed of subvector u
ðjÞ
pb representing the six DOFs

of the passenger stage and bogies, and vector u
ðjÞ
w

representing the four DOFs of the four wheels in

contact with the bridge. Vector fc contains the static

axle forces and the dynamic interaction forces

between the wheel pairs and the beam [20],

uc ¼ fuð1Þc ; . . .; uðjÞc ; . . .; uðNcÞ
c gT ;

fc ¼ ffð1Þc ; . . .; fðjÞc ; . . .; fðNcÞ
c gT

ð8Þ

The Railjet train model used in this study is composed

of one power car and seven passenger cars, i.e. in total

Nc ¼ 8 vehicles and Nw ¼ 32 wheel pairs.

The equations of motion of the beam and MSD

subsystems, Eqs. (4) and (6), respectively, are coupled

according to the so-called corresponding assumption

[21]. This assumption implies that the elasticity of

wheel and track at the contact point is neglected and a

continuous contact of the bodies is supposed. Conse-

quently, the vertical displacement of the ith wheel

pair, u
ðiÞ
w ðtÞ, and of the track deflection at contact point

niðtÞ are equal ([20] and [29]),

uðiÞw ðtÞ ¼ wðniðtÞ; tÞ þ IrðniðtÞÞ

�
XNU

n¼1

UnðniðtÞÞqnðtÞ þ IrðniðtÞÞ; i ¼ 1; . . .;Nw

ð9Þ

The vertical track displacement is composed of bridge

deflection wðniðtÞ; tÞ and track irregularity described

by irregularity function IrðniðtÞÞ. From the corre-

sponding assumption it also follows that the contact

force between each wheel pair and track is equal,

F
ðiÞ
w ðtÞ ¼ F

ðiÞ
b ðtÞ, i ¼ 1; . . .;Nw. The general form of

the equations of motion is given as,

�M€�uþ �C _�uþ �K�u ¼ �f ð10Þ

with �u ¼ ½q; uð1Þpb ; u
ð2Þ
pb ; . . .; u

ðNcÞ
pb �T comprising the

modal coordinates of the beam and internal DOFs

u
ðjÞ
pb of each vehicle, 1� j�Nc. Due to coupling

condition Eq. 9 matrices �M, �C, and �K are time

dependent. Vector �f includes the modal representation

of the static axle loads, and first and second order time

derivatives of irregularity profile functions IrðniðtÞÞ
evaluated at position niðtÞ. In Biondi et al. [3], Salcher
and Adam [21] the applied CMS method, the involved

system matrices and vectors are described in full

detail.

2.2 Uncertainties and random variables

The uncertainties of a bridge-train interaction system

can be categorized into three groups. The first group is

related to the bridge, the second group to the excitation

Fig. 2 Planar MSD model for the jth vehicle of the high-speed

train Railjet, modified from Salcher and Adam [21]
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induced by the passing train, and the third group to the

environmental impact [22]. In this study, geometry

and material parameters of the train are assumed to be

deterministic.

According to Salcher [20] and Salcher et al. [24] the

most important uncertain bridge parameters are

damping, dispersing structural parameters, and the

properties of the ballast. In the current model, all

dissipation mechanisms of the bridge including struc-

ture, subsoil and track are captured globally by modal

damping coefficients fn (n ¼ 1; . . .;NUÞ, see Eq. 2,

assumed to be the same for all modes,

f � f1 ¼ � � � fn ¼ � � � fNU
. To describe the dispersion

of damping, coefficient f is modeled as truncated log-

normally distributed random variable. Its parameters

listed in Table 1 (i.e. mean f ¼ 1% and coefficient of

variation CV ¼ 0:3% [24]) refer to a ballasted steel

bridge [24]. The truncation at f ¼ 0:5% excludes

unlikely low damping values [24]. The Metropolis

algorithm [18] is used to generate the truncated log-

normally distributed samples of f. To consider the

effect of naturally dispersing structural properties,

moment of inertia I of the bridge girder is treated as

Gaussian distributed random variable. Mean and CV

are listed in Table 1. Due to water saturation and

sediment pollution, the ballast is a bridge element with

strongly dispersing properties. To capture this behav-

ior, in the model ballast density qb is assumed to be a

random variable with uniform distribution, see also

Table 1.

At high train speeds, track irregularities represent a

substantial source of excitation. In the present bridge

model track irregularities are considered via random

irregular track profile functions IrðxÞ, superposed to

the beam deflection, compare with Eq. (9). Random

profiles IrðxÞ are assumed to comply with a stationary

Gaussian stochastic process [25], realized as a

stochastic superposition of J harmonic functions with

discrete frequencies Xm, m ¼ 1; . . .; J, and uniformly

distributed random phase angle um in the range 0 to 2p
[7],

IrðxÞ ¼
ffiffiffi
2

p XJ

m¼1

Am cosðXmxþ umÞ;

Am ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðXmÞ

p
þ Sð0Þa

6p

� �
DX

s ð11Þ

In the frequency increment DX ¼ ðXu � XlÞ=J, Xu

denotes the upper boundary frequency and Xl the

lower boundary frequency. Note that a ¼ 4 for m ¼ 1,

a ¼ 1 for m ¼ 2, and a ¼ 0 for m ¼ 3; . . .; J. Variable

SðXmÞ represents the power spectral density,

expressed as one-sided density function UvðXmÞ [7],

SðXmÞ ¼
UvðXmÞ

2
; UvðXmÞ ¼ Q

X2
c

ðX2
r þ X2

mÞðX2
c þ X2

mÞ
ð12Þ

with Xc ¼ 0:8246 rad/m and Xr ¼ 0:0206 rad/m [7].

The uppermost frequency used to generate irregular

profiles is Xu ¼ 2:1 rad/m, and the lowermost fre-

quency Xl ¼ 0:07 rad/m. Amplitude Q, which defines

the track quality, is considered as continuous uni-

formly distributed random variable between the

boundaries 0:592 � 10�6 radm and 1:586 � 10�6 radm.

The lower boundary represents a high quality rail and

the upper boundary a low quality rail [7], see also

Table 1 Random variables

Variable Distribution Unit Mean (CV) Min–max

Damping f Trunc. log-norm. % 1 (0.3) –

Moment of inertia I Gaussian m4 0.155 (0.05) –

Density of ballast qb Uniform kg/m3 – 1700–2040

Irregularity profile Ir Stochastic process

Phase angle um Uniform rad – 0–2p

Amplitude Q Uniform radm – 0:592 � 10�6–1:586 � 10�6

Daily mean temperature T Extreme value �C 9.00 (1.01) –

Fully frozen state T1 Gaussian �C - 6.33 (0.54) –

Unfrozen state T0 Gaussian �C 0.69 (7.38) –

Young’s modulus of ice Eice Gaussian GPa 9.45 (0.05) –
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Table 1. In this study, track irregularities are gener-

ated by superposition of J ¼ 1000 harmonic functions.

Changing environmental conditions affect the

dynamic behavior of the bridge and in further conse-

quence its response. Measurements on ballasted

railway bridges have shown that their natural frequen-

cies change almost stepwise close to the freezing point

of the surrounding environmental temperature [12].

This behavior can be attributed to the change of water

inside the ballast and subsoil to ice at freezing

temperature, leading to an increase of the global

bridge stiffness. Considering that the natural bridge

frequencies are directly affected by the frost depth, in

Salcher et al. [24] a stochastic model capturing the

temperature dependence of the natural frequencies

was proposed, which is used for the current study. In

this model, the daily mean air temperature T is

considered as a random variable following an extreme

value distribution with its realizations Tj. The

unfrozen state of the ballast assumed to be attained

at a daily minimum temperature at ground Tg [ �
1�C and the fully frozen state at Tg\� 10�C are

defined by random variables T0 and T1, respectively,

expressed in terms of the conditional probability

distributions H0ðT ¼ TjjTg [ � 1�CÞ, H1ðT ¼
TjjTg\� 10�CÞ as a function of the daily mean

temperature T. If the daily mean temperature Tj is in-

between the temperature for the unfrozen and the fully

frozen state, Young’s modulus of the ballast is

determined by linear interpolation of the Young’s

modulus of the unfrozen and the fully frozen ballast

[24]. The parameters of the random variables of this

model listed in Table 1 are based on the temperature

data of Munich Airport [24].

The number of random variables, Nr, without track

irregularities is Nr ¼ 7. When considering track

irregularities, additional 1001 random variables are

considered, through the superposition of J ¼ 1000

harmonic functions with discrete frequencies Xm and

uniformly distributed random phase angle um.

Together with random irregularity amplitude Q, Nr ¼
1008 in total.

2.3 Definition of failure, limit state function,

and probability of failure

Failure of a structure indicates an undesirable state of

the structure, i.e. the structural response exceeds

certain limits that can be expressed in terms of a limit

state function (performance function) gðXÞ, where

X ¼ ðX1;X2; . . .;XNr
Þ is the vector comprising the Nr

random input variables. In general, the load bearing

capacity of railway bridge structures is satisfied,

however, the admissible vertical bridge deck acceler-

ation may be exceeded when crossed by a high-speed

train with critical speed. Large bridge deck acceler-

ations may lead to ballast instability, and thus, it is

commonly the limiting factor in the dynamic design of

railway bridges [6]. In the present study, bridge deck

acceleration €w at a given speed v governs the limit

state in the stochastic reliability approach of the

bridge-train interaction system. The corresponding

safety distance reads as

ZðvÞ ¼ �cbt �max €wðx; tÞj jðvÞ ð13Þ

where �cbt is the acceleration threshold for a full

stochastic reliability assessment of a ballasted railway

bridge. In the present study, �cbt ¼ 7 m/s2 is a deter-

ministic quantity that is two times the acceleration

limit value of 3.5 m/s2 associated with ballast insta-

bility, recommended in design guideline Eurocode 1

[10] for a semi-probabilistic bridge assessment. In this

way, the safety factor of two is eliminated [24]. Failure

is predicted if the limit state function gðZÞ� 0, with

safety distance Z according to Eq. (13).

Probability of failure pf is defined as probability P

that an undesired state is reached: pf ¼ PðfX :

gðXÞ� 0gÞ [5]. Since instability of the ballast is a

serviceability problem, according to Eurocode 0 [9]

the maximum probability of failure of this class 2

bridge-train interacting system is pf ¼ 10�3 for the

serviceability limit state (SLS). Crude Monte Carlo

simulation (MCS) is conceptually the most simple and

a robust numerical method to evaluate pf . When

applying MCS, NMC independent and identically

distributed samples xðrÞ (r ¼ 1; . . .;NMC) with distri-

bution as defined before are generated. For each

sample, the limit state function is computed (com-

monly numerically, for instance, by response history

analysis). When the response of the sample is inside

the failure domain Xf ðxÞ ¼ fx : gðxÞ� 0g, indicator
function If ðxÞ is one, and zero otherwise. The

approximation pf � p̂MC
f ¼ 1

NMC

PNMC

r¼1 If ðxðrÞÞ repre-

sents an unbiased estimate of pf [5]. If NMC is

sufficiently large, the predicted probability of failure
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p̂MC
f is reliable, and the efficiency of this method does

not depend on the dimension Nr of the problem.

However, for complex structural systems, such as

elaborate three-dimensional mechanical models of

bridge-train interaction including the subsoil, the

computational costs of MCS are prohibitively large.

Thus, subsequently, three alternative stochastic meth-

ods, i.e. LS, SS, and AS, are tested on two example

problems. A short summary of these alternative

stochastic methods as applied in this study can be

found in the ‘‘Appendix’’.

In the present study, the outcomes of a crude MCS

with NMC ¼ 10;000 samples for discrete train speeds

in the range from 20 to 100 m/s (speed increment 1 m/

s) serve as reference solutions. With this sample size,

the required failure probability pf ¼ 10�3 can be

reliably predicted [24].

3 Example problems

For the assessment of the considered stochastic

methods two different bridge structures are consid-

ered. The bridges located close to Munich airport are

assumed to be crossed by the Austrian high-speed train

type Railjet with the common configuration of one

power car and seven passenger cars. The deterministic

parameters of the corresponding planar MSD vehicle

model according to Fig. 2 are found in Salcher [20].

Example bridge 1 is a simply supported ballasted

steel bridge of span L ¼ 16:8 m with mean bending

stiffness EI ¼ 3:262 � 1010 Nm2 and mean mass per

unit length qA ¼ 1:220 � 104 kg/m. Natural frequen-

cies of this model with assigned mean parameters are

f1 ¼ 9:10 Hz, f2 ¼ 36:4 Hz, f3 ¼ 81:9 Hz,

f4 ¼ 145 Hz, f5 ¼ 227 Hz, f6 ¼ 327 Hz, and

f7 ¼ 445 Hz. Figure 3 shows the peak acceleration,

max €wðx; tÞj j, of the mean parameter bridge with

perfect (smooth) tracks (red line) and with one

arbitrarily chosen sample of irregular rail profiles

(black line), respectively, as a function of train speed v

in the range 20� v� 100 m/s. As observed, the

spectra exhibit a distinct local maximum close to

critical speed v
ð1Þ
2 ¼ 75:1 m/s, i.e. the acceleration

response is dominated by one significant resonance

peak where max €wðx; tÞj j 	 �cbt. Note that at a critical

train speed, defined as v
ðnÞ
l ¼ dfn=l; l ¼ 1; 2; 3; . . .

[14], the nth natural bridge frequency fn ¼ xn=ð2pÞ is

excited to a state of resonance due to the repetitive axle

loads with constant distance d. For the Railjet train this

distance corresponds to wagon length d ¼ 16:5 m. It

is also seen that irregular rails amplify considerably

the peak acceleration, and close to the resonance peak

the acceleration threshold �cbt ¼ 7 m/s2 is exceeded.

This model is, thus, representative for bridges whose

peak acceleration amplification is governed by reso-

nance due to repetitive axle loads.

For the MCS reference solution, 10, 000 random

bridge samples are generated. Figure 4a shows

max €wðx; tÞj j of those samples disregarding track

irregularities plotted against speed v. Additionally,

mean, 10% and 90% quantiles, minimum and maxi-

mum of these spectra are depicted. In the range around

critical speed v
ð1Þ
2 , acceleration threshold �cbt ¼ 7 m/s2

is frequently exceeded. The corresponding spectra of

the bridge considering track irregularities modeled

according to Eq. 11 are depicted in Fig. 4b. Compar-

ing Fig. 4b with Fig. 4a confirms that track irregular-

ities increase the peak bridge acceleration, in this

example particularly at speeds larger than 60 m/s.

The second bridge is a simply supported steel

bridge of length L ¼ 21:36 m, mean bending stiffness

EI ¼ 2:562 � 1010 Nm2 and mass per unit length

qA ¼ 0:813 � 104 kg/m. The first seven frequencies

of this model with assigned mean parameters are

f1 ¼ 6:11 Hz, f2 ¼ 24:4 Hz, f3 ¼ 55:0 Hz,

f4 ¼ 98 Hz, f5 ¼ 153 Hz, f6 ¼ 220 Hz, and

f7 ¼ 300 Hz. Figure 5 shows the peak acceleration

spectrum of a bridge model with perfect tracks (red

line) and of a model with an arbitrary irregular track

profile (black line). In contrast to bridge 1, the

Fig. 3 Bridge peak acceleration spectra of deterministic bridge

model 1 with perfect track and irregular track, respectively
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structural acceleration response of this object is not

dominated by one significant resonance peak. The

global acceleration maximum is reached close to

resonance speed v
ð3Þ
10 ¼ 90:8 m/s. Additionally, sev-

eral less pronounced resonance peaks with local

acceleration maxima close to critical train speeds

v
ð2Þ
5 ¼ 80:7 m/s, v

ð2Þ
7 ¼ 57:6 m/s, v

ð2Þ
10 ¼ 40:3 m/s, and

v
ð2Þ
13 ¼ 31:0 m/s are observed. The maximum peak

acceleration is much less than acceleration threshold

�cbt ¼ 7 m/s2. However, the results indicate that rail

irregularities increase the bridge response signifi-

cantly, and hence, a reliability assessment is con-

ducted considering the random variables introduced

previously.

In Fig. 6a the beam peak acceleration of NMC ¼
10; 000 random bridge samples for train speeds in the

range from 20 to 100 m/s is depicted. These results

show that at bridge 2 with perfectly smooth rails

acceleration threshold �cbt ¼ 7 m/s2 is exceeded so

infrequent that the probability of failure is less than

10�3. Spectra of bridge model 2 considering track

irregularities are depicted in Fig. 6b. Especially at

train speeds larger than 50 m/s track irregularities

increase the peak accelerations compared to the

samples with perfectly smooth rails. The exceedance

of �cbt is primarily caused by track irregularities, i.e. the

peak bridge accelerations of bridge structure 2 is

significantly dominated by track irregularities.

4 Assessment of stochastic methods for dynamic

bridge-train interacting systems

4.1 Prediction of the probability of failure

Example bridge 1

Figure 7a shows probability of failure pf of the bridge

with perfect (smooth) rails in logarithmic scale,

plotted against train speed v in the critical range from

60 m/s up to 90 m/s. Circular markers refer to the

reference solution derived by crude MCS with 10, 000

samples. As observed, at speed v ¼ 71 m/s, pf

estimated by crude MCS is 10�4. At lower speeds,

pf is less than 10
�6, and thus, cannot be predicted with

the used sample size. With increasing v also pf

increases, and for a probability of failure pf ¼ 10�3

the acceleration threshold �cbt ¼ 7 m/s2 is the first time

exceeded at v ¼ 72:0 m/s. Note that pf ¼ 10�3 corre-

sponds to ten failed samples out of 10, 000. The

Fig. 4 Bridge peak acceleration spectra of 10,000 samples and statistically evaluated spectra. Example bridge 1 with a perfect track;

b irregular track

Fig. 5 Bridge peak acceleration spectra of one sample of bridge

model 2 with perfect track and irregular track, respectively
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maximum observed probability of failure of pf ¼
0:192 is attained at speed v ¼ 78:0 m/s, which is close

to critical speed v
ð1Þ
2 ¼ 75:1 m/s. Subsequently, with

further increasing speed, pf becomes continually

smaller. At v ¼ 84 m/s, pf is again \10�3.

Additionally, in this figure also the outcomes of LS

based on NLS ¼ 100 lines (star-shaped markers), SS

(plus-shaped markers), and AS (square-shaped mark-

ers) are depicted. Line Sampling as utilized in this

example is based on simplified limit state evaluation of

the root by quadratic interpolation, as explained

Appendix ‘‘Line sampling’’. For SS of this particular

study, an initial sample size of NSS ¼ 100 and

intermediate failure probabilities of pinterm ¼ 0:1 have

been selected. The limit state function is evaluated for

the NSS initial Monte Carlo samples. The number of

samples that lie closest to the failure domain of these

NSS initial samples is NSSw ¼ NSSpinterm. In this exam-

ple, at each of the following ðk � 1Þ substeps, the

worst 10% of the samples serve as seeds for Markov

chains of length Cl ¼ 10 used to determine the

intermediate probabilities of failure according to the

conditional probability density functions qðxjFmÞ, see
Eq. (18). Asymptotic sampling as applied in this

contribution with NAS ¼ 100 initial samples, starts at

(1=r ¼ 1), evaluating the limit state function NAS ¼
100 times. Subsequently 1=r is successively reduced

by 0.1 until failure of the structure is reached, leading

to one pair of ð1=r; bÞ. Five pairs of ð1=r; bÞ are used
to determine bð1Þ by a least squares fit.

It is seen that LS, SS, and AS with the selected

resolution predict the general trend of pf with respect

to speed v, however, at some specific speeds discrep-

ancy and scatter compared to the crude MCS solution

is quite large. As discussed in Appendix ‘‘Line

(a) (b)

Fig. 6 Bridge peak acceleration spectra of 10,000 samples and statistically evaluated spectra. Example bridge 2 with a perfect track;

b irregular track

(a) (b)

Fig. 7 Probability of failure pf based on crude Monte Carlo simulation, line sampling (100 lines), subset simulation (100 initial

samples), and asymptotic sampling (100 initial samples). Example bridge 1 with a perfect track; b irregular track
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sampling’’, importance direction ea of LS points

towards the gradient of g(Z) at the origin in standard

normal space. According to the outcomes of LS with

NLS ¼ 100 lines, the desired pf of 10
�3 is exceeded at a

speed of v ¼ 74 m/s. Subset simulation and AS

predict for pf ¼ 10�3 a maximum admissible speed

of v ¼ 73 m/s and v ¼ 72 m/s, respectively.

Figure 7b shows pf with respect to v for the bridge

with track irregularities, derived by the same stochas-

tic methods with same parameters as before. The pf -

predictions are based on simplified LS, simplified SS,

and simplified AS. In particular, track irregularities are

neglected in the algorithms of the stochastic proce-

dures and only considered when evaluating the limit

state function. That is, the importance direction of

simplified LS is determined without considering track

irregularities. Concerning simplified SS, the Markov

chains are evaluated leaving the random phase angles

of the irregularity profiles out of consideration. The

number of random variables for simplified AS is the

same as for the bridge with perfect rails, i.e. Nr ¼ 7.

For instance, at v ¼ 72 m/s, for the structure with

irregular tracks pf estimated by crude MCS is

1:4 � 10�3, while for the perfectly smooth bridge

pf ¼ 1:1 � 10�3. However, the maximum probability

of failure is similar for both structural models, i.e.

pf ¼ 0:209 at v ¼ 78 m/s (irregular rails), and pf ¼
0:192 at v ¼ 78 m/s (perfect rails). Interestingly

enough, also in the bridge with irregular profiles the

target probability of failure of 10�3 is exceeded at the

same speed as in the object with perfect tracks, i.e.

v ¼ 72 m/s. Also here, the difference of pf -predictions

from LS, SS, and AS compared to the reference MCS

outcomes are significant. In particular, at several

discrete speeds SS does not predict failure with

pf [ 10�6 with the employed number of initial

samples.

In a subsequent study, LS with NLS ¼ 300 initial

lines, SS withNSS ¼ 300 initial samples (pinterm ¼ 0:1)

and AS with NAS ¼ 300 initial samples is conducted,

in an effort to determine pf more reliably. Figure 8a

for perfect tracks and Fig. 8b for irregular track

profiles show that an increased number of lines

respectively increased initial sample size significantly

improves the accuracy of these methods. In the entire

considered speed range, the difference between refer-

ence pf from crude MCS, and the outcomes of LS, SS

and AS is small. It can be, thus, concluded that in this

example problem simplified LS, simplified SS and

simplified AS predict accurately the probability of the

failure if the number of lines and initial samples,

respectively, is sufficiently large. This outcome also

confirms the chosen strategy, where the importance

direction of simplified LS and the Markov chains of

simplified SS have been determined without consid-

ering the random variables of the track irregularities.

In the simplified AS approach, the random variables of

the irregular profiles have been also neglected when

initially generating the random samples. Such simpli-

fied LS, SS and AS procedures perform well, because

in the considered bridge-train interaction problem

failure is governed by resonance close to critical speed

v
ð1Þ
2 ¼ 75:1 m/s.

Line sampling allows also to determine failure

domain Xf ¼ fZ : gðZÞ� 0g [17] of the bridge-train

interaction system. To this end, limit state function

g(Z) is evaluated at certain distances b along the

random lines in standard normal space (see Appendix

‘‘Line sampling’’). As outcome, Fig. 9 shows for train

speed v ¼ 80 m/s the limit state function of the bridge-

train interaction system (a) without track irregularities

and (b) considering track irregularities along NLS ¼
100 lines plotted in standard normal space against LS

parameter b, with� 5� b� 5. Direction a of the walk
along the lines corresponds to importance direction ea
of LS with NLS ¼ 100 lines. If gðZÞ� 0, the failure

state of the bridge-train interaction system is reached,

i.e. the actual peak bridge acceleration, max j €wðx; tÞj,
exceeds the threshold of the permissible deck accel-

eration �cbt ¼ 7 m/s2, i.e. �cbt �max j €wðx; tÞj � 0. A

positive limit state function implies that the bridge-

train interaction system is safe. As can be seen, the

limit state function is negative only in a certain range

of b, i.e. in the range around critical speed v
ð1Þ
2 . At

lower and higher speeds the acceleration threshold of

7.0 m/s2 is not exceeded, see also Figs. 4a, b. This

result shows that the failure domain of the considered

bridge-train problem is bounded. It is also observed

that the scatter of gwith respect to b is much larger for

the bridge samples with irregular rail profiles than for

objects with smooth track surface, compare with

Fig. 9b. Reason behind this response behavior is that

in the importance direction of ea for LS track

irregularities are not taken into account but only the

limit state function is assumed to be random.
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Crude MCS with increased standard deviation does

not necessarily generate more samples in a bounded

failure domain as in the considered problem. Conse-

quently, AS withNAS ¼ 100 initial samples, which has

been developed for unbounded failure domains, does

not accurately predict pf of the bridge. In theory, LS is

also based on the assumption of an unbounded failure

domain, however, in the present study LS has been

proven to be more robust than AS when using NLS ¼
300 lines.

Example bridge 2

Subsequently, the assessment of probability of failure

pf of example bridge 2 by the considered stochastic

methods is discussed. Figure 10 depicts pf in the

critical range from 60 m/s up to 90 m/s resulting from

crude MCS (circular markers), LS with 100 lines (star-

shaped markers), SS with 100 initial samples (cross-

shaped markers), and AS with 100 initial samples

(square-shaped markers) for bridge 2 with perfect (left

subplot) and irregular tracks (right subplot).

In the perfect bridge, according to the outcomes of a

crude MCS with sample size NMC ¼ 10; 000, solely at

speed v ¼ 83 m/s the object fails with the failure

probability pf ¼ 2 � 10�4, compare also with Fig. 6a.

Since crude MCS with NMC ¼ 10; 000 samples esti-

mates only failure probabilities up to 10�3 with a

coefficient of variation of 0.3 reliably, another com-

putation of pf at speed v ¼ 83 m/s with the appropriate

number of NMC ¼ 100;000 samples has been con-

ducted. The latter MCS yields a failure probability of

pf ¼ 1:5 � 10�4, which is close to the outcome of the

first MCS (i.e. pf ¼ 2 � 10�4) with NMC ¼ 10; 000

samples. At discrete speeds other than 83 m/s no

failure is predicted larger than 10�6. Line sampling,

SS, and AS with an equivalent setup as in bridge

example 1 and the resolution specified above fail to

(a) (b)

Fig. 8 Probability of failure pf based on crude Monte Carlo simulation, line sampling (300 lines), subset simulation (300 initial

samples), and asymptotic sampling (300 initial samples). Example bridge 1 with a perfect track; b irregular track

Fig. 9 Performance along NLS ¼ 100 lines v ¼ 80 m/s. Example bridge 1 with a perfect track; b irregular track
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predict the failure probabilities resulting from crude

MCS with NMC ¼ 10; 000 samples both for the bridge

samples with perfect and irregular rail profiles.

In a further effort to predict pf more precisely, the

resolution of LS and SS is increased, as in the bridge

example 1. That is, LS with NLS ¼ 300 initial lines,

and SS with NSS ¼ 300 initial samples and pinterm ¼
0:1 is conducted. For perfect tracks, according to the

results shown in Fig. 11a, at speed v ¼ 83 m/s LS and

SS with enhanced resolution deliver a probability of

failure very close to the MCS reference solution. In

particular, LS with NLS ¼ 300 lines results in

pf ¼ 1:47 � 10�4, and SS with NSS ¼ 300 initial lines

yields pf ¼ 2:6 � 10�4, compared to pf ¼ 2 � 10�4

from MCS with NMC ¼ 10; 000 initial samples. In

contrast to crude MCS, LS and SS also predict failure

probabilities at speeds close to v ¼ 83 m/s, however,

they are too small to be predicted by MCS with the

considered sample size.

Figure 11b shows that a larger sample size does not

enhance the capability of simplified LS, simplified SS,

and simplified AS to predict reliably pf of bridge 2 in

the presence of rail irregularities. The outcomes of LS,

SS, and AS diverge strongly from the reference crude

MCS results. It can be concluded that LS, where the

importance direction ea has been estimated without

considering random irregularity amplitudes Q and

random phase angle um, cannot predict pf if the track

irregularities are the governing source of failure.

Likewise, for this type of railway bridges, SS fails to

predict pf because the acceptance of new samples are

disturbed ifQ andum are not considered in theMarkov

(a) (b)

Fig. 10 Probability of failure pf based on crude Monte Carlo simulation, line sampling (100 lines), subset simulation (100 initial

samples), and asymptotic sampling (100 initial samples). Example bridge 2 with a perfect track; b irregular track

(a) (b)

Fig. 11 Probability of failure pf based on crude Monte Carlo simulation, line sampling (300 lines), subset simulation (300 initial

samples), and asymptotic sampling (300 initial samples). Example bridge 2 with a perfect track; b irregular track
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Chain Monte Carlo procedure used to generate the

conditional samples. This is in contrast to bridge

example 1 with one dominating resonance speed,

where the simplified versions of LS, SS, and AS (i.e.

random irregularity variables are considered only in

the evaluation of the limit state function) allow to

predict pf of bridges with random irregularity profiles.

Subsequently, modifications of SS and AS are

proposed aiming at improving their performance for a

bridge-train interaction problem whose failure is

governed by track irregularities. Subset simulation is

modified in this respect that random amplitude Q and

random phase angle um are taken into account when

determining the acceptance ratio of the Markov Chain

Monte Carlo algorithm, which is necessary to generate

the conditional samples. This modification does not

impair the efficiency of SS because no additional

evaluations of the limit state function need to be

conducted. To account in AS explicitly for track

irregularities, initial samples NAS of all Nr ¼ 1008

random variables (i.e. also including the random

variables of the irregularity profiles) are generated.

This modification affects only slightly the efficiency

of AS because again no additional limit state evalu-

ations are necessary. In AS as applied in bridge

problem 1, an initial vector is generated using the

seven random variables of the perfect bridge, and the

rail irregularities are only considered when evaluating

the limit state function. The outcomes show that these

modified versions of SS and AS yield predictions of pf
that are still far-off the reference solution, and are,

thus, not reliable.

However, repetitive prediction of pf using a small

number of initial lines/samples and averaging over

these multiple pf -predictions improves significantly

the accuracy of LS (quadratic interpolation) and

modified SS. Figure 12 depicts the mean of pf
determined by LS applied five times with NLS ¼ 100

initial lines each. As observed, the results of LS based

on such procedure reflect the global trend of pf of

bridge-train interaction problem 2, however, at certain

speeds the differences between the LS predictions and

the outcomes of MCS are still large. In contrast, the

average of pf as outcome of five modified SS

applications with NSS ¼ 100 initial samples each also

shown in Fig. 12 reveal the accuracy of this modified

SS approach.

4.2 Discussion on the computational efficiency

In LS, the central difference quotient has been used to

determine the gradient at the origin in standard normal

space, which corresponds to importance direction ea,

based on the Nr ¼ 7 independent random variables in

the considered example (without the random variables

of the track irregularities). Thus, additionally to the

computations of the Monte Carlo samples as starting

points for each line (i.e. in this study NLS ¼ 100 and

NLS ¼ 300, respectively), the limit state function

needs to be evaluated 2Nr times more, with Nr

denoting the total number of random variables. In a

first LS approach, where the root gðZÞ ¼ 0 is found by

quadratic interpolation, for each of the NLS lines the

limit state function is evaluated at three points,

requiring altogether additional 3NLS limit state func-

tion evaluations. Hence, for this LS approach as

performed for the assessment of example bridge 1, the

limit state function is evaluated in total NLStot ¼
3NLS þ 2Nr times to predict probability of failure pf
for a single train speed v. That is, with Nr ¼ 7

independent random variables in the considered

example and NLS ¼ 100 initial lines, the total number

of simulations NLStot adds up 314. When taking 300

initial lines, NLStot is 914, which is significantly less

than the 10, 000 samples of crude MCS for a

pf ¼ 10�3. Consequently, considering pf at a distinct

speed v, LS reduces reasonably the number of limit

state function evaluations compared to crude MCS. In

the second example bridge, the first LS approach

repeatedly applied five times with NLS ¼ 100 initial

Fig. 12 Probability of failure pf based on crude Monte Carlo

simulation, line sampling (5
 100 lines) and modified subset

simulation (5
 100 initial samples). Example bridge 2 with

irregular track
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lines each, is computationally more efficient than

crude MCS. However, at certain train speeds pf
obtained by averaging the individual probability of

failures diverges from the crude MCS outcome

because the track irregularities impair the simplified

estimation of ea.

For SS the total number of limit state function

evaluations, referred to as NSStot, depends on the actual

probability of failure, the number of initial seeds, and

the length of the Markov chains used to generate

conditional intermediate samples. Since in the present

study for the intermediate probability of failure a value

of pinterm ¼ 0:1 has been specified, 10% ofNSS serve as

Markov chain seeds NSSw. In the next ðk � 1Þ substeps,
the limit state function is evaluated ðNSS � NSSwÞ
times. The iteration is stopped when the actual

intermediate probability of failure at the current step

is larger than the predefined value of pinterm ¼ 0:1.

Thus, in total, subset simulation comprises NSS

evaluations of the limit state function at the initial

MCS step, and ðNSS � NSSwÞ evaluations at each of the
ðk � 1Þ substeps. To predict a pf of 10

�1, the initial

sample of NSS ¼ 100 without any substeps is suffi-

ciently large. A pf of 10
�3 requires NSS ¼ 100 initial

samples plus ðNSS � NSSwÞ samples at ðk � 1Þ ¼ 2

substeps, i.e. in total NSStot ¼ 280 limit state function

evaluations. When selecting an initial sample size of

NSS ¼ 300, the limit state function needs to be

evaluated NSStot ¼ 840 times to predict a pf of 10�3

reliably. Repetitive application of modified SS based

on NSS ¼ 5x100 initial samples is more efficient than

crude MCS to determine pf of the second bridge-train

interaction problems where track irregularities dom-

inate the structural response amplification. This results

in total in NSStot ¼ 5x280 ¼ 1400 limit state function

evaluations to determine pf in the range of 10�3.

The computational efficiency of AS depends on pf .

For the present bridge-train interaction problem 1

considering failure probabilities above 10�3 in the

speed range of 72 to 84 m/s failure is usually reached

at (1=r ¼ 1) or (1=r ¼ 0:9) or (1=r ¼ 0:8). Since five

pairs are used to determine pf , the limit state function

is evaluated in total at least NAStot ¼ 500 times. The

simulation time for one limit state function evaluation

was on an average about 5 s but depends on the actual

train speed. In the actual study, due to the large

computational effort of crude MCS with NMC ¼
10; 000 samples, the simulations were carried out on

two different machines with different architecture.

Crude MCS with NMC ¼ 10; 000 samples was con-

ducted on the high performance computer cluster

LEO3 of the University of Innsbruck, split into 100

packages yielding 100 response spectra each. The

computation time for one package was tMC � 11:3 h,

whereas sequential computing would have lasted 47

days. At the cluster, the packages were solved in

parallel. The simulations for LS, SS and AS were

conducted on a local machine, i.e. an Apple worksta-

tion with 6 core Intel(R) Xeon(R) CPU E5-1650 V2@

3.50GHz processor. On an average for one discrete

speed, LS with NLS ¼ 100 lines took tLS100 � 0:44 h

and LS with NLS ¼ 300 lines tLS300 � 1:3 h. The

prediction of the 31 discrete failure probabilities in

the critical speed range from v ¼ 60 m/s up to

v ¼ 90 m/s added up on an average to

ttotLS100 � 13:5 h (NLS ¼ 100) and to ttotLS300 � 40:3 h

(NLS ¼ 300 lines), respectively. Subset simulation

with NSS ¼ 100 initial samples took for one discrete

train speed about tSS100 � 0:38 h, and in total

ttotSS100 � 12:1 h for the critical speed range. For the

larger initial sample size of NSS ¼ 300, the computa-

tion time increased to tSS300 � 1:2 h (one speed) and

ttotSS300 � 37:2 h (critical speed range), respectively.

Asymptotic sampling with an initial sample number

NAS ¼ 100 yielded a minimum computation time of

tAS100 � 0:14 h, and withNAS ¼ 300 tAS300 � 0:42 h for

one discrete train speed. The prediction of failure

probabilities in the order of pf � 10�3 with AS led

rapidly to a significant increase of the computational

effort.

5 Conclusions

In this paper, applicability and efficiency of line

sampling (LS), subset simulation (SS), and asymptotic

sampling (AS) for a stochastic-based reliability

assessment of railway bridges subjected to high-speed

trains were evaluated. The limit state of this problem is

governed by the bridge deck acceleration. These

stochastic methods were employed to predict failure

probabilities of two bridge-train interaction problems

with different response characteristics. In example

problem 1, structural accelerations leading to the

exceedance of the limit state are related to one

significant resonance peak, whereas in example

123

1398 Meccanica (2019) 54:1385–1402



problem 2 track irregularities are the primary source of

inadmissible large peak bridge acceleration amplifi-

cations. Random parameters were defined to capture

the essential uncertainties.

Compared to crudeMonte Carlo simulation (MCS),

in example bridge 1 LS, SS, and AS reduce signifi-

cantly the number of limit state function evaluations

for a reliable prediction of the probability of failure pf

in the order of 10�3. It was shown that LS with a

resolution of 300 random lines pointing towards the

importance direction delivers a failure probability

close to the reference solution obtained by crude MCS

based on 10, 000 samples. For bridge 1, performance

and accuracy of SS turned out to be sufficient when

using 300 initial samples. It was also shown that for

this object accuracy and efficiency of AS is similar to

LS and SS.

The dimension of the systems with perfectly

smooth tracks is low, i.e. in the current study the

number of random variables is seven. When taking

track irregularities into account, the problem becomes

of high dimension with 1008 uncertain parameters

involved. This high-dimensionality puts some con-

straints on the efficient applicability of LS, SS, and AS

to dynamic bridge-train interaction. Thus, in a sim-

plified approach, the importance direction in LS and

the acceptance ratios of the Metropolis-Hastings

algorithm in SS are purely based on the limited

number of random variables of the system with

smooth tracks, whereas the limit state function is

evaluated considering the full set of random variables

including the ones of the random irregularity profiles.

For example bridge 1, whose peak accelerations are

dominated by resonance at a critical speed, this

simplification did not impose any limitation to predict

the probability of failure reliably by LS, SS, and AS.

However, in the second example object 2, where track

irregularities govern the acceleration amplification,

such simplified approach impairs LS, SS, and AS, and

consequently, these methods fail to predict the actual

failure probability.

Modification of SS by considering the random

variables of the track irregularities in the Markov

Chain Monte Carlo procedure improves the accuracy

of pf -estimations also for example bridge 2. The

robustness can be further enhanced by a serial

application of LS and SS with a relatively low number

of lines and initial samples, respectively, and then,

averaging the individual pf estimates. Conducting five

times LS with 100 initial lines on bridge example 2

allowed to predict qualitatively pf with respect to

speed v. Modified SS based on 100 initial samples and

five reiterations yields also quantitatively the refer-

ence pf obtained by crude MCS.

From this study it can be concluded that LS, SS, and

AS are reliable methods to predict the probability of

failure of the bridge-train interaction problem when

appropriately applied. The required sophistication of

these methods, and thus, their computational effi-

ciency, depends on the response characteristics of the

considered bridge. The failure probability of railway

bridge objects, where mainly track irregularities

amplify the random response, can only be predicted

by more robust and less computationally efficient

stochastic methods, such as repeated application of

modified SS and crude MCS.
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Appendix 1: Summary of applied stochastic

methods

This appendix provides short descriptions of the

assessed stochastic methods in an extent necessary to

understand the previous discussion on their efficiency

to predict the probability of failure of the bridge-train

interaction problem.

Line sampling

Line sampling (LS) [15, 19] allows to determine small

failure probabilities of complex nonlinear high-
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dimensional systems with many uncertain parameters,

where the evaluation of limit state function gðxÞ is

numerically expensive. Line sampling utilizes random

lines instead of random points to examine the failure

domain. Estimate p̂LSf of probability of failure pf is

obtained by computing the one-dimensional failure

probability along these lines pointing towards failure

domain Xf ðxÞ of the problem. The direction of the

random lines, referred to as importance direction a,
points towards Xf ðxÞ. To put it another way, a is

defined as the direction of greatest impact on perfor-

mance function gðxÞ in standard normal space [19]. In

the present study, the gradient of the performance

function,

rgðxÞ ¼ ogðxÞ
ox1

ogðxÞ
ox2

. . .
ogðxÞ
oxNr

� �T
ð14Þ

serves as importance direction a because it points

towards the greatest rate of increase of performance

function gðxÞ. Determining single points in the

random variable space leads to computationally

demanding evaluations of the nonlinear limit state

function for each point of interest. Calculation of

gradient rgðxÞ at point x of the implicitly available

limit state function gðxÞ is achieved through 2Nr limit

state function evaluations (such as the central differ-

ence quotient) of gðxÞ [19], compare with Eq. (14).

Then, the normalized direction ea ¼ � rgðxÞ
krgðxÞk can be

computed, which provides information on the param-

eter variation leading to the greatest impact on gðxÞ.
To estimate pf by LS, first direct MCS is carried out

by generating NLS samples xðrÞ, r ¼ 1. . .NLS. Then, for

each of the NLS samples the one-dimensional reliabil-

ity problem (along one line) is solved, where the

probability of failure of the rth one-dimensional

reliability problem p
ðrÞ
f is given by p

ðrÞ
f ¼ Uð�bðrÞÞ

[19]. Herein, U denotes the standardized Gaussian

cumulative distribution function, and bðrÞ is the safety
index of the rth one-dimensional reliability problem.

Safety index bðrÞ is the distance from the origin to the

boundary of the failure domain, g ¼ 0, along one line.

An approximation of bðrÞ can be obtained by quadratic
interpolation [19], where the values of the limit state

function evaluated at three different b-values serve as
data points for a fitted second-order polynomial,

whose root approximates bðrÞ.

After analysis of p
ðrÞ
f for each of the NLS samples,

the LS estimator of the probability of failure p̂LSf is

determined [19],

p̂LSf ¼ 1

NLS

XNLS

r¼1

p
ðrÞ
f ð15Þ

The computational effort to numerically determine the

gradient increases with the dimension of the problem

and may even become prohibitively large in high

dimensions.

Subset simulation

The basic concept of the subset simulation (SS)

method [1] is to express failure event F as a sequence

of intermediate failure events

F1 � F2 � . . . � Fk ¼ F. Probability of failure pf is,

thus, given by the product of a sequence of conditional

intermediate probabilities fPðFmþ1jFmÞ : m ¼
1; . . .; k � 1g and PðF1Þ [1],

pf ¼ PðFÞ ¼ PðFkÞ ¼ PðF1Þ
Yk�1

m¼1

PðFmþ1jFmÞ ð16Þ

By appropriate choice of the intermediate failure

events, the conditional intermediate probabilities of

failure become larger, and hence, the actual probabil-

ity of failure can be computed more efficiently by

simulation of the more frequent intermediate failure

events. The ðmþ 1Þth intermediate probability of

failure, p
ðmþ1Þ
interm , is given by p

ðmþ1Þ
interm ¼ PðFmþ1jFmÞ.

First, NSS initial samples by direct MCS are simulated,

and the probability of failure of the first step,

pf1 ¼ PðF1Þ, is estimated by

pf1 � p̂MC
1 ¼ 1

NSS

PNSS

r¼1 IF1
ðxðrÞÞ. To estimate p

ðmÞ
interm,

MCS with NSSi independent conditional samples can

be used [1],

pminterm � p̂MC
m ¼ 1

NSSi

XNSSi

i¼1

IFm
ðxðiÞm�1Þ ð17Þ

The SS procedure is stopped when the actual inter-

mediate probability of failure at the current step is

larger than the predefined value of pinterm. According

to Eq. (16), k steps are needed to determine the initial

probability of failure pf ¼ PðFÞ ¼ PðFkÞ by SS.

Hence, the quantity of the required SS steps, k,

depends also on the actual probability of failure of the
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problem. Computing the required conditional proba-

bilities of failure PðFmþ1jFmÞ, generation of samples

based on the conditional distribution of x given by Au

and Beck [1]

qðxjFmÞ ¼ qðxÞIFm
ðxÞ=PðFmÞ ð18Þ

is necessary. Sampling according to qðxjFmÞ generates
samples that lie in Fm. This non-trivial task can be

solved by Markov Chain Monte Carlo (MCMC)

simulation, based in the present study on a modified

Metropolis-Hastings (MMH) algorithm [2] that over-

comes simulation problems in high dimensional space.

Length Cl of the Markov chains is set to

Cl ¼ 1=pinterm, and for the proposal density p�l a

standard normal distribution Nðxs; IÞ centered at

sample point xs is used.

Asymptotic sampling

Asymptotic sampling (AS) [4] is based on the

observation that probability of failure pf exhibits in

standard normal space asymptotic behavior. Hence, it

approaches zero as standard deviation r approaches

zero. Safety index b of a structure is defined as

b ¼ U�1ð1� pf Þ, whereU�1 denotes the standardized

inverse Gaussian distribution function. Due to the

asymptotic behavior of pf , for linear limit state

functions safety index bðrÞ for r[ 1 and bð1Þ are

related as [4]

bðrÞ ¼ bð1Þ
r

ð19Þ

b(1) for r = 1 represents the safety index of the initial

reliability problem. By artificially increasing variance

r of the random variables, more events in failure

domainXf ðxÞ are generated, and safety index bðrÞ can
be determined by MCS with affordable computational

costs. Extrapolation of bðrÞ by multiplying the result

of Eq. (19) by 1=r yields the safety index of the

original problem, bð1Þ. Therefore, an estimate of the

probability of failure is obtained as [4]

pf � p̂ASf ¼ Uð�bð1ÞÞ ð20Þ

The independence from the dimension of the param-

eter space is one major benefit of this method [4]. The

shape of the surface of limit state function gðxÞ, and
the relation between the number of samples and

probability of failure pf have a distinct impact on the

accuracy of AS. As outlined in Bucher [4], AS expects

safety index b to decrease with increasing scale factor

r. This is the case for the widely spread definition of

failure that loads exceed a certain limit, i.e. failure

domain Xf ðxÞ is unbounded. However, failure domain

Xf ðxÞ of nonlinear reliability problems may be finite

or separated into several domains. Then, increasing of

r may not lead to more samples inside the failure

domain and AS can not be used to compute pf at given

r efficiently. Thus, AS is not always applicable for

reliability problems with bounded failure domains

efficiently [4].
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26. Ülker-Kaustell M, Karoumi R (2012) Influence of non-lin-

ear stiffness and damping on the train-bridge resonance of a

simply supported railway bridge. Eng Struct 41:350–355

27. Xia H, Li HL, Guo WW, Roeck GD (2014) Vibration res-

onance and cancellation of simply supported bridges under

moving train loads. J Eng Mech 140:04014015

28. Yang Y, Yau J, Wu Y (2004) Vehicle-bridge interaction

dynamics: with applications to high-speed railways. World

Scientific, Singapore

29. Zhang N, Xia H, Guo WW, Roeck GD (2010) A vehicle-

bridge linear interaction model and its validation. Int J

Struct Stabil Dyn 10(2):335–361

30. Ziegler F (1998) Mechanics of solids and fluids, 3rd edn.

Springer, New York

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

1402 Meccanica (2019) 54:1385–1402


	On the optimal strategy of stochastic-based reliability assessment of railway bridges for high-speed trains
	Abstract
	Introduction
	Modeling approach
	Mechanical bridge-train interaction model
	Uncertainties and random variables
	Definition of failure, limit state function, and probability of failure

	Example problems
	Assessment of stochastic methods for dynamic bridge-train interacting systems
	Prediction of the probability of failure
	Discussion on the computational efficiency

	Conclusions
	Acknowledgements
	Appendix 1: Summary of applied stochastic methods
	Line sampling
	Subset simulation
	Asymptotic sampling

	References




