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Abstract A comprehensive dynamic study on a

distributed parameter model of a straight uniform

rotating shaft is developed, aimed at presenting some

clarifications and corrections to published results,

together with novel contributions. The model includes

the effects of transverse shear, rotatory inertia and

gyroscopic moments with additional combined end

thrust and twisting moment. The equations of motion

are derived in both Newtonian and Lagrangian

formulations according to the Timoshenko beam

theory. A novel contribution is given in the develop-

ment of complete modal analysis of the model under

study, highlighting the properties of the operators

involved and the relations among eigenfunctions

represented in complex and real variables. The

influence of the main governing parameters (slender-

ness ratio, angular velocity, external axial end thrust

and twisting moment) is studied on natural frequen-

cies, modal shapes and critical speeds of the rotor.

New evidence of existence of a second frequency

spectrum in the Timoshenko beam theory is presented,

together with a novel definition for its identification,

only possible if considering gyroscopic effects.

Keywords Rotating shaft � Timoshenko beam �
Gyroscopic moment � Axial end thrust � Twisting
moment � Second spectrum

1 Introduction

The general increasing trend towards high speed

rotating equipment in conjunction with higher power

density encourages further insights into the under-

standing of the dynamic behaviour of torque-trans-

mitting flexible rotors. In this research field the use of

finite element models is nowadays widespread, how-

ever distributed parameter formulations still remain of

some interest, at least for analytical investigations and

validation purposes.

Continuous models of rotating shafts have been

studied by several researchers who have dealt with

many important aspects, highlighting the effects of

transverse shear, rotatory inertia, gyroscopic moments

and considering the additional contribution of axial

end thrust and twisting moment.

The gyroscopic effects were studied considering

rotating Timoshenko beams. The equilibrium equa-

tions for symmetric and asymmetric rotors, without

the contribution of axial loads, were derived by

Dimentberg [1] adopting the Newtonian formulation

and later by Raffa and Vatta [2, 3] with Lagrangian

formulation via Hamilton’s principle, while the case of
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eccentric rotation was studied by Filipich and Rosales

[4].

Early investigations about the effects of axial end

thrust and twisting moment of constant magnitude

acting simultaneously on a uniform shaft can be found

in the works of Greenhill [5] and Southwell and Gough

[6], who first considered the influence of these loads on

critical speeds.

More recently, the effects of an axial end twisting

moment alone on the flexural behaviour of a rotating

slender shaft was studied according to the Euler–

Bernoulli beam model by Colomb and Rosenberg [7],

and according to the Timoshenko beam model by

Eshleman and Eubanks [8], who focused their analysis

on critical speeds without considering natural fre-

quencies. They found that the Euler–Bernoulli model

is inaccurate in predicting the critical speeds, and that

the latter always decrease with external axial torque.

Following the results by Eshleman and Eubanks, the

topic was then again considered, among others, by

Yim et al. [9].

The equations of motion of a rotating Timoshenko

beam subjected to axial end thrust were derived with

Lagrangian formulation by Choi et al. [10]. An

analysis of the effects of combined external axial

end thrust and twisting moment was proposed by

Willems and Holzer [11] and later by Dubigeon and

Michon [12], who adopted the Timoshenko beam

model, casting doubts on some results obtained by

Eshleman and Eubanks. It should also be remarked

that while most authors studied natural frequencies

and critical speeds, only a few of them developed a

complete modal analysis of a distributed parameter

rotating shaft, as for instance Lee et al. [13] in the case

of a rotating Rayleigh beam.

In this study further insights are proposed in the

analysis of a distributed parameter model of a high-

speed, power transmitting flexible rotor. A homoge-

neous uniform Timoshenko straight beam with circu-

lar section is considered, rotating with constant

angular speed about its longitudinal axis on isotropic

supports (rigid bearings), and subjected simultane-

ously to constant end thrust and twisting moment. The

equations of motion differ from those derived in [12],

and are consistent with those obtained in less general

cases [8, 10]. A novel contribution is given in the

development of complete modal analysis of the model

under study, clarifying the properties of the operators

involved and the relations among eigenfunctions

represented in complex and real variables. In addition,

such analytical developments allow to cast new light

on the problem of existence and identification of the

second frequency spectrum in the Timoshenko beam

theory [14], here reconsidered from a novel perspec-

tive. The existence of a second spectrum in the case of

non-rotating beams and general boundary conditions

has been much debated in the literature [15–17], since

it is possible to easily identify the companion natural

frequencies constituting the second spectrum only in

particular cases. More recently, the existence of a

second spectrum in a non-rotating finite-length beam

has been demonstrated on the basis of accurate

experimental results, at least for free–free boundary

conditions [18], and also by considering free waves in

beams of infinite length [19]. In this study new

evidence of existence of the second spectrum together

with a novel definition for its identification are

presented, only possible if considering gyroscopic

effects, therefore a rotating beam. In parallel, the role

of the so-called cut-off Timoshenko beam frequencies

[16] is investigated, extending their definition to

include the effects of gyroscopic moments and exter-

nal loads [20, 21].

The article is organized as follows: in Sect. 2, the

equations of motion of the rotating shaft are derived

under the small strain assumption in both Newtonian

and Lagrangian formulations, and represented in a

state-space operator form; in Sect. 3, the equations of

motion are decoupled using both real and complex

displacement variables, and then cast in nondimen-

sional form to facilitate the analysis of the effects of

each governing parameter; the general integral is

sought by following a complex-variable approach,

yielding eigenfrequencies, closed-form expressions of

the eigenfunctions, and critical speeds; in Sect. 4,

modal analysis of the rotating shaft is completed for

real displacement variables in both the configuration

space and in the state-space, including the derivation

of critical loads due to combined effects of axial end

thrust and twisting moment; in Sect. 5, a systematic

study of the influence of slenderness ratio, angular

speed, axial end thrust and twisting moment is

conducted to determine their relative importance on

natural frequencies, mode shapes and critical speeds;

on the basis of the results presented in the previous

section, a novel criterion is given and discussed for the

definition and identification of the second frequency

spectrum in the Timoshenko beam theory.
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2 Equations of motion

After a brief description of the rotating shaft model, its

equations of motion are derived adopting the small

strain assumption [10] in both Newtonian and

Lagrangian formulations, and finally represented in a

state-space operator form.

2.1 Model description and nomenclature

A homogeneous uniform Timoshenko straight beam

with circular section is considered, rotating at constant

angular speed about its longitudinal axis and simul-

taneously subjected to axial end thrust and twisting

moment. The model is characterized by the following

parameters:

The external loads N (positive if tensile) and

T (positive if counterclockwise) are assumed constant

with respect to time. Isotropic supports are considered,

making the whole model axisymmetric. Hence it can

be represented in a non-rotating coordinate system as

shown in Fig. 1. Additional nomenclature includes:

u; v;w ¼ displacements in the x; y; z directions,

respectively [m]

w ¼ vþ iw ¼ complex displacement [m]

#x; #y; #z ¼ angular displacements about the x; y; z axes,

respectively [rad]

h ¼ #y þ i#z ¼ complex angular displacement [rad]

In next sections a simplified notation for partial

derivatives is adopted, dots denoting differentiation

with respect to time and roman numbers denoting

differentiation with respect to the spatial coordinate x.

2.2 Newtonian formulation of the equations

of motion

The linear equations of motion of the loaded rotating

shaft are obtained with Newtonian formulation, refer-

ring to the nomenclature introduced in Sect. 2.1 and to

the equilibrium schemes for a section of infinitesimal

length dx reported in Fig. 2.

The x-direction translational and rotational well-

known equations of motion are decoupled:

Fx þ ½HðxÞ � Hðx� lÞ�N ¼ EA uI

FI
x ¼ qA€u

(
;

Mx þ ½HðxÞ � Hðx� lÞ� T ¼ 2GJ#I
x

MI
x ¼ 2qJ €#x

( ð1Þ

where H(�) represents the Heaviside unit step distri-

bution. The equation of motion describing the flexural

behaviour in the x–y plane can be written starting from

the expression of the shear angle cz (caused by the

x

y

z

u

v

w

w

0 l

ϑx

ϑz

ϑy

Fig. 1 Schematic representation of displacements

A ¼ pr2 ¼ cross-sectional area ½m2� j ¼ transverse shear factor

l ¼ length of the shaft [m] N ¼ axial end thrust ½N]
E ¼ Young0s modulus [N/m2� T ¼ axial end twisting moment [Nm]

G ¼ shear elasticity modulus ½N/m2� m ¼ Poisson’s ratio

Iy ¼ Iz ¼ J ¼ moment of inertia of the cross-section [m4� q ¼ density [Kg/m3�
Ix ¼ 2J ¼ polar moment of inertia of the cross-section [m4� x ¼ rotating angular speed ½rad/s]
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Fig. 2 Equilibrium

schemes for a cross-section

of infinitesimal length dx
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shear force Fy) in terms of #z, v
I and of the shear angle

bz (caused by the external action N), according to the

schemes reported in Fig. 2C and D, right side:

The constitutive equation for Fy given by Eq. (2)

together with the y-direction translational dynamic

equilibrium (Fig. 2A, right side) yield the following

differential link between #z and v:

Fy ¼ jGA ðvI � w#zÞ
FI
y ¼ qA €v

�
) #I

z ¼
1

w
vII � q

jG
€v

� �
ð3Þ

Taking into account the effects of N and T in the

constitutive equation for the bending moment Mz

(Fig. 2D and E, right side) together with the rotational

dynamic equilibrium in the x–y plane (Fig. 2A, right

side) gives:

Finally, differentiating Eq. (4) and introducing the

expression of Fy given by Eq. (3) leads to the equation

of motion in the form:

EJ#III
z � T#II

y � N vII þ qA €v� qJ €#I
z þ 2qJx _#I

y ¼ 0

ð5Þ

The equation of motion describing the flexural

behaviour in the x–z plane can be written following the

same steps, paying attention to sign conventions

(Fig. 2A–E, left side):

EJ#III
y þ T#II

z þ NwII � qA €w� qJ €#I
y � 2qJx _#I

z ¼ 0

ð6Þ

The flexural degrees of freedom in the x–y and x–

z planes are coupled due to both gyroscopic and axial

twistingmoments. Distributed external loads along the

x coordinate could be considered introducing non-

homogeneous terms in Eqs. (5) and (6).

2.3 Lagrangian formulation of the equations

of motion

The same linear equations of motion of the loaded

rotating shaft are obtained by applying Hamilton’s

principle to a Lagrangian density function L = T -

V ? W, written in terms of kinetic energy density T ,

potential energy density V and associating a work

density W to the external loads, which are not

derivable from a potential. Referring to the nomen-

clature introduced in Sect. 2.1, the kinetic energy

density takes the form:

T ¼ 1

2
q A ð _u2 þ _v2 þ _w2Þ þ Jð2 _#2

x þ _#2
y þ _#2

z Þ
h

þ 2Jx2 þ 4Jx _#x þ 2Jx ð#z
_#y � #y

_#zÞ
� ð7Þ

which is derived in ‘‘Appendix A’’ (following an

alternative method with respect to standard formula-

tions), while according to [2, 10, 22] the potential

energy density reads:

V ¼ 1

2
EA ðuIÞ2 þ EJ ð#I

yÞ
2 þ ð#I

zÞ
2

h in
þ jGA ð�wI � #yÞ2 þ ðvI � #zÞ2

h i
þ 2JGð#I

xÞ
2
o

ð8Þ

The inclusion of external loads N and T in the

rotating Timoshenko beam model is debated in the

literature, leading to different forms of the equations

#z þ cz þ bz ¼ vI;
cz ¼

Fy

jGA

bz ¼ � N#z

jGA

8><
>: ) #z ¼

1

w
vI � Fy

jGA

� �
; w ¼ 1� N

jGA
ð2Þ

Mz þ T#y þ N v ¼ EJ#I
z

MI
z þ Fy ¼ qJ €#z � 2qJx _#y

�
) EJ#II

z � T#I
y � N vI þ Fy ¼ qJ €#z � 2qJx _#y ð4Þ
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of motion [8, 10, 12, 22]. Here the following

expression of the work density is adopted:

W ¼ 1

2
Tð#y#

I
z � #I

y#zÞ � N ðvIÞ2 � ðvI � #zÞ2
hn

þ wIÞ2 � ð�wI � #yÞ2
� io

þ ½dðx� lÞ � dðxÞ�½Nuþ T#x�
ð9Þ

where d(�) represents the Dirac distribution. In Eq. (9),
the first term (related to T) can be immediately

obtained referring to the schemes reported in Fig. 2D,

noticing that its expression is not unique (due to

symmetry), in the sense that it could be written in a

more general form as:

WT ¼ Tðc1#y#
I
z � c2#

I
y#zÞ;

c1 2 ½0; 1�; c2 ¼ 1� c1
ð10Þ

leading in any case to the same equations of motion.

Similar remarks also apply to the gyroscopic terms in

the kinetic energy density, Eq. (7), as explained in

detail in [2].

The second term in Eq. (9) (related to N) is derived

according with [10] taking into account the axial

geometric shortening of the shaft, which ensures

consistency with the Timoshenko beam model. Intro-

ducing Eqs. (7)–(9) in Lagrange’s equations for a

continuous second-order one-dimensional problem:

o

ot

oL
o _qt

� �
þ o

ox

oL
oqIt

� �
� oL
oqt

¼ 0;

qt ¼ u; v;w; #x; #y; #z

� 	T

ð11Þ

yields the following six equations of motion:

The first and fourth of Eq. (12) are decoupled,

representing the x-direction translational and rota-

tional dynamic equilibrium equations respectively.

The other four equations, representing the flexural

dynamic equilibrium of the shaft, are rewritten in a

more compact form introducing the parameter w,
defined as a function of N in Eq. (2):

qA€v� jGA ðvII � w#I
zÞ ¼ 0

qA €w� jGA ðwII þ w#I
yÞ ¼ 0

qJ €#y þ 2qJx _#z þ jGAw ðwI þ #yÞ � EJ#II
y � T#I

z ¼ 0

qJ €#z � 2qJx _#y � jGAw ðvI � #zÞ � EJ#II
z þ T#I

y ¼ 0

8>>><
>>>:

ð13Þ

The first of Eq. (13) yields the differential link

between #z and v already given in Eq. (3), while the

second one provides the analogous relation between #y
and w. Introducing them into the last two of Eq. (13)

gives the equations of motion in the form of Eqs. (5)

and (6).

2.4 Operator form of the equations of motion

Equations (13) can also be expressed in operator form,

as a function of a vector q defined in the configuration

space by the four flexural lagrangian coordinates:

M €qþG _qþ ½K�q ¼ 0; q ¼ v;w; #y; #z

� 	T ð14Þ

where M and G are linear algebraic operators,

diagonal and skew-symmetric respectively:

qA€u� EAuII � ½dðx� lÞ � dðxÞ�N ¼ 0

qA€v� jGA ðvII � #I
zÞ � N#I

z ¼ 0

qA €w� jGA ðwII þ #I
yÞ þ N#I

y ¼ 0

2qJ €#x � 2GJ#II
x � ½dðx� lÞ � dðxÞ� T ¼ 0

qJ €#y þ 2qJx _#z þ jGA ðwI þ #yÞ � EJ#II
y � T#I

z � N ðwI þ #yÞ ¼ 0

qJ €#z � 2qJx _#y � jGA ðvI � #zÞ � EJ#II
z þ T#I

y þ N ðvI � #zÞ ¼ 0

8>>>>>>><
>>>>>>>:

ð12Þ

123

1034 Meccanica (2019) 54:1029–1055



M ¼

qA 0 0 0

0 qA 0 0

0 0 qJ 0

0 0 0 qJ

2
6664

3
7775;

G ¼

0 0 0 0

0 0 0 0

0 0 0 2qJx

0 0 �2qJx 0

2
6664

3
7775

ð15Þ

and [K(�)] is a linear second order differential

operator, non-self-adjoint:

A possible state-space representation of Eq. (14),

as a function of a vector qs, reads:

A _q s þ B½ � q s ¼ 0; q s ¼ qT; _qT
� 	T

;

A ¼
G M

�M 0


 �
; B ð�Þ½ � ¼

K ð�Þ½ � 0

0 M


 �
ð17Þ

where A is a linear algebraic operator, skew-symmet-

ric, and [B(�)] is a linear second order differential

operator, non-self-adjoint.

Considering two different functions, sayUh andUk,

the general definition of the adjoint form of an operator

[O(�)], denoted by the tilde symbol, is given by the

following inner products [13]:

Uh

�� ½ ~O�U k


 �
¼ U k j ½O�Uhh i ð18Þ

Hence the adjoint operators of the matricesM,G,A

and of the differential operators [K(�)] and [B(�)],
assuming same boundary conditions at both ends of

the shaft, are simply:

~M ¼ M; ~G ¼ GT; ~A ¼ AT;

½ ~Kð�Þ� ¼ ½Kð�Þ�T; ½ ~B ð�Þ� ¼ ½B ð�Þ�T ð19Þ

due to skew-symmetry (and first-order derivatives in

differential operators) of all terms out of their main

diagonals.

3 Solution method

The equations of motion are decoupled using both real

and complex variables, and then rewritten in nondi-

mensional form to facilitate the analysis of the effects

of each governing parameter. Adopting a complex-

variable approach, the general integral is sought by

separation of time and space variables, yielding

eigenfrequencies, closed-form expressions of the

eigenfunctions, and critical speeds.

3.1 Decoupling the equations of motion

Equations (13) can be rewritten as two coupled fourth-

order (with respect to both x and t) partial derivative

equations with real coefficients and real variables v

and w:

The two coupled fourth-order equations in the real

variables #y and #z would be exactly the same as

Kð�Þ½ � ¼
� jGA ð�ÞII 0 0 jGAw ð�ÞI

0 � jGA ð�ÞII � jGAw ð�ÞI 0

0 jGAw ð�ÞI jGAw ð�Þ � EJ ð�ÞII �T ð�ÞI
� jGAw ð�ÞI 0 T ð�ÞI jGAw ð�Þ � EJ ð�ÞII

2
664

3
775 ð16Þ

EJ vIV � q
jG

€vII
� �

þ T wIII � q
jG

€wI
� �

� Nw vII þ qAw €v� qJ €vII � q
jG

v
:...

� �
� 2qJx _wII � q

jG
w
...

� �
¼ 0

EJ wIV � q
jG

€wII
� �

� T vIII � q
jG

€vI
� �

� Nw wII þ qAw €w� qJ €wII � q
jG

w
:...

� �
þ 2qJx _vII � q

jG
v
...

� �
¼ 0

8<
:

ð20Þ
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Eq. (20), after substituting #y with v and #z with w.

Equations (20) can be in turn decoupled into a single

eighth-order (with respect to both x and t) partial

derivative equation in a real variable, as shown in

‘‘Appendix B’’. They can also be decoupled into a

single fourth-order (with respect to both x and t) partial

derivative equation with complex coefficients in a

complex variable:

EJ wIV � q
jG

€wII
� �

� iT wIII � q
jG

€wI
� �

� NwwII

þ qAw €w� qJ €wII � q
jG

w
:...

� �
þ 2iqJx _wII � q

jG
w
...

� �
¼ 0

ð21Þ

The decoupled fourth-order equation in the com-

plex variable h would be exactly the same as Eq. (21),

after substituting h with w. In Eq. (21) two complex

coefficients identify the terms responsible of coupling

the flexural behaviour in the x–y and x–z planes. These

two coefficients would have opposite signs if adopting

the complex variable w* = v - iw instead of w, which

would be the same as considering a counter-rotating

shaft loaded by a clockwise twisting moment T (i.e.

changing the sign to both x and T). Notice that

Eq. (21) would retain the same form also in the case of

twisting moment T applied tangentially at the ends of

the shaft (i.e. a follower torque). It generalizes the

expressions given in [8] (effect of T) and in [10]

(effect of N). The equation published in [12] is

different, since the effects of N and T were introduced

consistently with the Euler–Bernoulli beam model,

rather than with the Timoshenko one.

3.2 Nondimensional form of the equations

of motion

Considering a dimensionless spatial variable n, a

dimensionless time s and a reference frequency

parameterX (which embodies the structural properties

of the shaft):

n ¼ x

l
; s ¼ X t; X ¼ 1

l2

ffiffiffiffiffiffiffiffi
EJ

qA

s
ð22Þ

and introducing the dimensionless parameters:

a ¼
ffiffiffiffiffiffiffi
Al2

J

r
¼ 2l

r
; x̂ ¼ x

X
; r ¼ E

jG
;

N̂ ¼ N

EA
T̂ ¼ T l

EJ

ð23Þ

where a is the slenderness ratio, then any representa-

tion of the equations of motion of the rotating shaft can

be rewritten in nondimensional form, as for instance

Eq. (21):

In the case of a homogeneous shaft made of

isotropic material with circular section, the shear

elasticity modulus G and the shear factor j can be

expressed as functions of Young’s modulus and

Poisson’s ratio [23]:

G ¼ E

2 ð1þ mÞ ; j ¼ 6 ð1þ mÞ
7þ 6m

) r ¼ 7þ 6m
3

ð25Þ

hence the dimensionless parameter r depends on

Poisson’s ratio only, and within the limits of interest

for the present study its variations are of minor

importance. As a consequence, the equations of

motion of the rotating shaft depend on just four

parameters of major interest: slenderness ratio a,
dimensionless angular speed x̂, dimensionless axial

end thrust N̂ and dimensionless twisting moment T̂ .

3.3 Differential eigenproblem for complex

displacements

The general integral is sought by modal analysis,

solving a differential eigenproblem. In this respect, the

most convenient form of the equations of motion to

deal with is the complex-variable, decoupled fourth-

wIV � r
a2

€wII
� �

� iT̂ wIII � r
a2

€wI
� �

� N̂a2wwII þ w €w� 1

a2
€wII � r

a2
w
:...

� �
þ 2i

x̂
a2

_wII � r
a2

w
...

� �
¼ 0

w ¼ 1� rN̂

8<
: ð24Þ
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order Eq. (24). It is rewritten by separating the time

and space variables and Laplace transforming with

respect to time:

w ðn; sÞ ¼ /wðnÞ gðsÞ ) L ðwÞ ¼ /wðnÞ gðsÞ
) p4/

IV
w þ p3/

III
w þ p2/

II
w þ p1/

I
w þ p0/w ¼ 0

ð26Þ

where the five complex coefficients p read:

p4 ¼ 1 ; p3 ¼ � iT̂ ;

p2 ¼ � 1þ r
a2

s2 þ 2 i
x̂
a2

s� wN̂a2;

p1 ¼ i T̂
r
a2

s2; p0 ¼
r
a4

s4 � 2 i
rx̂
a4

s3 þ ws2

ð27Þ

Notice that p2, p1 and p0 depend on the eigenvalue s.

The general integral of Eq. (24) can be expressed on

the basis of the complex exponential function, yielding

a characteristic polynomial equation with complex

coefficients for the exponents a:

/w ðnÞ ¼ Bea n; B; a complex

) PðaÞ ¼
X4
n¼0

pna
n ¼ 0

ð28Þ

Closed-form expressions of the roots of the fourth-

order polynomial equation P(a) = 0 can be found by

adopting either one of the classical solution methods

or an advanced symbolic algebra software. The

general integral is therefore expressed as a linear

combination of four complex exponential functions:

/w ðnÞ ¼
X4
n¼1

Bne
an n ð29Þ

and the eigenvalues s can be computed after setting

four boundary conditions. Assuming the same condi-

tions at both ends of the shaft, the algebraic eigen-

problem related to Eq. (29) takes the form:

b1 b2 b3 b4
c1 c2 c3 c4

b1e
a1 b2e

a2 b3e
a3 b4e

a4

c1e
a1 c2e

a2 c3e
a3 c4e

a4

2
664

3
775

B1

B2

B3

B4

2
664

3
775 ¼ 0 ð30Þ

where the first two equations represent the conditions

in n = 0, and the following two the conditions in

n = 1. The complex coefficients b and c depend on the

kind of boundary conditions and in the more general

case they are explicit functions of both the exponents a

and the eigenvalues s. Setting to zero the determinant

of the coefficient matrix in Eq. (30) yields the

characteristic equation for the eigenvalues s:

D ¼ D12D34 e
a1þa2 þ ea3þa4½ �

� D13D24 e
a1þa3 þ ea2þa4½ �

þ D14D23 e
a1þa4 þ ea2þa3½ � ¼ 0;

Dnm ¼ bncm � bmcn

ð31Þ

which is a complex function of the complex variable s.

However, pure imaginary eigenvalues, i.e. s = ik, can
be numerically computed by using a zero-find routine

of a real function f of the real variable k:

f ½DðikÞ� ¼ 0; k 2 ð�1;þ1Þ ð32Þ

The critical speeds x̂C ¼ xC=X can be found by

following the same procedure, setting k ¼ x̂ in

Eq. (32) and solving it with respect to x̂, while the

eigenfunctions for the complex angular displacement

h can be expressed in the form:

/h ðnÞ ¼
i

l

X4
n¼1

BnRnðkÞ ean n;

RnðkÞ ¼
1

wan
a2n þ

rk2

a2

� � ð33Þ

The solution of the adjoint problem can be imme-

diately found by considering the adjoint operators in

Eq. (19) and a characteristic polynomial ~PðaÞ defined
by coefficients ~p, equal to those in Eq. (27), except for

changing the sign to both x and T, or considering the

complex variable w* = v - iw instead of w, as noticed

in Sect. 3.1. The eigenvalues are the same as those

computed through Eq. (32), but with opposite signs

(~k ¼ �k), since the characteristic equation in this case

would be f ½Dð�i~kÞ� ¼ 0.

3.4 Boundary conditions for complex

displacements

Isotropic supports are considered, hence the boundary

conditions associated to Eq. (24) can be expressed as

functions of the complex variable w alone, due to axial

symmetry. In the simplest configurations they read:
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Clamped end, case with null rotations and null

shear deformations:

Clamped end, case with null rotations only:

Simply supported end, case with T = 0 or case with

tangential T (follower torque):

v ¼ w ¼ 0

My ¼ Mz ¼ 0

�
) w ¼ 0

wII ¼ 0

�
ð36Þ

Simply supported end, case with axial T:

Free end:

Introducing Eq. (29) into the selected boundary

equations gives the expressions of the coefficients

b and c of the characteristic Eq. (31). Notice that the

second of Eq. (37) generalizes the expression given in

[8] (with opposite sign convention for T), and that in

[12] the terms in square brackets are omitted, as a

consequence of disregarding the interaction between

shear effect and twisting moment in the equations of

motion.

4 Modal analysis

After clarifying the relation between eigensolutions

obtained for complex and real displacement variables,

modal analysis of the rotating shaft is then completed

using real displacement variables in both the config-

uration space and in the state-space, including the

derivation of critical loads due to combined effects of

axial end thrust and twisting moment.

v ¼ w ¼ 0

#y þ cy þ by ¼ 0; #z þ cz þ bz ¼ 0

�
) w ¼ 0

wI ¼ 0

�
ð34Þ

v ¼ w ¼ 0

#y ¼ #z ¼ 0

�
) w ¼ 0; wI þ r

w a2
wIII � r

a2
€wI

� �
� iT̂ wII � wN̂ a2 wI

h i
¼ 0 ð35Þ

w ¼ 0; wII � iT̂ wI � r
wa2

iT̂ wIII � r
a2

€wI � iT̂ wII � wN̂ a2 wI
� �

� 1

a2
ð €wII � 2i x̂ _wIIÞ


 �
¼ 0 ð37Þ

My ¼ Mz ¼ 0

Fy ¼ Fz ¼ 0

�
)

wII � r
a2

€w
� �

� iT̂ wI � wN̂a2 w ¼ 0

wIII � r
a2

€wI
� �

� iT̂ wII � r
a2

€w
� �

� wN̂a2 wI � 1

a2
ð €wI � 2i x̂ _wIÞ ¼ 0

8><
>: ð38Þ
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4.1 Differential eigenproblem for real

displacements

Decoupling the four second-order equations of

motion, Eq. (13), into a single eighth-order equation

in a real variable, as shown in ‘‘Appendix B’’,

separating the time and space variables and then

Laplace transforming with respect to time as done in

Eq. (26) gives:

q8/
VIII þ q7/

VII þ q6/
VI þ q5/

V þ q4/
IV

þ q3/
III þ q2/

II þ q1/
I þ q0/ ¼ 0

ð39Þ

whose general integral can be represented on the basis

of the complex exponential function, yielding a

characteristic polynomial equation with complex

coefficients for the exponents a:

The eighth-grade polynomial QðaÞ factorizes into
the two fourth-grade polynomials PðaÞ and ~PðaÞ, then
the coefficients q (reported in ‘‘Appendix B’’) can also

be expressed as functions of the coefficients p and ~p in
the form of a convolution sum:

The same characteristic equation QðaÞ ¼ 0 could

be obtained directly from Eq. (13), assuming as a basis

the complex exponential function in the following

vector representation:

/ ðnÞ ¼ / 0 e
a n; / 0 ¼ Cv Cw C#y

C#z

� 	T
;

C; a complex

ð42Þ

which, introduced in the Laplace transformed operator

form of the equations of motion, Eq. (14), gives:

s2 M/ þ sG/ þ K½ �/ ¼ 0 ) D ðs; aÞ/ 0 ¼ 0

ð43Þ

where:

D ¼

d1 0 0 � d4

0 d1 d4 0

0 � d4 d3 d2

d4 0 � d2 d3

2
6664

3
7775;

d1 ¼ a2 � rs2

a2
; d2 ¼

r
a2

T̂ a� 2 x̂
s

a2

� �
;

d3 ¼
r
a2

a2 � s2

a2

� �
� w; d4 ¼ w a

ð44Þ

Notice that in matrix D, coefficients d4 are respon-

sible of coupling between displacements and rotations

on the same plane, while coefficients d2 couple

displacements and rotations in orthogonal planes.

The latter are decoupled only when both T = 0 and

x = 0.

The algebraic eigenproblem in Eq. (43) can be

solved by setting to zero the determinant of D:

detD ¼ ðd1d3 þ d24Þ
2 þ ðd1d2Þ2

¼ ðd1d3 þ d24Þ þ i ðd1d2Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PðaÞ

ðd1d3 þ d24Þ � i ðd1d2Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~PðaÞ

¼ PðaÞ~PðaÞ ¼ 0

ð45Þ

which is the same characteristic equation for the eight

exponents a given by Eq. (40). Therefore the eigen-

values s = ± ik associated to the eighth-order

/ ðnÞ ¼ Cea n; C; a complex ) QðaÞ ¼
X8
n¼0

qna
n ¼ 0 ð40Þ

QðaÞ ¼ PðaÞ~PðaÞ ) qn ¼
Xn
m¼0

pm~pn�m with pn ¼ ~pn ¼ 0 for n[ 4 ð41Þ
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problem are all those computed solving f [D(ik)] = 0,

Eq. (32), plus those computed solving f [D(- ik)] = 0,

i.e. the adjoint fourth-order problem as discussed in

Sect. 3.3. If both T = 0 and x = 0 (i.e. d2 = 0), then

Eq. (20) are decoupled, and the sets of eigenvalues

associated to the two fourth-order problems are

coincident, meaning that in this case each eigenvalue

has multiplicity 2.

4.2 Expression of the eigenfunctions for real

displacements

According to the eigenproblem formulation in

Sect. 4.1, the four scalar eigenfunctions for the real

displacements v, w, #y, #z can be expressed as:

/vðnÞ ¼
X8
n¼ 1

Cnv e
an n; /wðnÞ ¼

X8
n¼ 1

Cnw e
an n;

/#y
ðnÞ ¼

X8
n¼ 1

Cn#y
ean n; /#z

ðnÞ ¼
X8
n¼ 1

Cn#z
ean n

ð46Þ

Relations among the four amplitude constants Cn as

functions of one of them (say Cnv) can be found

recalling the algebraic eigenproblem in Eq. (43),

along with the definitions in Eqs. (42) and (44). For

any given eigenvalue s = ik and for an exponent

an(ik), two possible expressions for the eigenvector

/0n can be found:

/ 0n ¼ Cnv 1 þ i � iRn Rnf gT or

~/ 0n ¼ Cnv 1 � i þ iRn Rnf gT
ð47Þ

where Rn = d1/d4 with s = ik, according to the defini-

tion given in Eq. (33). The meaning of these two

possible solutions is clarified after introducing one of

them (say /0n) in the system Eq. (43), obtaining:

where the system is reduced to just two independent

equations; introducing the first equation into the fourth

one yields the characteristic equation in terms of P(a).

Clearly, the other eigenvector in Eq. (47) would lead

to the characteristic equation in terms of ~PðaÞ,
associated to the adjoint problem. As a consequence,

the eigenfunctions in Eq. (46) can be expressed in

terms of two sets of amplitude constants, four of them

given by / and the other four by its adjoint ~/. The
relations between real displacement eigenfunctions

and complex displacement eigenfunctions can then be

found recalling the definitions in Eqs. (29), (46) and

(47):

/w ¼
X4
n¼ 1

Bn e
an n ¼ /v þ i/w

¼
X8
n¼ 1

ðCnv þ i CnwÞ ean n

¼
X8
n¼ 1

½Cnv þ i ð� i CnvÞ� ean n

¼ 2
X4
n¼ 1

Cnv e
an n ¼ 2/v

ð49Þ

where four out of eight terms in the sum vanish due

to opposite signs in / and ~/. This result was

expected: being /w a linear combination of four

complex exponentials, also /v should result as a linear

combination of four complex exponentials. Following

the same steps, starting from /h for the angular

displacement eigenfunctions, the four relations

between real displacement eigenfunctions and com-

plex displacement eigenfunctions can be given in the

form:

/v ¼
/w

2
; /w ¼ � i

/w

2
;

/#y
¼ /h

2
; /#z

¼ � i
/h

2

ð50Þ

Also this result was expected, due to symmetry: the

only difference between for instance /v and /w is a

phase-lag consisting in a p/2 delay of /w with respect

d1 � d4Rn ¼ 0

i ðd1 � d4RnÞ ¼ 0

�i ðd4þ d3Rn þ i d2RnÞ ¼ 0

d4þ d3Rn þ i d2Rn ¼ 0

8>><
>>: , ðd1d3 þ d24Þ þ i ðd1d2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PðaÞ

¼ 0 ð48Þ
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to /v. Notice that for j ! 1, Eq. (50) together with

Eq. (33) yield a result consistent with the Euler–

Bernoulli and Rayleigh models, and with Eq. (2):

where the dimensional factor at the denominator is

related to differentiation with respect to the dimen-

sionless spatial variable n.

4.3 Biorthogonality relations

The vectors of lagrangian coordinates in the configura-

tion spaceq and in the state-spaceqs can be expressed as

linear combinations of eigenfunctions/ and state-space

eigenfunctions U respectively, according to:

q ¼
X1
h¼1

/hgh; qs ¼
X1
h¼1

Uhgh; Uh ¼
/h

sh/h

� �

ð52Þ

Considering nondimensional operators, the non-

homogeneous state-space representation in the

Laplace domain of the second-order differential

equations of motion, Eq. (13), reads:

sÂ q s þ ½B̂ � q s ¼ f̂ s ð53Þ

Since the eigenfunctions and the adjoint eigenfunc-

tions are bi-orthogonal, and they can be normalized as:

~Uh

�� ÂU k

D E
¼ dhk

~Uh

��� ½B̂ �U k

D E
¼ �shdhk

; dhk ¼
1 if h ¼ k

0 if h 6¼ k

�

ð54Þ

then multiplying Eq. (53) by the hth adjoint eigen-

function ~Uh and integrating over the spatial domain

gives:

where fh(s) is the hth resulting nondimensional modal

force. Transforming Eq. (55) back to time domain

gives the expression of the modal coordinate gh(s) as a
convolution integral. If fh(s) = 1, then:

gh ðsÞ ¼ ei khs ð56Þ

Considering now the real displacements related to a

single vibration mode of the shaft, they can be

expressed as:

vh ðn; sÞ ¼ /vh e
i khs þ /�

vh e
�i khs ð57Þ

therefore (dropping the subscript h):

vðn;sÞ ¼ 2 <ð/vÞcosðksÞ � =ð/vÞ sinðksÞ½ �
wðn;sÞ¼ 2 =ð/vÞcosðksÞ þ<ð/vÞsinðksÞ½ �

�
;

#yðn;sÞ¼�2 =ð/#z
ÞcosðksÞ�<ð/#z

ÞsinðksÞ
� �

#zðn;sÞ¼þ2 <ð/#z
ÞcosðksÞ�=ð/#z

ÞsinðksÞ
� �

(

ð58Þ

Themodal trajectory of each point of the elastic line

of the shaft is always described by a circle of radius

rel(n):

v2 ðn; sÞ þ w2 ðn; sÞ ¼ 4 <2ð/vÞ þ = 2ð/vÞ
� �

¼ r2elðnÞ
ð59Þ

since the phase-lag between its two components is

always ± p/2. If k[ 0 (and x[ 0), then the modal

elastic line rotates counter-clockwise about the x axis,

therefore the k[ 0 frequency values are usually

referred to as forward natural frequencies; if k\ 0

(and x[ 0), then the modal elastic line rotates

lim
j!1

Rn ¼ an ) lim
j!1

/h ¼ i

l

X4
n¼1

anBne
an n ) lim

j!1
h ¼ iwI

l
) lim

j!1
#y = � wI

l
; lim

j!1
#z =

vI

l

ð51Þ

s ~Uh

�� Â qs

D E
þ ~Uh

��� ½B̂ � q s

D E
¼ ~Uh

�� f̂ sD E
, ðs� shÞ gh ¼ fh; sh ¼ ikh , gh ¼

fh

s� ikh
ð55Þ
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clockwise, and the k\ 0 frequency values are usually

referred to as backward natural frequencies. In the

case x̂j j ¼ kj j, a critical speed occurs only if x̂k[ 0.

4.4 Critical loads

In static conditions the characteristic equation for the

exponents a, Eq. (28) with k = 0, gives:

a1;2 ¼ 0; a3;4 ¼ i
T̂

2
�

ffiffiffiffiffiffiffi
�C

p
if C\0

i
ffiffiffiffi
C

p
if C[ 0

(

with C ¼ T̂2

4
� a2wN̂

ð60Þ

For N̂ 6¼ 0, the w equilibrium equation, and its

solution in terms of /w, take the form:

Applying the boundary conditions, considering for

instance simply supported ends as in Eq. (36), yields

the following results:

C�0 ) B sinh
ffiffiffiffiffiffiffi
�C

p
¼ 0 ) B¼ 0

C[0 ) B sin
ffiffiffiffi
C

p
¼ 0 ) B¼ 0 or

ffiffiffiffi
C

p
¼ np

ð62Þ

As a consequence, if C B 0 the shaft does not bend;

if C[ 0 the shaft bends at the critical equivalent

loads:

C ¼ n2p2 ð63Þ

which, for T̂ ¼ 0 and j ! 1 (i.e. r = 0, w = 1),

coincides with the well known expression of the

critical buckling loads of the simply supported Euler–

Bernoulli and Rayleigh beam models.

5 Discussion of the results

The effects of slenderness ratio a, angular speed x̂,

axial end thrust N̂ and twisting moment T̂ are studied

on natural frequencies, modal shapes and critical

speeds of the rotating shaft. Admissible ranges of

variation for both N̂ and T̂ can be set recalling the

definition of yield strength rys of the homogeneous

shaft material, and its link with the maximum value of

N̂ (i.e. N̂max

�� �� = rys/E). Hence a reasonable assump-

tion can be N̂max

�� ��\0:01. Regarding T̂max

�� ��, the

Tresca criterion yields T̂max

�� �� ¼ a N̂max

�� ��=2. In some

figures, however, T̂ has been increased up to exceed-

ingly high values, to emphasize its effects and making

more readable the plots.

5.1 Natural frequencies

Natural frequencies are computed according to the

procedure described in Sect. 3.3, through Eqs. (31)

and (32). In the casex = 0, the absolute value ofDðikÞ

is a symmetric function of the dimensionless param-

eter k. Increasing the modulus of T̂ (positive or

negative) reduces the modulus of natural frequencies

k, as shown in Fig. 3 (left). The same qualitative effect

can be observed by increasing the modulus of a

negative N̂(compression), and the opposite by raising

a positive N̂ (traction). In the case x = 0, the former

symmetry is lost, and two spectra of natural frequen-

cies are generated by considering ± ik. Increasing x̂
with x[ 0, raises the natural frequencies k as

displayed in Fig. 3 (right, with N̂ = 0 and T̂ = 0).

Increasing the modulus of x̂ with x\ 0, in the case

T̂ = 0 causes the opposite (symmetric) effect, as

explained at the end of Sect. 3.3 (the eigenvalues are

the same as those computed through Eq. (32) with

x[ 0, but with opposite signs).

Considering now a simply supported rotating shaft

with the following parameters:

q ¼ 7700 [Kg/m3�; E ¼ 210� 109 ½Pa�;
m ¼ 0:3; r ¼ 10 ½mm],

l ¼ 250 ½mm], x ¼ 1000 [rad/s],

j ¼ 0:8864; N ¼ 0; T ¼ 0

EJwIV � iTwIII � NwwII ¼ 0 ) /w ðnÞ ¼ B1 e
a1 n þ B2 e

a2 n þ B3 nþ B4 ¼ 0 ð61Þ
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the first 4 positive natural frequencies kX of the two

spectra, computed for the distributed parameter model

(DPM) according to the method presented in Sect. 3.3,

are reported in Tab. 1 (a = 50, simply supported shaft)

where they are compared with the results of a finite

element analysis (FEA) using different numbers of

Timoshenko rotating beam elements [20].

Figure 4 shows the absolute values kj j(black
continuous lines) of the two couples of eigenvalues

related to n = 1 (left) and n = 2 (right) as functions of

x̂, with a = 20, m = 0.3, N̂ = 0, T̂ = 0 and simply

supported ends. The asymptotic behaviour of the

eigenvalues with respect to angular speed will be

discussed in Sect. 5.3.The effects of external loads N̂

and T̂ on the lower natural frequencies are highlighted

in Fig. 5, displaying differences [%] on the first

(continuous lines) and second (dotted lines) positive

natural frequencies k of the forward spectrum, as

functions of x̂. These differences reduce progressively

for increasing natural frequencies, and those due to T̂

are so small to be regarded as negligible.

5.2 Characteristic exponents

A qualitative analysis of the four exponents a in

Eq. (29) highlights some important general aspects of

modal shapes, independently from boundary condi-

tions. The real and imaginary parts of the four roots of

P(a), Eq. (28), are displayed in 3D plots as functions

of a continuous variable k, representing all possible

natural frequencies, as for instance reported in Figs. 6

and 7 for a rotating shaft with a = 10, x̂ = 50,

N̂ = ± 0.005, T̂ = 0 and m = 0.3.

If T̂ = 0, Eq. (28) is a biquadratic equation, with

either two real opposite and two imaginary conjugate

roots, or two pairs of imaginary conjugate roots. The

diagrams, as in Figs. 6 and 7, are symmetric with

respect to both the k–Re (a) and k–Im(a) planes. In the

case of non-rotating shaft (x̂ = 0) they would be

symmetric also with respect to the Re (a)–Im(a) plane.

Therefore the effect of angular speed it that of

producing different values of a (and therefore of

modal shapes) for forward and backward eigenfre-

quencies. Notice that the asymmetry between forward

and backward modal shapes grows with increasing

Fig. 3 Absolute values DðkÞj j of the characteristic function (a = 50, m = 0.3, clamped ends with null rotations and shear deformations);

left: T̂[ 0, x̂ = 0, N̂ = 0; right: x̂[ 0, N̂ = 0, T̂ = 0

Table 1 First 4 natural

frequencies kX [Hz] for a

rotating unloaded simply

supported shaft

x̂[ 0 x̂\ 0

FEA—number of elements DPM FEA—number of elements DPM

1 5 10 1 5 10

1 736.030 652.037 651.882 651.847 726.306 650.833 650.658 650.624

2 3351.66 2561.21 2552.27 2550.21 3330.78 2556.56 2547.73 2545.68

3 – 5652.63 5565.59 5544.83 – 5611.01 5556.45 5535.76

4 – 9931.85 9540.54 9440.12 – 9737.23 9526.28 9426.22
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angular speed. The two non-zero frequency values for

which two pairs of real roots a become null (and then

switch to imaginary conjugate, in the following

referred to as switch frequencies) can be found by

setting p0 = 0 in Eq. (27), yielding:

Fig. 4 Absolute values kj j (black continuous lines) of the two

couples of natural frequencies related to n = 1 (left) and n = 2

(right) as functions of x̂ (a = 20, m = 0.3, N̂ = 0, T̂ = 0, simply

supported ends); grey continuous lines identify asymptotes, grey

dotted curves identify switch frequencies

Fig. 5 Differences due to external loads N̂ and T̂ on the first

(continuous lines) and second (dotted lines) positive natural

frequencies k of the forward spectrum, as functions of x̂
(a = 20, m = 0.3, simply supported ends); left: effect of the

maximum value of N̂[ 0, differences [%] with respect to the

case N̂ = 0; right: effect of the maximum value of T̂ , differences

[%] with respect to the case T̂ = 0

pðkÞ ¼ r
a4

k2 � 2
rx̂
a4

k� w ¼ 0 ) kf ¼ x̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ wa4r�1

p
kb ¼ x̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ wa4r�1

p�
ð64Þ
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Inside the interval defined by the two switch

frequencies (kb, kf), the modal shapes can be defined

by combinations of hyperbolic and trigonometric

functions; outside this range, the modal shapes are

represented by trigonometric functions only. At the

switch frequencies defined by Eq. (64) the

eigenfunctions take a peculiar form: /w = 0 (the

elastic line does not bend) and/h = constant (constant

angular displacements along the spatial coordinate n).
At zero natural frequency (k = 0), i.e. in static

conditions, a traction axial thrust (N̂[ 0) gives two

non-zero opposite real values for a (Fig. 6), while a

Fig. 6 The four roots of

Eq. (32), exponents of the

modal shapes, as functions

of the natural frequencies k,
case with N̂[ 0 (x̂[ 0,

T̂ ¼ 0)

Fig. 7 The four roots of

Eq. (32), exponents of the

modal shapes, as functions

of the natural frequencies k,
case with N̂\0 (x̂[ 0,

T̂ ¼ 0)
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compression axial thrust (N̂\0) gives two non-zero

pure imaginary conjugate values (Fig. 7); in the

former case the shaft does not bend, in the latter case

the shaft bends at critical loads, as discussed in

Sect. 4.4.

If a twisting moment acting on the shaft is

considered (T̂ 6¼ 0), then the only preserved plane of

symmetry is the k–Im(a) plane. Symmetry with

respect to the k–Re (a) plane is lost, as shown in

Fig. 8 for a rotating shaft with a = 10, x̂ = 50, N̂ = 0,

m = 0.3 and several increasing values of T̂ [ 0. In

Fig. 8 (left), to emphasize the effects of T̂ on the

overall behaviour of the roots a in the k–Im(a) plane,

the twisting moment is increased up to exceedingly

high values, the represented map retaining mathemat-

ical meaning only. In static conditions (k = 0), for

N̂ ¼ 0 P(a) yield a single non-zero imaginary root

(a ¼ iT̂). In Fig. 8 (right), a small portion of the same

plot is displayed, around the forward switch frequency

values, varying T̂ in a realistic range until

N̂max

�� �� ¼ 0:01. It can be observed that absolute values

of switch frequencies are reduced with increasing T̂
�� ��,

and that inside the whole interval defined by a forward

and a backward switch frequency, a pair of exponents

a become complex-valued (for realistic values of T̂ ,

however, such reduction of switch frequencies, as well

as the imaginary parts of complex a, are very slight).

The points in which the curves cross the k-axis are

independent from T̂ , and it can be demonstrated that

their frequency values are still given by Eq. (64). In

these points (and not at the actual switch frequencies

for T̂ 6¼ 0), the modal shapes retain the already

described peculiar features (/w = 0 and

/h = constant).

Regarding the behaviour at high frequency, it turns

out that in the most general case (x̂ 6¼ 0, N̂ 6¼ 0 T̂ 6¼ 0)

Fig. 8 The imaginary parts of the four roots of Eq. (27),

exponents of the modal shapes, as functions of the natural

frequencies k; left: overall diagram with several increasing

values of T̂ [ 0 (x̂[ 0, N̂ ¼ 0); right: detail of the position of

switch points for realistic values of T̂ [ 0
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the pairs of conjugate imaginary roots a are asymptotic

to straight lines, given by:

which depend strongly on slenderness ratio a and on a
lesser extent on Poisson’s ratio m (r), but they are

totally independent from x̂; N̂ and T̂ . Therefore the

effects of rotating speed and external loads are the

largest on lower modes, while progressively fading

away at increasing frequencies.

5.3 Second spectrum and switch frequencies

The asymptotic behaviour of the eigenvalues with

respect to angular speed of the rotating shaft (x ! 1,

as shown in Fig. 4, grey continuous lines), can be

studied in a general case.

Considering the equations of motion Eq. (13),

dividing the third and fourth equations by x and

letting x ! 1, then all terms on the third and fourth

rows of operators M and [K(�)], Eqs. (15–16), tend to

0. Consequently, if eigenvalues tend to finite values,

there are two possible cases: either k ! k1; k1 6¼ 0,

in which limit case Eq. (13) yield:

or k ! 0, in which case Eq. (13) reduce to Eq. (3)

(null acceleration) and its homologous for w:

x ! 1
k ! 0

)
vII � w#I

z ¼ 0

wII þ w#I
y ¼ 0

(
ð67Þ

If, on the other hand, eigenvalues tend to infinity

with angular speed, dividing the third and fourth of

Eq. (15) by x2 and letting both x ! 1 and k ! 1
gives:

which could be obtained directly referring to the

equilibrium represented in Fig. 2B. Therefore the

asymptotic behaviour of the forward and backward

natural frequencies of the rotating shaft can be

summarized as:

x!1 )
k¼ 0; horizontal asymptote

kj j ¼ affiffiffi
r

p a1n; horizontal asymptote

k!1; asymptotic to k¼ k1x

8><
>:

ð69Þ

a ¼ � i

ffiffiffi
r

p

a
k always pure imaginary roots

a ¼ � i

a
k pure imaginary roots beyond the switch frequencies

ð65Þ

x!1 )
#y ¼ 0

#z ¼ 0

(
)

qA €v� jGAvII ¼ 0

qA €w� jGAwII ¼ 0

(
) k1j j ¼ affiffiffi

r
p a1n; a1n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l2

/v;n; v
II


 �
/v;n;v

 �

s

ð66Þ

x ! 1
k ! 1 ) k ¼ k1x with

k1 ¼ 2 if Ix ¼ 2J; Iy ¼ Iz ¼ J

k1 ¼ Ix=J if Iy ¼ Iz ¼ J
ð68Þ

123

Meccanica (2019) 54:1029–1055 1047



where n identifies the mode order. Notice that the

horizontal asymptotes in Eq. (69) correspond to the

straight asymptotic lines defined in the first of

Eq. (65), which in the case of finite eigenvalues are

reached as x ! 1. Notice also that the asymptotic

behaviour does not depend on the external loads N and

T, and that for a shaft with same boundary conditions

at both ends, from Eq. (66) it results simply a1n ¼ np
as in the case of Fig. 4. Each non-zero horizontal

asymptote represents a link between two pairs of

eigenvalues, one pair at lower frequencies, one pair at

higher frequencies. The latter, when x ¼ 0 and in

particular cases of boundary conditions in which the

characteristic equation factorizes (as in the case of

simply supported ends), can be identified with what is

referred to as Timoshenko (beam theory) second

spectrum [14]. The existence of such second spectrum

in the case of general boundary conditions has been

debated in the literature [15, 16], since when x = 0 it

is possible to easily identify the companion natural

frequencies constituting the second spectrum only in

particular cases, while finite element simulations

produced conflicting conclusions [17]. More recently,

the existence of a second spectrum in a non-rotating

finite-length beam has been demonstrated on the basis

of accurate experimental results, at least for free–free

boundary conditions [18], and also by considering free

waves in beams of infinite length, modelled according

to the Timoshenko theory, showing the existence of

two distinct frequency branches for any wavenumber

[19].

However, when considering a rotating shaft, as

x ! 1 the existence of non-zero horizontal asymp-

totes for any boundary conditions suggests a new way

for defining and identifying the natural frequencies of

the Timoshenko first and second spectra. All first

spectrum backward eigenfrequencies tend to 0; all

second spectrum forward eigenfrequencies tend to

infinity, asymptotic to k ¼ k1x, while the absolute

value of each first spectrum forward eigenfrequency

converges to the backward companion one belonging

to the second spectrum. Therefore, the first spectrum

can be identified by setting k ¼ k x̂; 0\k� k1 in

Eq. (32) and solving it with respect to x̂. The solutions
identify the curves (or branches) of the first spectrum

forward eigenvalues, since those of the second spec-

trum do not intersect any of the lines

k ¼ k x̂; 0\k� k1, as for example shown in

Fig. 9. As a consequence, notice also that the whole

second spectrum gives no contribution to the forward

critical speeds. The problem of identifying the first

spectrum frequencies at a given angular speed (even-

tually at x = 0) can then be solved by using an

iterative procedure (Rayleigh quotient) able to follow

each identified branch to the desired value of angular

speed.

Recalling now the switch frequencies defined in

Eq. (64), in the case of non-rotating unloaded

Timoshenko beams they reduce to a unique value

k ¼ a2=
ffiffiffi
r

p
. This critical value is sometimes referred

to as cut-off frequency [16, 17], while Eq. (64)

generalizes its definition to the rotating and axially

loaded case; if considering also a twisting moment, for

realistic values of T̂ Eq. (64) can be considered a good

approximation of the switch frequencies, as shown in

Sect. 5.2, and it still gives the exact frequency values

in which no-total-deflection modal shapes occur

(/w = 0 and /h = constant). Clearly, the most influ-

ential parameter on the switch frequencies is the

slenderness ratio a; however x̂ can influence signif-

icantly kf and kb at high speed, while the effect of

external loads in this case is of minor importance.

Figure 4 shows the two switch frequencies (kb, kf)
as functions of x̂ (grey dotted curves, case with

a = 20, m = 0.3, N̂ = 0, T̂ = 0 and simply supported

ends). From Eq. (64) it can be found that as x ! 1

Fig. 9 Absolute values kj j of forward natural frequencies as

functions of x̂ (a ¼ 10, r ¼ 2:933, N̂ ¼ T̂ ¼ 0); the dotted line

identifies the asymptote k ¼ 2x, the dashed curve identify the

forward switch frequencies
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then kb! 0 and kf! þ1. It can also be observed that

the switch frequency curve is asymptotic to k ¼ k1x̂
(as shown in Figs. 4 and 9) and that all the branches of

the first spectrum natural frequencies cross the switch

frequency curve twice (forward and backward), while

those of the second spectrum always lay above it (the

switch frequency curve is not a boundary between the

two frequency spectra, it is a lower bound for the

second frequency spectrum). Therefore, at any given

angular speed, all the forward eigenvalues smaller

than the switch value (at that angular speed) belong to

the first frequency spectrum. Above the switch value

the frequencies of the two spectra overlap in some

complicated fashion, however they can be identified in

general by following the criterion given above.

As already noticed in Sect. 5.2, at the switch

frequencies the total deflection angles are zero,

consequently the shear angles and the cross-section

rotation angles are in counter-phase (equal and

opposite if w = 1), as it can be understood from the

expression of the shear angle eigenfunctions /cz
:

/cz
¼ /I

v � w/#z
¼ � rk2

2la2
X4
n¼1

Bn

an
eann ð70Þ

obtained from Eqs. (2), (29), (33) and (50). On the

other hand, as x ! 1 at the horizontal asyptotes the

cross-section rotation angles become zero, conse-

quently the shear angles and the total deflection angles

are in-phase (actually they coincide). Therefore,

increasing the angular speed and following a first

spectrum forward branch which intersect the switch

frequencies curve, changes are observed in phase

relations among cross-section rotation, shear angle

and total slope.

As discussed in the literature, above the cut-off

frequencies the results given by the Timoshenko beam

theory become progressively less accurate. According

to some authors, the whole second spectrum should be

disregarded, and considered un-physical [16, 17], in

contrast with the results presented in [18, 19]. In any

case, it should be noticed that the frequency range of

validity of the model under analysis is reduced if

considering small values of slenderness ratio a, and
this is related to the fact that, beyond certain frequency

limits, the assumption of planarity of cross-sections

during deformation clearly becomes unrealistic.

5.4 Modal shapes

Modal shapes for the variables in the configuration

space are determined through Eqs. (29), (33), (50) and

(58), taking into account some additional remarks

about representation of angular displacements, as

reported in ‘‘Appendix C’’. As an example, in Fig. 10

the second forward modal shapes for the elastic line

are displayed, for both simply supported and clamped

ends, highlighting the twisting effects of T̂ (empha-

sized by increasing its value up to exceedingly high

values, for the sake of readability). While in Fig. 11

Fig. 10 Second forward modal shape for the elastic line, with a = 50, x̂ = 10, N̂ = 0 and m = 0.3; left column: simply supported ends,

Eq. (36); right column: clamped ends, Eq. (34); upper row, T̂ = 0; lower row, T̂ = 5
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the whole second modal shape is represented, for the

simply supported unloaded rotating shaft.

Notice that forward and backward modal shapes are

different, as for instance results from Figs. 6, 7 and 8,

due to a lack of symmetry with respect to the Re(a)–

Im(a) plane.

5.5 Critical speeds

Critical speeds are computed according to the proce-

dure described in Sect. 3.3, through Eqs. (31) and

(32). Campbell 2D diagrams are shown in Fig. 4,

where straight dotted lines represent the condition

k ¼ x̂. However, the effects of the main governing

parameters on critical speeds are better highlighted by

the diagrams displayed in Fig. 12. There the square

root of the first nondimensional forward critical speedffiffiffiffiffiffiffiffiffi
x̂C1

p
of a rotating shaft with m = 0.3 and clamped

ends (null rotations and shear deformations) is repre-

sented as a function of the slenderness ratio a, for

different values of T̂ in combination with N̂ ¼ 0 (left),

N̂[ 0 (center) and N̂\0 (right).

Increasing the modulus of T̂ always lowers the

critical speeds. If N̂ ¼ 0, then x̂C1 shows an asymp-

totic behaviour towards the first nondimensional

natural frequency of a slender beam (dotted line in

Fig. 14:
ffiffiffiffiffiffiffiffiffi
x̂C1

p
¼ 4:730 [24]), since increasing a the

Timoshenko model tends to the Euler–Bernoulli one.

The case of traction (N̂[ 0) produces a stiffening

effect on the shaft, raising its critical speeds. The case

of compression (N̂\0) causes the opposite effect.

T̂

C1 C1 C1

T̂ T̂

α

ˆ 0N = ˆ 0N > ˆ 0N <

α α

Fig. 12 First forward critical speed
ffiffiffiffiffiffiffiffiffi
x̂C1

p
as a function of a for different values of T̂

Fig. 11 Second forward modal shape, with a = 50, x̂ = 10,

N̂ = 0, T̂ = 0 and m = 0.3
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6 Conclusions

A fast and easy to implement method has been

proposed for the calculation of natural frequencies,

modal shapes and critical speeds of a continuous

rotating shaft, consisting of a homogeneous uniform

Timoshenko straight beam, rotating at constant angular

speed about its longitudinal axis and simultaneously

subjected to axial end thrust and twisting moment.

The equations of motion have been derived in both

Newtonian and Lagrangian formulations, correcting

and clarifying some discrepancies existing in the

literature. Modal analysis of the rotating shaft has then

been developed for both complex and real displace-

ment variables, presenting novel contributions in

clarifying the relations between the two formulations,

the structure of the algebraic and differential operators

involved and the bi-orthogonality properties of the

eigenfunctions in a state-space representation. The

effects of varying the model main governing param-

eters, identified in slenderness ratio, angular speed,

axial end thrust and twisting moment, have been

studied on natural frequencies, modal shapes and

critical speeds of the rotating shaft.

New evidence of existence of the second spectrum

in the Timoshenko beam theory has been presented,

together with a novel definition for its identification,

only possible if considering gyroscopic effects. It has

been found that the link between companion frequen-

cies belonging to the first and second spectra is given

by a peculiar asymptotic behaviour at high rotating

speed. Each non-zero horizontal asymptote in Camp-

bell diagrams represents a link between two pairs of

eigenvalues, one pair at lower frequencies, one pair at

higher frequencies. The latter, at zero angular speed

and in particular cases of boundary conditions in

which the characteristic equation factorizes (as in the

case of simply supported ends), can be identified with

the Timoshenko second spectrum. However, when

considering a rotating shaft, as x ! 1 the existence

of non-zero horizontal asymptotes for any boundary

conditions suggests a new way for defining and

identifying the natural frequencies of the Timoshenko

first and second spectra. All first spectrum backward

eigenfrequencies tend to 0; all second spectrum

forward eigenfrequencies tend to infinity, while the

absolute value of each first spectrum forward eigen-

frequency converges to the backward companion one

belonging to the second spectrum. As a result, it can be

stated that the whole second spectrum gives no

contribution to the forward critical speeds. In parallel,

the role of the so-called cut-off frequencies has been

investigated, extending their definition to include the

effects of gyroscopic moments and external loads.

The results of this study constitute the basis for

further developments, including comparison with

finite element models and rotor stability analysis

under combined loads.
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Appendix A. Kinetic energy density of the rotating

shaft

A cross-section of infinitesimal length dx is consid-

ered, as represented in Fig. 13 with two coordinate

systems, inertial (x, y, z) and floating (x0, y0, z0).
The velocity of the center of gravity (o0) of the

cross-section is given by:

o0 ¼ oþ s; _o0 ¼ _s ¼ _u; _v; _wf gT ðA:1Þ

The absolute angular velocity of the cross-section

x, represented in the floating coordinate system, is the

sum of a component x0 given by the rotating angular

speed of the shaft, plus a relative component xr,

according to:

x ¼ x0 þ xr; x0 ¼ x; 0; 0f gT; ~xr ¼ RT _R

ðA:2Þ

Fig. 13 Reference systems (fixed and floating) for a cross-

section of infinitesimal length dx
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where xr is written in skew-symmetric matrix form

and R is its associate rotation matrix. Since the first-

order approximation ofRwould lead to an incomplete

expression of the kinetic energy (lacking of gyro-

scopic terms), a second-order approximation for small

rotations is required. Therefore, the first-order approx-

imation R(1) is expanded by addition of (small)

second-order terms, say e:

As an alternative method to Taylor expansions of

trigonometric terms due to selected (arbitrary)

sequences of basic rotations (leading to non-univocal

results, as discussed in [2]), here the e terms are simply

determined by requiring that: (1) the second-order

approximation R(2) must respect the properties of a

rotation matrix; (2) among all possible choices, the

selected R(2) is the closest to R(1) (and therefore it is

univocally determined). Imposing unit norm to all the

columns of R(2) in Eq. (A.3), and neglecting all terms

of order higher than two, yields:

e11 ¼
1

2
ð#2

y þ #2
z Þ; e22 ¼

1

2
ð#2

x þ #2
z Þ;

e33 ¼
1

2
ð#2

x þ #2
yÞ

ðA:4Þ

Introducing the expressions given by Eq. (A.4) into

R(2), then imposing the linear independency of all its

columns, and neglecting again all terms of order

higher than two, three further equations are written in

the unknowns ehk, admitting an infinite set of solutions.

For satisfying the request of minimal variations with

respect to R(1), equal values ehk = ekh are selected,

yielding:

e21 ¼ e21 ¼
1

2
#x#y; e31 ¼ e13 ¼

1

2
#x#z;

e32 ¼ e23 ¼
1

2
#y#z

ðA:5Þ

Hence the resulting second-order rotation matrix

R(2) takes the form:

R ¼

1� 1

2
ð#2

y þ #2
z Þ �#z þ

1

2
#x#y #y þ

1

2
#x#z

#z þ
1

2
#x#y 1� 1

2
ð#2

x þ #2
z Þ �#x þ

1

2
#y#z

�#y þ
1

2
#x#z #x þ

1

2
#y#z 1� 1

2
ð#2

x þ #2
yÞ

2
66664

3
77775

ðA:6Þ

Recalling Eqs. (A.1) and (A.2), the kinetic energy

density T of a cross-section of infinitesimal length dx

can then be written as:

T ¼ 1

2
q ðA _sT _s þ xTJxÞ ðA:7Þ

where J is the cross-section tensor of inertia, consist-

ing of a constant diagonal matrix with elements

J11 = 2J and J22 = J33 = J. Developing the calcula-

tions, and truncating the result to second-order terms,

yields the approximate expression of the kinetic

energy density as reported in Eq. (7).

Appendix B. Decoupling the equations of motion

The two fourth-order equations in the real variables v

and w, Eq. (20), are decoupled into a single eighth-

order equation in a real variable, say v. Laplace

transforming with respect to time and adopting the

following compact notation:

Fv ¼ vII � rs2

a2
v; Fw ¼ wII � rs2

a2
w ðB:1Þ

Equations (20) are rewritten in the form:

F II
v þ T̂ FI

w � N̂a2wvII þ ws2v� s2

a2
Fv � 2x̂

s

a2
Fw ¼ 0

F II
w � T̂ FI

v � N̂a2wwII þ ws2w� s2

a2
Fw þ 2x̂

s

a2
Fv ¼ 0

8><
>:

ðB:2Þ

in which the v- and w-dependent terms can be re-

arranged as:

R ð1Þ ¼
1 �#z #y

#z 1 �#x

�#y #x 1

2
4

3
5 ) Rð2Þ ¼

1� e11 �#z þ e12 #y þ e13
#z þ e21 1� e22 �#x þ e23

�#y þ e31 #x þ e32 1� e33

2
4

3
5 ðA:3Þ
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F I
w ¼ 2

x̂

T̂

s

a2
Fw þ Av

F II
w ¼ N̂a2wwII � ws2wþ s2

a2
Fw þ Bv

8>><
>>: ;

Av ¼
1

T̂
�F II

v þ N̂a2wvII � ws2vþ s2

a2
Fv

� �

Bv ¼ T̂ F I
v � 2x̂

s

a2
Fv

8>><
>>:

ðB:3Þ

Taking the first derivative with respect to n of the

first of Eq. (B.2):

T̂ F II
w � 2x̂

s

a2
F I
w þ Cv ¼ 0; Cv ¼ �T̂ A I

v ðB:4Þ

and introducing Eq. (B.3) yields wII as a function of w

and v:

wII ¼ � 1

b2
ðb1wþ DvÞ;

Dv ¼ Cv þ T̂ Bv � 2x̂
s

a2
Av;

b1 ¼ �T̂ws2 � T̂r
s4

a4
þ 4r

x̂2

T̂

s4

a6

b2 ¼ T̂N̂a2wþ T̂
s2

a2
� 4

x̂2

T̂

s2

a4

8>><
>>:

ðB:5Þ

Recalling the definition of Fw in Eq. (B.1), then

Eq. (B.5) give immediately:

Fw ¼ �b3wþ Ev; Ev ¼ �Dv

b2
; b3 ¼

rs2

a2
þ b1
b2
ðB:6Þ

Taking the second derivative with respect to n of

Eq. (B.6):

F II
w ¼ E II

v � b3w
II ðB:7Þ

and introducing the expressions of Fw and of its second

derivative given by Eqs. (B.3) and (B.5), as well as that

of wII given by Eq. (B.6), yields w as a function of v:

w ¼ Gv

b4
;

Gv ¼ Bv �
1

b2
ðN̂a2wþ b3ÞDv � E II

v þ s2

a2
Ev;

b4 ¼ N̂a2w
b1
b2

þ ws2 þ s2

a2
þ b1
b2

� �
b3

ðB:8Þ

Finally, thew-independent expressions of Fw and of

its first derivative, obtained from Eqs. (B.6) and (B.8):

Fw ¼ Ev �
b3
b4

Gv; F I
w ¼ E I

v �
b3
b4

G I
v ðB:9Þ

are introduced in the first of Eq. (B.2) yielding an

eighth-order equation in the real variable v:

F II
v þ T̂ E I

v �
b3
b4

G I
v

� �
� N̂a2wvII þ ws2v� s2

a2
Fv

� 2x̂
s2

a2
Ev �

b3
b4

Gv

� �
¼ 0

ðB:10Þ

After substituting the expressions of Fv, Ev and Gv,

the resulting coefficients are:

q8 ¼ 1 ; q7 ¼ 0 ;

q6 ¼ � 2ð1þ rÞ
a2

s2 þ T̂2 � 2N̂ a2w;

q5 ¼ � 4 T̂ x̂
a2

s;

q4 ¼
1þ rð4 þ rÞ

a4
s4 þ 2w 1þ N̂ð1þ rÞ

� ��
� 2 r T̂2

a2
þ 4 x̂2

a4

�
s2 þ N̂2a4w2;

q3 ¼
8 r T̂ x̂

a4
s3; q2 ¼ � 2 rð1þ rÞ

a6
s6

þ r2T̂2

a4
�

2w 1þ r ð1þ N̂Þ
� �

a2
� 8 r x̂2

a6

" #
s4

� 2 N̂a2w2 s2;

q1 ¼ � 4 r2T̂x̂
a6

s5;

q0 ¼
r2

a8
s8 þ 2 rw

a4
þ 4 r2x̂2

a8

� �
s6 þ w2s4

ðB:11Þ

Applying the inverse Laplace transform back to

time domain yields the decoupled eighth-order (with

respect to both x and t) partial differential equation of

motion in the real variable v.
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Appendix C. Representation of angular

displacements

The instantaneous position of a cross-section of the

shaft can be represented in terms of displacement of its

center (v, w) and of a versor n orthogonal to its surface

(planar by assumption), as shown in Fig. 14 (left).

The projections of n on the x–y and x–z orthogonal

planes (say nz and ny, respectively) define two other

planes, as represented in Fig. 14 (right), where p1 is

parallel tony and perpendicular to x–z, whilep2 is parallel
to nz and perpendicular to x–y. The projections of n,

alongwith the parametric representations of the p planes,
can be expressed as functions of the angular displace-

ments #y and #z:

ny

ny
�� �� ¼

cos#y

0

� sin#y

8><
>:

9>=
>;; pp1 ¼

n1 cos#y

h1

�n1 sin#y

8><
>:

9>=
>;;

nz
nzk k ¼

cos#z

sin#z

0

8><
>:

9>=
>;; pp2 ¼

n2 cos#z

n2 sin#z

h2

8><
>:

9>=
>;

ðC:1Þ

The orthogonal directions with respect to the p
planes are identified by:

n?y ¼
opp1
oh1

�
opp1
on1

¼
� sin#y

0

� cos#y

8><
>:

9>=
>;;

n?z ¼
opp2
oh2

�
opp2
on2

¼
� sin#z

cos#z

0

8><
>:

9>=
>;

ðC:2Þ

which give a definition of n as a function of #y and #z:

n ¼ nþ

nþk k ;

nþ ¼ n?y � n?z ¼
cos#y cos#z

cos#y sin#z

� sin#y cos#z

8><
>:

9>=
>;

ðC:3Þ

Equations (C.3) provide an unambiguous represen-

tation of the cross-section orientation in terms of

angular displacements (#y, #z), which in Sect. 5.3 has

been adopted for improving the readability of plots.
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