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Abstract Lattices composed of cubic and triangular

prismatic unit cells with polymeric Sarrus linkage rib

elements are designed, fabricated via 3D printing and

studied experimentally. Size effects in these lattices

are observed experimentally; slender specimens

appear more rigid in torsion and in bending than

expected via classical elasticity. Effects are analyzed

via Cosserat elasticity. The magnitude of size effects is

sensitive to geometry of the lattices; triangular cells

with short ribs revealed the most extreme effects, also

the largest characteristic length in relation to cell size.

The torsion coupling number is 1, its upper bound, for

all lattices. A path to the attainment of arbitrarily large

nonclassical effects is delineated.

Keywords Lattices � Metamaterials � Cosserat �
Extreme materials

1 Introduction

Continuum theories are commonly used to model

materials with microstructure, including the lattices

presented here, as continuous media. Many different

continuum theories of elasticity with varying degrees

of freedom exist. One of the earliest theories, the

uniconstant theory, was developed by Navier [1]. The

uniconstant theory allows only one isotropic elastic

constant, a modulus. This theory was governed by the

assumption that forces acted along the lines joining

pairs of atoms and were proportional to changes in the

distance between them. This uniconstant theory pre-

dicted a Poisson’s ratio of 1/4 for all isotropic

materials and was proven obsolete when experimen-

tation disclosed a range of Poisson’s ratios. The

currently accepted classical theory of elasticity is a

step up in complexity and descriptive capability from

Navier’s uniconstant theory because it incorporates

two independent isotropic elastic constants. The

classical theory of elasticity predicts Poisson’s ratio

to range from � 1 to 1/2 for isotropic materials.

Classical elasticity suffices for objects in which the

structure size is many orders of magnitude smaller

than the experimental size scale. Generalized contin-

uum theories such as Cosserat elasticity entail more

freedom than classical elasticity. Such theories are

intended to deal with solids in which the structural

length scale is non-negligible. To experimentally

determine what kind of theory applies, one may do

size effect measurements or study concentration of

strain or stress. Experimental tests for Cosserat

elasticity at the macroscopic scale in aluminum

disclosed classical behavior [2]. However, classical

elasticity can break down when the experimental

length scale approaches the structural length scale of

the material or structure being tested as reviewed later
Z. Rueger � C. S. Ha � R. S. Lakes (&)

University of Wisconsin Madison, Madison, WI, USA

e-mail: rlakes@wisc.edu

123

Meccanica (2019) 54:1983–1999

https://doi.org/10.1007/s11012-019-00968-7(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0001-9369-4184
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-019-00968-7&amp;domain=pdf
https://doi.org/10.1007/s11012-019-00968-7


in the introduction. Additionally, neither classical

elasticity nor the uniconstant theory incorporate a

length scale in their definitions which is important

when considering material properties such as tough-

ness which has a length scale in its units, MPa
ffiffiffiffi

m
p

. The

lack of a length scale prohibits either of these theories

from being used to describe materials that are sensitive

to strain gradients.

The Cosserat theory of elasticity [3] (with inertia

terms called micropolar [4]) has even more freedom

than the classical theory; Cosserat elasticity incorpo-

rates a local rotation of points and a couple stress

(torque per unit area) in addition to the translation of

points and force stress (force per unit area) present in

classical elasticity. The physical origin of the Cosserat

couple stress is the summation of bending and twisting

moments transmitted by the structural elements in

materials. The Cosserat local rotation corresponds to

the rotation of structural elements. Forces and

moments were considered in the classic analyses of

foam by Gibson and Ashby [5] in which classic elastic

moduli were determined; effects of rotation gradients

were not considered.

The additional freedom in Cosserat elasticity is

represented by its six isotropic elastic constants,

a; b; c; j; k; and G. The constitutive equations for a

linear isotropic elastic Cosserat solid [4] are as

follows.

rij ¼ 2G�ij þ k�kkdij þ jeijkðrk � /kÞ ð1Þ

mij ¼ a/k;kdij þ b/i;j þ c/j;i ð2Þ

In Cosserat elasticity the stress, rij, can be asymmetric.

The moment that results is balanced by a couple stress,

mij. The antisymmetric part of the stress is related to

local rotations: rantisymjk ¼ jejkmðrm � /mÞ in which /m

is the rotation of points, called micro-rotation, ejkm is

the permutation symbol, and rk ¼ 1
2
eklmum;l is the

macro-rotation based on the antisymmetric part of

gradient displacement ui.

On their own, the six elastic constants do not

provide sufficient physical insight. To do so, the

following technical constants have been derived from

them:

Young0s modulus E ¼ Gð3kþ 2GÞ
kþ G

ð3Þ

Shear modulus G ð4Þ

Poisson0s ratio m ¼ k
2ðkþ GÞ ð5Þ

Characteristic length; torsion ‘t ¼
ffiffiffiffiffiffiffiffiffiffiffi

bþ c
2G

r

ð6Þ

Characteristic length; bending ‘b ¼
ffiffiffiffiffiffi

c
4G

r

ð7Þ

Coupling number N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j
2Gþ j

r

ð8Þ

Polar ratio W ¼ bþ c
aþ bþ c

: ð9Þ

Extension of this analysis to include viscoelasticity

can be done by invoking the correspondence principle

as is done in the classical case. Elastic constants then

become dependent upon time or frequency. Exten-

sions to nonlinear behavior are also known.

The range for Poisson’s ratio is the same as in

classical elasticity, from � 1 to 1/2. Cosserat solids

differ from classical solids as follows. Circular and

elliptic holes demonstrate lower stress concentration

than expected classically. Small holes impose less

stress concentration than larger ones [6]. Pertinent to

the work presented here, Cosserat elasticity predicts

size effects in the torsion [7] and bending [8] of

circular cylinders of Cosserat elastic materials. A size

effect in this context is the nonclassical dependence of

specimen rigidity on one or more of its dimensions.

Size effects are manifested as slender cylinders

appearing stiffer than predicted classically. In contrast

to classical elasticity, Cosserat elasticity incorporates

a length scale, manifested as characteristic lengths of

bending and torsion, Eqs. 6 and 7. Both the charac-

teristic lengths of bending and torsion and size effects

in the same modes will be explored in this work.

Cosserat elastic effects have been observed in

several materials with structure on the lm and mm

scales. Cosserat elastic size effects in bending and

torsion have been observed and measured in closed

cell foams [9, 10], open cell foams [11, 12], and

negative Poisson’s ratio tetragonal lattices [13]. In

each of these studies, the apparent moduli increased as

123

1984 Meccanica (2019) 54:1983–1999



specimen diameter decreased in contrast to classical

predictions in which modulus is independent of

diameter. Cosserat characteristic lengths were found

to be on the order of the size scale of the cells in the

materials. Cosserat elastic constants on the scale of

spacing between atoms have been inferred from wave

dispersion in diamond crystals [14].

The Cosserat characteristic length has been deter-

mined experimentally in a two-dimensional polymer

honeycomb [15] and via theoretical homogenization

in straight elastic ribbed lattices [16–18]. In the latter

case, the characteristic lengths were much smaller

than the cell size of the lattices and the lattices behaved

nearly classically. This is because these structures

were stretch dominated, meaning the effects of rib

extension dominate the effects of rib bending and

torsion. Cosserat elastic effects depend on bending and

twisting of the ribs to transmit the moments corre-

sponding to the Cosserat couple stress. The charac-

teristic lengths of the two-dimensional polymer

honeycomb were similar to the average cell size of

the material. The honeycomb material was determined

to be bend dominated, meaning rib deformation

occurred primarily in bending rather than compression

or axial stretch. Consequently, the size effects mea-

sured were much greater than those observed in the

lattice with straight elastic ribs.

Recent experimental study of cellular materials

(foams) has demonstrated dramatic Cosserat charac-

teristics [11, 12]. Additionally, truss lattice materials

with cubic symmetry have been analytically and

numerically modeled as classical media in the elastic

regime and in the plastic regime via continuum

mechanics [19]. Nonclassical plastic effects have been

observed in the bending of epoxy microcantilevers

[20]. However, experimental studies in generalized

continua are few compared with the number of

theoretical studies. The work detailed here seeks to

improve the balance of experiment in relation to

theory. The primary purpose of this study is to

compare the nonclassical phenomena of lattices with

similarly designed rib structures but different unit cell

shapes within the framework of linear Cosserat

elasticity. Experiments on lattices are comparatively

new compared with studies on other materials, and

comparisons of lattices in the literature mostly deal

with classical behavior.

2 Methods

2.1 Materials and experiment

The lattices detailed in each section were printed using

a 3D Systems sPro 60 HS-HD selective laser sintering

printer. This printer provided the best resolution

available at the time. The parent material was a

polyamide considered equivalent to nylon 12. Pro-

gressively larger lattices of each type were made. Each

lattice was cemented to metal end pieces to provide

appropriate end conditions. Cell sizes were chosen as a

compromise between desired smoothness of ribs and

to prevent specimens from becoming too large.

Roughness of ribs was not a problem because there

were so many of them in even the smallest specimens.

In an attempt to incorporate unique structural

effects into these lattices, the ribs of each unit cell

for all structure types were constructed with Sarrus

linkages as shown in Fig. 1. A Sarrus linkage is a

mechanical linkage which achieves limited but exact

straight line motion from a combination of flexure

joints [21]. The idealized linkage contains frictionless

hinge joints; the compressive rigidity is exactly zero.

An all flexible linkage, or corrugation as it will be

Fig. 1 Four-sided Sarrus linkage. Left, drawing; right, detail of SLS 3D printed segment
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called, is characterized by high bending and torsional

rigidity as compared to compressive rigidity [22]. The

moduli in bending, torsion, and compression are

detailed further in Sect. 2.2.1. The rationale for such

a rib shape is to enhance the resistance to gradient of

rotation of the rib, hence enhance the Cosserat effects

of the lattice considered as a continuum. A related

concept, corrugated fibers, was used to design unidi-

rectional composites incorporating segments of cor-

rugated tubing [23]. In these composites, experimental

results disclosed large sensitivity to gradients and

large Cosserat elastic constants. Based on these

observations, lattices incorporating strain gradient

sensitive structural elements in different configura-

tions offer potential for similar nonclassical size

effects.

The lattice structures studied here are (a) cubic with

orientation in the [100] direction; (b) cubic with

orientation in the [111] direction; (c) triangular cells

with long ribs corresponding to a relatively open

structure; (d) triangular cells with shorter ribs corre-

sponding to a more compact structure. Optical images

of the lattice structures are shown in shown in Fig. 2.

Corresponding drawings are shown in shown in Fig. 3.

Torsional and bending rigidities for each specimen

were measured using a broadband viscoelastic spec-

trometer (BVS). The BVS device uses a pair of

orthogonal Helmholtz coils to generate a torque, either

in bending or torsion, upon a magnet attached to the

specimen’s end piece via a ceramic stalk (Fig. 4). The

ceramic stalk was necessary because the specimens

are too large to fit in the Helmholtz coils. The magnet

is centered in the Helmholtz coils. Deformation of the

Fig. 2 Lattice structure images: a cubic, [100]; b cubic, [111]; c triangular open (long rib); d triangular compact (short rib). Scale bar is

10 mm for all
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lattices was measured by reflecting a laser beam from a

mirror cemented to the top surface of the bottom end

piece of each specimen onto a silicon light detector.

Mounting mirrors on the specimens this way was

necessary to eliminate possible error from compliance

of the ceramic stalk. The silicon light detector

measures either horizontal or vertical displacement

of the laser beam, depending on its setting, as a change

in voltage. The light detector was calibrated prior to

bending and torsion tests. Calibration was done by

measuring the change in output voltage over the linear

measurement regime of the detector using a precision

micrometer driven calibration stage. The change in

output per change in position was used as the beam

calibration constant ðV=lmÞ.
Each specimen was tested using a sinusoidal signal

with a frequency of 1 Hz from an SRS Model DS345

function generator. A frequency of 1 Hz was used

because it is well below any resonant frequencies. By

using the same frequency for all tests across all

specimens, viscoelastic effects are decoupled from the

size effects being probed. Even if one does not probe

viscoelastic effects, the input has a time history; the

protocol chosen will decouple viscoelastic effects

from the size effects of interest. Torque was inferred

from the voltage across a 1X resistor in series with the

coils. The torque channel was calibrated via measure-

ments on the well characterized 6061 aluminum alloy.

The torque signal vs. angular displacement signal was

Fig. 3 Lattice structure

drawings: a cubic, [100];

b cubic, [111]; c triangular

open (long rib); d triangular

compact (short rib)

Fig. 4 Instrument diagram
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displayed as a Lissajous figure on a Tektronix

TDS3014B oscilloscope using DC coupling. Data

points from the Lissajous figures along with dimen-

sional measurements of the specimens were used to

calculate the moduli of the specimens. Maximum

strain during testing was 5 � 10�5, well within

linearity for these specimens. Linearity was verified

from the shape of the Lissajous figures.

Compression tests were conducted to ascertain the

moduli of the specimens in the absence of macro-

scopic gradients of strain and rotation. This was

accomplished using an Instron screw driven load

frame at constant strain rate. Poisson’s ratio was also

calculated using compression testing by measuring

transverse deformation via digital photography and a

micrometer.

2.2 Lattice structures

2.2.1 Rib properties

The Sarrus linkage rib element incorporated in these

lattices were tested individually. The measured

effective bending modulus of an individual rib was

281 MPa while the Young’s modulus in compres-

sion was 14 MPa. The torsional modulus was

measured to be 387 MPa. The ribs, therefore, resist

torsion and bending to a much greater extent than

compression. In such flexible structures, the com-

pressive Young’s modulus is not exactly zero as it

would be in a hinged structure. Ideal hinges cannot

be made via 3D printing.

2.2.2 Cubic unit cell lattices

Analytical and numerical studies have been performed

on a variety of lattices containing straight ribs as

classical media [19] in and beyond the elastic regime.

The strengthened diagonal unit cells in the present

study were essentially face centered cubic (FCC) unit

cells where the bonds between atoms were replaced

with elastic ribs. The cells are referred to as cubic in

the sequel. If the ribs are straight the elastic properties

do not differ much from isotropy. The lattices

presented in this section use a similar unit cell but

incorporate a fourfold Sarrus linkage rib element

rather than a straight rib.

Lattices with ribs 14 mm long containing all

flexible Sarrus linkage and with cubic unit cells are

explored, Fig. 2. A first set of lattices was created that

had the cubic unit cells oriented with their h111i axes

parallel to the longitudinal axes of the specimens. A

second set of lattices was then made wherein the unit

cells were oriented such that their h100i axes were

parallel to the longitudinal axes of the specimens. Both

sets of lattices use identical cubic unit cells.

As for structures with h100i cell axes parallel to

longitudinal axis, four progressively larger specimens

were created for this orientation. Because of the

orientation of the unit cells, it was possible to create a

specimen of only one unit cell in cross section. The

largest specimen size was dictated by the dimensions

of the BVS chamber. The average density of this set of

lattices was 0.201 g/cc. Since these specimens have

square cross sections, Eqs. 12 and 14 were used to

analyze experimental data gathered from bending and

torsion, respectively.

2.2.3 Triangular unit cell lattices

As for triangular unit cell structures, two sets were made,

one with longer ribs and one with shorter ribs. The

rationale was that for a structure without 45� cross ribs,

larger gradient effects were hypothesized. The first set

of lattices was made with rib elements the same length,

14 mm, as those in the cubic unit cells. The smallest

specimen was limited to one unit cell in cross section

while the largest specimen was governed by the height

of the BVS chamber. The cross section of the larger

specimens were hexagonal while the cross section of

the smallest specimen was triangular. All specimens

were approximated as circular so that the exact

solution for Cosserat torsion and bending of elastic

materials with circular cross section, Eqs. 10 and 11,

could be used. The average density for these lattices

was 0.093 g/cc.

The design of short rib triangular cell lattices was

driven by the observation of deformation induced tilt of

the ribs in torsion and bending of the long rib triangular

prismatic unit cell structures. By shortening the rib

portions of the structural elements and keeping the

corrugation region constant, the effects of the corruga-

tions were expected to govern the behavior of the

lattices to a greater degree. The new structural elements
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here were 8 mm long compared to 14 mm long in the

previous set of lattices. Including hexagonal nodes, the

cells were approximately 10.5 mm long on each side of

the triangular base and 9.0 mm tall.

2.3 Analysis and interpretation

Size effects were interpreted within the framework of

Cosserat elasticity. Specimens with hexagonal cross

sections were approximated as circular and correspond-

ing results were interpreted using exact analytical

solutions for the torsion and bending of Cosserat elastic

solids with circular cross sections. Exact solutions for

bending and torsion of Cosserat elastic solids with

square cross sections do not exist so approximate

solutions were used. The analysis of materials with

square cross sections entails warp in torsion. This is in

contrast to materials with a circular cross section for

which warping does not occur. In both cases, isotropic

solutions are used because no anisotropic solutions are

available. Therefore, elastic constants obtained are

technical constants. This is similar to classical elastic

constants obtained from quasistatic tests such as

standard tensile or compression tests in principal

directions. Size effects do not occur in classical

anisotropic elasticity [24], effective modulus is inde-

pendent of specimen size just as in isotropic elasticity.

Therefore, size effects are a distinct nonclassical

behavior and anisotropy is not a confounding factor.

Considering elastic solids with circular cross sec-

tions of radius r, the classical torsional rigidity is
M
h ¼ G½p

2
r4�. Cosserat torsional rigidity if N = 1 or for

large r is M
h ¼ G½p

2
r4�ð1 þ 6ð‘t=rÞ2Þ. G is the true shear

modulus in the absence of gradients; M is applied

moment and h is angular displacement per unit length.

This expression is exact when N = 1. For all other N the

exact solution involves Bessel functions and is as

follows [7]:

X ¼ ð1 þ 6ð‘t=rÞ2Þ ð1 � 4Wv=3Þ
1 �Wv

� �

; ð10Þ

Here, v ¼ I1ðprÞ=prI0ðprÞ, p2 ¼ 2j=ðaþ bþ cÞ and

I0 and I1 are modified Bessel functions of the first kind.

The constant W only has an appreciable influence for

small radius specimens and was determined based on

behavior of the data near the origin. The shear

modulus, G, characteristic length of torsion, ‘t, and

the coupling number N were found by fitting Eq. 10 to

the full set of experimental data using MATLAB.

For bending of a Cosserat elastic rod with radius

r, the relative rigidity ratio involving Bessel func-

tions is:

X ¼ 1 þ 8ð‘b=rÞ2 ð1 � ðb=cÞ2Þ
ð1 þ mÞ þ 8N2

ð1 þ mÞ
ðb=cþ mÞ2

fðdaÞ þ 8N2ð1 � mÞ

" # ð11Þ

with d ¼ N=‘b and fðdrÞ ¼ ðdrÞ2½ððdrÞI0ððdrÞÞ�
I1ððdrÞÞÞ=ððdrÞI0ðdrÞ � 2I1ðdrÞÞ�. Classical bending

rigidity follows M
h ¼ E½p

4
r4�. Both Young’s modulus,

E, and the Poisson’s ratio m were calculated from

compression testing. The coupling number, N, b=c,

and the characteristic length of bending, ‘b, were

determined by fitting the full set of experimental data

with Eq. 11.

Cubic lattices with h111i orientation and lattices

with triangular prism cells were not circular in cross

section but hexagonal. Such specimens were treated as

circular with equivalent area so that the solutions for

Cosserat torsion and bending, Eqs. 10 and 11, could

be used.

The procedure for analyzing and interpreting data

from specimens with square cross sections is

similar; different analytical solutions are used as

follows. Torsion of a square cross section Cosserat

elastic bar of width 2a gives rise to the following

relation between torque and angle. When j ! 1,

corresponding to N ¼ 1, the total torque M [26]

simplifies to

M ¼ 4

21
G

a

2

� �4

h
1796 þ 126 449 þ 2740 �‘

2 þ 3960 �‘
4

� �

�‘
2 þ 693 152 þ 2280 �‘

2 þ 6615 �‘
4

� �

�‘
2

b

8 19 þ 465 �‘
2 þ 990 �‘

4
� �

þ 1485 6 þ 49�‘
2

� �

�‘
2

b

: ð12Þ
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in which �‘ ¼ 2‘t=a, �‘b ¼ 2‘b=a and h as the angular

displacement per length. This solution is superior in

the regime of strong coupling or for b/c\0, to that of

[27], which overestimates the effects for large N.

For bending of a rectangular bar of width 2a, the

rigidity ratio depends on the characteristic length and

the Poisson’s ratio [25]. If b=c ¼ �m, the rigidity ratio

X ¼ M
1=R

1
EI

is, with M as moment and R as radius of

curvature,

X ¼ ½1 þ 24ð‘b=2aÞ2ð1 � mÞ�: ð13Þ

For other values of Poisson’s ratio, the rigidity ratio is,

(to fourth order in ‘b=2aÞ,

3 Results and discussion

3.1 Cubic unit cell lattices

3.1.1 Lattices with h111i cell axes parallel
to longitudinal axis

Three progressively larger specimens were created in

this orientation. The size of the smallest specimen was

dictated by the minimum resolution of the SLS printer

while the maximum specimen size was limited by the

diameter of the BVS chamber. These specimens were

hexagonal in cross section but approximated as

circular so the exact solutions for torsion, Eq. 10,

and bending, Eq. 11, of Cosserat elastic solids could

be used to analyze experimental data. The average

density of this set of lattices was 0.230 g/cc.

The results of torsion testing are shown below in

Fig. 5. For analysis, N was allowed to vary between 0

and 1, ‘t was restricted by thermodynamic limitations

to be greater than 0 mm, and the asymptotic shear

modulus was restricted to values greater than 0 Pa.

Since no roll off occurred for small sizes, the fit was

insensitive to W, although best fit occurred for

W ¼ 1:5. The best fit yielded the following results:

‘t ¼ 6:0 mm, G ¼ 3:9 MPa, N ¼ 1:0, and W ¼ 1:5.

The goodness of fit was R2 ¼ 0:99. The maximum size

effect in torsion was X ¼ 2:8.

Bending size effects and their interpretation are

shown in Fig. 6.

Fitting was accomplished using the asymptotic

bending modulus, 6.0 MPa, determined from com-

pression testing and the coupling number, N ¼ 1:0

obtained from torsion; also the Poisson’s ratio m ¼ 0:3

from compression tests and was found to be indepen-

dent of transverse direction. In the analysis, b=c was

free to vary from � 1 to 1, the thermodynamic limits;

‘b was free to vary among values greater than 0. Best

fit resulted in the following: b=c ¼ 0 and

‘b ¼ 7:82 mm. The goodness of this fit was

R2 ¼ 0:995. The maximum size effect in bending

was X ¼ 4:1. The specimens are approximately

hexagonal in cross section, but the material has cubic

symmetry because it is composed of cubic unit cells.

Due to this symmetry, they are elastically anisotropic.

Therefore, the characteristic length of torsion is

independent from the characteristic length of bending.

Also due to anisotropy, the coupling number from

torsion is not necessarily applicable to bending results.

However, N calculated from torsion led to the best fit

results for bending.

In summary, nonclassical size effects are observed

in torsion and bending for lattices of cubic unit cells

aligned in the h111i direction. The maximum size

effects of 2.8 and 4.1 for torsion and bending,

respectively, are significant deviations from classical

predictions. These size effects are consistent with

Cosserat elasticity.

3.1.2 Lattices with h100i cell axes parallel
to longitudinal axis

Compression testing disclosed E ¼ 9:64 MPa, essen-

tially independent of specimen side length. Poisson’s

ratio in this direction was m ¼ 0:03. Bending test

results are shown in Fig. 7, assuming the asymptotic

bending modulus to be that found in the compression

X ¼
"

1 þ 24
1 þ 2 b

c mþ m2

1 þ m
‘b
2a

� �2

�480
b
c
þ m

� �2
44 � 38mþ 3N2ð1 � mÞð13 � 9mÞ

N2ð1 þ mÞð22 � 19mÞ
‘b
2a

� �4
#

: ð14Þ
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test of 9.64 MPa. Best fitment yielded: ‘b ¼ 7:4 mm,

b=c ¼ 0:028 and N ¼ 0:23. The goodness of fit was

R2 ¼ 0:88. For comparison with the lattices from the

previous section, a second fit was performed using

N ¼ 1. The resulting R2 was 0.32. This suggests the

anisotropy in N is real.

The roll off near the origin is due to the second term

in the approximate solution, Eq. 14, dominating at

small side length values when b=c 6¼ �m, especially

when N is small as it is in this case. After the roll off at

the smallest point, the theoretical model predicts a

sharp decrease in rigidity. This phenomenon is likely

due to the approximate solution being a two-term

Fig. 5 Size effects in

torsion for specimens

composed of cubic unit cells

with their h111i axes

parallel to specimen axes.

Points are experimental. The

solid curve is theoretical for

‘t ¼ 6:0 mm, G ¼ 3:9 MPa,

N ¼ 1:0, and W ¼ 1:5. Fit is

insensitive to W because no

roll off occurs at small sizes.

Classical elasticity predicts

X independent of diameter

as illustrated by the red

horizontal dashed line.

Inset: lattice structure.

(Color figure online)

Fig. 6 Size effects in

bending for specimens

composed of cubic unit cells

with their h111i axes

parallel to specimen axes.

Points are experimental. The

solid curve is theoretical for

‘b = 8.2 mm, E = 6.0 MPa,

N = 1.0, and b=c = 0.

Classical elasticity predicts

X independent of diameter

as illustrated by the red

horizontal dashed line.

(Color figure online)
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approximation. If more terms were used, fidelity of

analysis near the origin is expected to increase.

However, prediction of rigidity at sizes smaller than

the smallest structural element, which in this case is an

individual unit cell, is non-physical and can be

ignored. Additionally, the function, Eq. 11, does not

vary much over the range of values considered.

Consequently there is a range of values for the

coupling number N, and b=c, that achieve a very

similar goodness of fit.

Results for torsion size effect studies are shown in

Fig. 8. The solution for torsion of a square bar of

Cosserat elastic material, Eq. 12, used here, is specif-

ically for the case N ¼ 1. For analysis, thermody-

namic restrictions were placed on the bounds on the

characteristic length of torsion, ‘t, and bending, ‘b to

be greater than 0 mm. The asymptotic shear modulus,

G was limited to values greater than 0. Best fit results,

assuming N ¼ 1 in torsion, are as follows:

G ¼ 4:3 MPa, ‘t ¼ 3:8 mm, and ‘b ¼ 3:3 mm. The

goodness of fit was R2 ¼ 0:856.

The curve fit in Fig. 8 is based on Eq. 12 in which

rigidity is strongly dependent on ‘t but very weakly

dependent on ‘b. Therefore the value of ‘b obtained

from the fit is not at all precise. Indeed ‘b ¼ 3:3 mm

from torsion is much less than ‘b ¼ 7:4 mm from the

bending experiment; the latter value is to be used. The

difference in R2 between the best fit with ‘b ¼ 3:3 mm

and with ‘b ¼ 7:4 mm, all other parameters held

constant, is only 0.0003; this illustrates the weak

dependence of Eq. 12 upon ‘b. Also Eq. 12 applies for

the limiting case N ¼ 1; varying N entails consider-

able complexity for square sections.

The unit cell has cubic symmetry. Therefore, an

individual unit cell has equal moduli in principal

directions but is elastically anisotropic. The modulus

in the h111i direction does not need to equal the

modulus in the h100i direction. Indeed E from

compression, in which there are no gradients, was

Fig. 7 Size effects in

bending for specimens

composed of cubic unit cells

with their h100i axes

parallel to specimen axes.

Points are experimental. The

solid curve is theoretical for

‘b ¼ 7:4 mm,

E ¼ 9:64 MPa, N ¼ 0:23,

and b=c ¼ 0:28. The red

horizontal dashed line

illustrates the relationship of

normalized rigidity to

specimen diameter in

classical elasticity. (Color

figure online)
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9.64 MPa for h100i and 6.0 MPa for h111i, a ratio of a

factor 1.6. The relationship between the asymptotic

shear modulus and asymptotic bending modulus

determined for the h100i lattice differs little from the

classical elastically isotropic, following E ¼ 2Gð1 þ
mÞ within 10%. Detailed comparisons of anisotropy of

lattices is given in Table 1. For a structurally cubic

material, there are three independent classical con-

stants and the isotropic relationship does not need to

hold.

In summary, nonclassical size effects are observed

in torsion and bending of lattices composed of cubic

unit cells oriented with their h100i axes parallel to the

specimens longitudinal axes. These size effects are

consistent with Cosserat elasticity. The characteristic

length of bending was 7.4 mm and the characteristic

length of torsion was 3.8 mm. The largest size effects

in torsion and bending were X ¼ 2:2 and 3.3,

respectively.

3.2 Triangular prismatic unit cell lattices

3.2.1 Long rib triangular unit cell lattices

Results for the first set of lattices made using the

triangular prismatic unit configuration are presented in

this section. These unit cells were made of rib

elements the same length, 14 mm, as those in the

cubic unit cells of previous sections. The smallest

specimen was limited to one unit cell in cross section

while the largest specimen was governed by the height

of the BVS chamber. The cross section of the larger

Fig. 8 Size effects in

torsion for specimens

composed of cubic unit cells

with their h100i axes

parallel to specimen axes.

Points are experimental. The

solid curve is theoretical for

N ¼ 1, ‘t ¼ 3:8 mm, and

G ¼ 4:3 MPa. Classical

elasticity predicts X
independent of diameter as

illustrated by the horizontal

red dashed line. Inset: lattice

structure. (Color

figure online)

Table 1 Summary of maximum size effect, rigidity ratio in torsion XT and in bending XB; cell size, density q; elastic constants

Young’s modulus E, shear modulus G, Poisson’s ratio m of lattices

Lattice type XT XB Cell size (mm) qð g
cc
Þ G (MPa) E (MPa) m Z NT NB ‘T (mm) ‘B (mm)

Cubic h111i 2.8 4.1 14 0.23 3.9 6.0 0.3 1.69 1 1.0 6.0 8.2

Cubic h100i 2.2 3.3 14 0.20 4.3 9.6 0.03 0.92 1 0.23 3.8 7.4

Triangle long 8.6 18 16, 17 .093 0.3 2.3 0.05 0.27 1 0.99 8.9 13

Triangle short 36 29 9, 10 0.21 1.1 3.1 0.05 0.75 1 0.99 9.4 8.8

Neg m 4.5 1.8 15, 16 .087 0.67 28 - 0.5 0.024 1 0.46 5.6 5.4

Z is the Zener ratio, a measure of elastic anisotropy. Purely Cosserat elastic constants are coupling number in torsion NT and in

bending NB; characteristic length in torsion ‘T and in bending ‘B
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specimens were hexagonal while the cross section of

the smallest specimen was triangular. The average

density for these lattices was 0.093 g/cc.

The results of torsion testing are shown below in

Fig. 9. For the analysis, asymptotic G was allowed to

vary between 0 and 0.53 MPa, the smallest shear

modulus of the structures tested, N varied from 0 to 1,

W was set to 1.5 owing to the lack of obvious

dependence on W, and ‘t was allowed to be any value

greater than 0. The best fit resulted in G ¼ 0:34 MPa,

‘t ¼ 8:9 mm, and N ¼ 1:0. R2 was 0.9988.

The results of bending size effect studies are shown

in Fig. 10. The modulus determined from compression

testing, E ¼ 2:3 MPa, was used as the asymptotic

bending modulus. Poisson’s ratio, determined by high

resolution digital photography at 60 degree intervals

about the longitudinal axis during compression test-

ing, was m ¼ 0:05 � 0:06. The variation in Poisson’s

ratio with angle is consistent with the hexagonal

structural symmetry because Poisson’s ratio can have

a range exceeding the isotropic range in hexagonal

materials. Limits on variables for fitting are as follows:

N varied between 0 and 1, b=c was free to vary from -1

to 1, and ‘b was limited to values greater than 0. The

best fit disclosed N ¼ 0:99, b=c ¼ 0, and

‘b ¼ 13:2 mm, resulting in a goodness of fit

R2 ¼ 0:9719.

As for comparisons with previous specimens and

results, these lattices share more similarities with bend

dominated 2D chiral honeycomb lattices [15] than

stretch dominated straight rib lattices [16–18]. For

torsion and bending, the coupling number approaches

or attains the upper bound of 1, respectively. In

torsion, the characteristic length was smaller than the

average cell size but exceeded the relationship of

characteristic length to cell size in stretch dominated

straight rib lattices [18]. In bending, the characteristic

length was approximately the same as the average cell

size, just as in 2D chiral honeycomb lattices [15]. Due

to the relationship of characteristic lengths to average

cell size and the magnitude of the coupling number,

these lattices are bend dominated.

Nonclassical size effects are clear in both torsion

and bending of these structures. However, confidence

in fitting parameters could be increased with addi-

tional specimens which would be possible if resolution

of 3D printing were improved. The height of the BVS

chamber coupled with the configuration of these

specimens and the length of the ribs limited the

number of specimens to three with complete cells. A

Fig. 9 Torsion size effect

for long triangular unit cell

structures. Points are

experimental and the solid

black curve is a theoretical

best fit for G ¼ 0:34 MPa,

W ¼ 1:5, ‘t ¼ 8:9 mm and

N ¼ 1:0. R2 ¼ 0:9988. The

horizontal dashed red line

illustrates the classical

predicted relationship

between normalized rigidity

and specimen size. Inset:

lattice structure. (Color

figure online)
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fourth datum is provided by the asymptotic Young’s

modulus derived from compression tests.

Visual analysis of the specimens in torsion and

bending by hand revealed deformation induced tilt of

the rib elements from the nodes connecting ribs rather

than deformation in the corrugation. Recalling the

relationship between torsional and bending moduli for

an individual rib element were 387 MPa and

281 MPa, respectively, the opposite relationship is

found in these lattices: the bending moduli are

significantly larger than those in torsion. This phe-

nomenon may be due to the reduced effect of the

corrugations due to long rib length and the presence of

deformation induced tilt of the ribs.

In summary, size effects are observed in the torsion

and bending of lattices composed of triangular pris-

matic unit cells with 14 mm rib elements. The size

effects are consistent with Cosserat elastic predictions

and cannot be explained via classical elasticity. This

lattice revealed characteristic lengths smaller than the

cell size; for torsion, considerably smaller. The

characteristic lengths were nonetheless considerably

larger than would be expected from a fully stretch

dominated lattice.

To achieve larger effects, a further lattice was

designed with shorter ribs to maximize the influence of

the Sarrus segment. Shorter ribs also permit a wider

range of specimen sizes to be made and accommo-

dated within the test instrument. Results for this lattice

are presented in the following section.

3.2.2 Short rib triangular prismatic unit cell lattices

Further details on the behavior of these lattices were

published in a companion paper [22]. Here they are

presented for comparison with the other lattices.

By shortening the rib portions of the structural

elements compared with the prior lattice, more

specimens were able to be created that would fit

inside the BVS for testing. The smallest specimen was

one unit cell in cross section and four more incremen-

tally larger specimens were created, all with approx-

imately the same aspect ratio of 3:1. The average

density of these lattices was 0.212 g/cc.

Results for torsion size effect studies are shown in

Fig. 11. Points are experimental and the curves are

theoretical fits. The black curve is the theoretical best

fit while the other two curves illustrate the effects of

changing characteristic length of torsion on the

resulting fit. Since no roll off occurs for small

specimens W\1:5. The best fit occurred when

W ¼ 1:0, but the results were not sensitive to W in

this regime. The remaining best fit parameters were

G ¼ 1:1 MPa, ‘t ¼ 9:4 mm, and N ¼ 0:999. The

Fig. 10 Bending size

effects for long triangular

unit cell structures. Points

are experimental and the

solid black curve is a

theoretical best fit for

E ¼ 2:3 MPa, m ¼ 0:05,

‘b ¼ 13:2 mm, b=c ¼ 0, and

N ¼ 0:99. The goodness of

fit is R2 ¼ 0:9719. The

horizontal red dashed line

illustrates the classical

independence of rigidity

ratio to specimen diameter.

The asymptotic Young’s

modulus from compression

provides an additional

datum. (Color figure online)
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mean absolute percent error (MAPE) between exper-

imental results and Cosserat prediction was 12%;

between experiment and classical, 3500%. Error bars

were calculated from noise in the signal and uncer-

tainty in specimen dimensions. Error bars shown are

representative of those in all the experiments. The

largest size effect in torsion was X ¼ 36. The good-

ness of fit was R2 ¼ 0:999.

Results for bending size effect studies are shown in

Fig. 12. The asymptotic bending modulus and Pois-

son’s ratio calculated from compression testing were

E ¼ 3:14 MPa and m ¼ 0:05. Points are experimental

and the curves are theoretical fits. The black curve is

the theoretical best fit for the experimental data and

corresponds to E ¼ 3:14 MPa, m ¼ 0:05,

‘b ¼ 8:8 mm, b=c ¼ 0:5, and N ¼ 0:99. The MAPE

between experimental data and Cosserat prediction

was 14% ; between experiment and classical, 2843%.

The largest size effect in bending was X ¼ 29:4. The

goodness of fit was R2 ¼ 0:997. Blue and cyan curves

illustrate the effects of changing the characteristic

length of bending on the resulting fits with all other

parameters kept constant. The blue curve is for ‘b ¼
4:8 mm and the cyan curve is for ‘b ¼ 13 mm. The

green horizontal dashed line is the classical relation-

ship between normalized rigidity and specimen size.

Error bars were again calculated from signal to noise

ratio and specimen dimension uncertainty.

These specimens exhibit characteristic lengths

approximately the same as the average cell size. Also,

the coupling number, N, in torsion and bending were

1.0 and 0.99, respectively. Large size effects occur.

Shortening the rib segments on the structural

elements compared with the long rib lattices in the

previous section has a profound effect on the size

effects. Specifically, the magnitude of size-dependent

stiffening is much greater—a factor of more than 35 in

torsion here compared to a factor of 8.5 for the long rib

lattices.

Fig. 11 Size effects for short rib triangular prismatic unit cells

in torsion. The solid black curve is a theoretical best fit for

G ¼ 1:1 MPa, ‘t ¼ 9:4 mm, N ¼ 1, and W ¼ 1:0. Blue and

cyan curves are the theoretical models for ‘t ¼ 5:0 and 14 mm,

respectively. The green horizontal dashed line is the classically

predicted relationship between normalized rigidity and speci-

men size [22]. Inset: lattice structure in cross section. (Color

figure online)
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Currently, there is no known analysis available for

any of the lattice structures studied here. However, as

mentioned earlier, several cellular materials have been

analyzed as Cosserat continua. Several lattices with

straight ribs [16–18] have been theoretically homog-

enized and had their Cosserat elastic constants

extracted. These lattices were stretch dominated and,

consequently, the characteristic lengths were much

smaller than the average cell size. The present lattices

are considered bend dominated because the ratio of

characteristic lengths to average cell size exceeds that

of stretch dominated materials and the coupling

number approaches the upper bound of 1.

In summary, large size effects were observed in

torsion, XT ¼ 36, and bending, XB ¼ 29:4, of a lattice

with small triangular prismatic unit cells. These results

are inconsistent with classical elasticity but are

predicted to occur in Cosserat elasticity. Incorporating

strain gradient sensitive structural elements into 3D

printed cellular lattices provides a path to the

attainment of arbitrarily large size effects as advance-

ments in 3D printing technology give rise to better

resolution. Such resolution will allow reduction of the

wall thickness of the hollow ribs.

3.2.3 Comparison of lattices

Size effects were observed in four series of 3D printed

cellular lattices incorporating strain gradient sensitive

structural elements. A comparison of elastic constants,

density and cell size as well as maximum size effect is

provided in Table 1. The cell size for cubic cells is the

edge of the cube. For other cell shapes, the cell

dimension in the longitudinal and transverse direc-

tions, (L, T) are provided. Also shown for comparison

are results for negative Poisson’s ratio (denoted neg m)

tetragonal lattices [13]. These size effects are incon-

sistent with classical elasticity for which XT ¼ XB ¼
1 but can be modeled via Cosserat elasticity. The

magnitude of the size effects depends sensitively on

Fig. 12 Size effects for short rib triangular prismatic unit cells

in bending. The solid black curve is a theoretical best fit for

E ¼ 3:14 MPa, m ¼ 0:05, ‘b ¼ 8:8 mm, b=c ¼ 0:5, and

N ¼ 0:99. Blue and cyan curves are the theoretical models for

‘b ¼ 4:8 and 13 mm, respectively. The green horizontal dashed

line is the classically predicted relationship between normalized

rigidity and specimen size [22]. Inset: lattice structure in

transverse view. (Color figure online)
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the geometry of the structures. The largest size effects

occurred in the short rib triangular prismatic unit cell

lattices. For these, the characteristic lengths were

similar to the cell size; for the other lattices the

characteristic lengths were smaller than the cell size.

The anisotropy may be quantified by the Zener ratio

[28], Z ¼ 2 C44

C11�C12
, which applies for cubic materials;

isotropy entails Z ¼ 1. The Zener ratio may be written

in terms of technical elastic constants, Z ¼ 2Gð1þmÞ
E

. By

this measure, the negative Poisson’s ratio lattice

exhibited the greatest degree of anisotropy. This is

not surprising because the lattice was designed for

high stiffness for compression in the longitudinal

direction. The cubic lattice in the h100i direction had a

Zener ratio closest to 1 followed by the triangular short

rib lattice. For that lattice, pulsed acoustic wave

measurements revealed the lattice material to exhibit

elastic transverse isotropy [13]. The longitudinal

modulus was lower than the transverse by a factor

1.3. This value is close to the inverse of the Zener ratio.

So the triangular short rib lattice does not deviate

much from isotropy in comparison with the other

lattices.

To obtain an elastically isotropic lattice, desirable for

comparative simplicity of interpretation, one may titrate

the length or wall thickness of ribs in different directions.

In fully isotropic materials one can perform internal

consistency tests such as independently measuringE,G, m
in the absence of gradients and checking if the

isotropic relation between them is satisfied. One may

also measure compressive moduli in different direc-

tions and check if they are equal. As for the Cosserat

constants, ‘T , ‘B, and b=c are related by the definitions

of characteristic length, enabling consistency checks

based on a detailed comparison of size effects in

torsion and in bending. Moreover in an isotropic

material, N obtained from bending size effects must

equal the value obtained from torsion size effects.

3.2.4 Physical interpretation

The Young’s modulus E represents a continuum average

of force–displacement relations or effective spring

constants of the structural elements in each solid. The

Cosserat characteristic lengths ‘T , ‘B (Eqs. 6 and 7)

quantify the ratio of the average moments (via couple

stress mij, Eq. 2) transmitted through the solid to the

average forces (via stress rij, Eq. 1). The ratio depends

on both the size and the shape of the structural

elements. For example experimental study of a

particulate composite developed as a possible Cos-

serat solid [7] revealed no nonclassical effects, hence a

characteristic length of zero. This is not intuitively

obvious. Rigorous homogenization analysis disclosed

such composites containing stiff spheres have charac-

teristic lengths of zero [29]. The dimensionless

coupling number N quantifies the coupling between

local and global rotation fields, hence between forces

and moments in the solid. For the solids studied, most

N values obtained equal or approach its upper bound of

1, indicating strong coupling. By contrast, some solids

such as dense foams, exhibit weak coupling [30].

As for limitations of the present study, it is

recognized that Cosserat elasticity is not the only

generalized continuum theory. Some theories have

more freedom and some have different freedom. The

difficulty in using such theories is that in most cases

the requisite torsion and bending analyses are not

available for interpreting experiments. As for exper-

imental error, the nonclassical effects observed are so

large that experimental errors do not obtrude. As

stated, viscoelasticity was decoupled from size effects

by conducting all the tests at one frequency. One could

certainly probe dependence of the Cosserat parameters

on frequency. Such dependence is known in bone [31]

which has constituents with different frequency

dependence. Frequency dependence of characteristic

lengths is likely to be minimal in lattices which have

only one solid constituent. Finer resolution in 3D

printing would be helpful as that would allow smaller

specimens and more of them. Solids with a smaller cell

size could be made to compare with micro-cellular

foams. Lattices with a greater range of scale in the rib

dimensions could enable more extreme behavior.

Future advances in 3D printing are expected to

facilitate studies of this type.

4 Conclusions

All lattices exhibited Cosserat elastic effects. The

magnitude of the effects is sensitive to structure. The

largest size effects and the largest ratio of character-

istic length to cell size were observed in the triangular

short rib lattice. Concepts such as those developed

here provide a path to the attainment of arbitrarily

large nonclassical effects via additive manufacturing.
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