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Abstract The influence of trigonometric sine,

square and triangular wave-types of time-periodic

gravity-aligned oscillations on Rayleigh–Bénard con-

vection in Newtonian liquids and in Newtonian

nanoliquids is studied in the paper using the general-

ized Buongiorno two-phase model. The five-mode

Lorenz model is derived under the assumptions of

Boussinesq approximation, small-scale convective

motion and some slip mechanisms. Using the method

of multiscales, the Lorenz model is transformed to a

Ginzburg–Landau equation the solution of which

helps in quantifying the heat transport through the

Nusselt number. Enhancement of heat transport in

Newtonian liquids due to the presence of nanoparti-

cles/nanotubes is clearly explained. The study reveals

that all the three wave types of gravity modulation

delay the onset of convection and thereby to a

diminishment of heat transport. It is also found that

in the case of trigonometric sine type of gravity

modulation heat transport is intermediate to that of the

cases of triangular and square types. The paper is the

first such work that attempts to theoretically explain

the effect of three different wave-types of gravity

modulation on onset of convection and heat transport

in the presence/absence of nanoparticles/nanotubes.

Comparing the heat transport by the single-phase and

by the generalized two-phase models, the conclusion

is that the single-phase model under-predicts heat

transport in nanoliquids irrespective of the type of

gravity modulation being effected on the system. The

results of the present study reiterate the findings of

related experimental and numerical studies.
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1 Introduction

There has been surging interest in heat transfer

applications due primarily to implications in refriger-

ation and automotive industries where the enhanced

surfaces are widely used on their heat exchangers. As a

result of this there is an aggressive competition in the

process industry to incorporate this technology in heat

exchangers. A major limitation against enhancing the

The original article has been corrected due to typesetting

mistakes made in section 2.2 Mathematical Formulation,

Table 1 and in Equation (51).
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heat transfer in such engineering systems is the

inherently poor thermal conductivity of conventional

liquids, including water. Therefore, for more than a

century since Maxwell’s theory in 1873, scientists and

engineers have made a great effort to break this

fundamental limit by dispersingmillimeter ormicrom-

eter sized particles in liquids. However, the major

problemwith the use of such large sized particles is the

agglomeration of these particles in liquids. The

agglomeration of microparticles results in not only

the rapid sedimentation and clogging ofmicrochannels

but also in the decreasing of thermal conductivity of

liquids. An innovative modern way of heat transfer

enhancement in liquids to overcome problems faced in

microparticles is to include nano-sized particles

(1–100 nm), in short called nanoparticles, in base

liquids. Contribution of nanoparticles in engineering

applications is well explained by Colangelo et al. [14].

The usage of carbon nanotubes in base liquids is

trending now. This is because carbon nanotubes offer

higher thermal conductivity enhancement and a larger

surface area than the spherical shaped nanoparticles.

Carbon nanotubes are made by a number of layers of

carbon sheets. Carbon nanotubes with a layer of

carbon sheet is called single-walled carbon nanotubes

(SWCNTs) and carbon nanotubes with multiple layers

of carbon sheet is called multi-walled carbon nan-

otubes (MWCNTs). Base liquids with nanoparticles

are called nanoliquids, the word coined by Choi [13].

We extend this definition to include nanotubes in place

of nanoparticles.

There are two models available for studying

Rayleigh–Bénard convection in nanoliquids :

(a) Khanafer–Vafai–Lightstone (KVL) single-

phase model (see [24]) and

(b) Buongiorno two-phase model (see [11]).

Although nanoliquids are solid–liquid mixtures, the

single-phase model conventionally used in most

studies of Rayleigh–Bénard convection assumes the

nanoliquid as a single phase (homogeneous) liquid. In

fact, due to the extremely small size and low

concentration of the suspended nanoparticles, the

particles are assumed to move with same velocity as

the liquid. A good number of papers have appeared on

convection in nanoliquids using the single-phase

model (Ghasemi and Aminossadati [18], Jou and

Tzeng [21], Abu-Nada et al. [1], Tiwari and Das [49],

Sheremet et al. [35], Siddheshwar and Meenakshi

[42], Meenakshi and Siddheshwar [29], Siddheshwar

and Veena [44] and Kanchana et al. [23]). Buongiorno

[11] showed that there are several factors such as

gravity, friction between the liquid and solid particles,

Brownian forces, sedimentation and dispersion that

may affect a nanoliquid flow. Consequently, the slip

velocity between the liquid and solid particles cannot

be neglected while simulating nanoliquid flows.

Buongiorno [11] developed a transport equation to

study the movement between the solid and liquid

particles. Using the Buongiorno transport equation,

Tzou [50, 51] studied the onset of convection in a

horizontal layer of a nanoliquid heated uniformly from

below and found that as a result of Brownian motion

and thermophoresis of nanoparticles, the critical

Rayleigh number is much lower, by one to two orders

of magnitude, than that of a base liquid. Kim et al.

[25, 26] investigated the onset of convection in a

horizontal nanoliquid layer using a two-phase model

and modified the three quantities, namely, the thermal

expansion coefficient, the thermal diffusivity, and the

kinematic diffusivity that appear in the definition of

the Rayleigh number. Many authors (Nield and

Kuznetsov [31], Roberts and Walker [34], Agarwal

et al. [3], Yadav et al. [57], Noghrehabadi and Samimi

[32], Agarwal and Bhadauria [2], Umavathi [52] and

references therein) have investigated various influ-

ences on Rayleigh Bénard convection in nanoliquids

using the Buongiorno two-phase model. Recently

Maheshwary et al. [27] made a comprehensive report

on effect of concentration, particle size and particle

shape on thermal conductivity of titania/water based

nanofluid. They showed that concentration has a more

significant effect than shape and size of the particles on

the thermal conductivity of the nanofluid. In litera-

ture there are many review articles connecting

enhancement in thermal conductivity due to nanopar-

ticles/nanotubes and thereby heat transfer enhance-

ment (see Wang and Mujumdar [55], Murshed et al.

[30], Shima and Philip [36], Usri et al. [53], Anga-

yarkanni and Philip [4], Pinto and Fiorelli [33], Azmi

et al. [5] and references therein).

The single-phase model used by many investigators

incorporates information on thermophysical proper-

ties of nanoliquids whereas the two-phase model does

not get explicitly into the modeling of nanoliquid

properties like density, heat capacity, volumetric

expansion coefficient, dynamic viscosity, thermal
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conductivity, Brownian and thermophoretic coeffi-

cients in terms of the volume fraction of the nanopar-

ticles and the corresponding properties of

nanoparticles and base liquid. Siddheshwar et al.

[47, 48] were the first to give details of such an

exercise for Rayleigh–Bénard convection in nanoliq-

uids by incorporating thermophysical properties into

the classical Buongiorno model. Siddheshwar and

Kanchana [40, 41] extended this idea to Rayleigh–

Bénard convection in nanoliquids occupying different

types of enclosures. Recently Kanchana and Zhao [22]

studied the effect of internal heat generation/absorp-

tion on Rayleigh–Bénard convection in nanoliquids.

They made a feasibility study among different types of

nanoparticles and provided a vital information for

choosing an appropriate nanoparticle in the liquid for a

desired thermal engineering problem addressing heat

removal.

Modulated gravitational fields on Rayleigh–Bénard

convection have been of classical interest because of

the induced change in the stability bounds. The

problem involving the effect of time-periodic gravity

modulation in a liquid layer was first studied by

Gershuni and Zhukhovitskii [16]. Gresho and Sani

[19] developed a useful mechanical analogy by

considering the effect of gravity modulation on a

simple pendulum. The effect of gravity and temper-

ature modulations on the stability of equilibrium in a

plane horizontal layer with free and rigid boundaries

was presented by Gershuni et al. [17]. Biringen and

Peltier [7] studied the effect of sinusoidal and random

modulations on three-dimensional Rayleigh–Bénard

convection at 1g and lg and they confirmed the result

of Gresho and Sani [19]. Wheeler et al. [56] used the

averaging method and the Floquet theory to analyze

the stability of directional solidification problem under

high-frequency gravity modulation. There are many

other works that deal with gravity modulation effect

on convection in different liquids (see Malashetty and

Padmavathi [28], Bhadauria [6], Boulal et al. [9], Shu

et al. [37], Siddheshwar [38], Siddheshwar et al. [45],

Siddheshwar and Abraham [39], Siddheshwar et al.

[46] and Siddheshwar and Revathi [43]).

From the review of literature it is observed that all

the works mentioned above deal with trigonometric

sine type of gravity oscillation. In the paper we focus

attention on studying the influence of three different

types of time-periodic gravity-aligned oscillation on

onset and heat transport in nanoliquids. Three types of

gravity modulation considered in the paper are

trigonometric sine, triangular and square wave forms.

Further, we also note that all the reported works on

nonlinear stability of Rayleigh–Bénard convection in

the presence of sinusoidal gravity modulation have

made use of the Lorenz model for investigation. In

view of the above observation it is clear that the

following five important aspects concerning the non-

linear stability of nanoliquids warrant consideration:

a. Treating convection in nanoliquids in a way that is

different from the classical binary liquid convec-

tion (Buongiorno approach),

b. Connecting the results of Khanafer–Vafai–Light-

stone model (see Khanafer et al. [24]) and the

generalized Buongiorno two-phase model (see

Siddheshwar et al. [47]),

c. Deriving the Ginzburg–Landau equation from the

Lorenz model (see Siddheshwar and Kanchana

[40]),

d. Studying the influence of three different types of

time-periodic gravity-aligned oscillations on onset

and the heat transport and

e. Comparing results on onset and heat transport in

Newtonian liquids with/without nanoparticles and

carbon nanotubes.

After peer review of literature we noticed that the

modulated Rayleigh–Bénard convection problem as

handled in this paper is new in its limiting case as

well, i.e., Newtonian liquid without nanoparticles/

nanotubes.

2 Mathematical formulation for Rayleigh–Bénard

convection

2.1 Problem description

Consider an infinite extent horizontal nanoliquid layer.

z ¼ 0 and z ¼ h represent the lower and upper

boundaries of the layer and are held at temperatures

T0 þ DTðDT [ 0Þ and T0 and at nanoparticle concen-

tration /0 þ D/ðD/[ 0Þ and /0 respectively. Here

T0 and /0 are temperature and nanoparticle/nanotube

volume fraction at upper plate, DT and D/ are

temperature and nanoparticles/nanotube volume frac-

tion differences between two plates respectively. The

horizontal layer is subject to time-periodic gravity-

aligned oscillations and thus the gravity term is having
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an additional time-dependent component g0ðX; tÞ with
frequency X. Further, the horizontal boundaries are

assumed to be stress-free, isothermal and isonanopar-

ticle concentration. The vertical boundaries are

assumed to be far away and hence there is no effect

of the vertical boundaries on the dynamics in the bulk

of the nanoliquid. The schematic of the Rayleigh–

Bénard convection configuration is shown in Fig. 1.

2.2 Mathematical formulation

The governing system of equations in dimensional

form for studying the Rayleigh–Bénard convection

problem with time-periodic vertical oscillations using

the two-phase model of Siddheshwar et al. [47] are:

Conservation of mass

r � q ¼ 0; ð1Þ

Conservation of linear momentum

qnl
oq

ot
¼ �rpþ lnlr2q

þ qnl � ðqb1ÞnlðT � T0Þ þ ðqb2Þnlð/� /0Þ
� �

g;

ð2Þ

Conservation of energy

ðqCpÞnl
oT

ot
þ ðq � rÞT

� �
¼ knlr2T ; ð3Þ

Conservation of nanoparticle volume fraction

o/
ot

þ ðq � rÞ/ ¼ DBr2/þ DTh

T0
r2T : ð4Þ

In writing Eq. (3) we have neglected the Brownian

motion effects being aware that previous studies (Tzou

[51], Tzou [50], Nield and Kuznetsov [31], Yadav

et al. [57]) clearly point to the validity of this

assumption. For mathematical tractability we consider

two-dimensional rolls in the (x, z)-plane. Hence all the

physical quantities defined in the governing Eqs. (1)–

(4) are independent of y. Thermally induced instabil-

ities dominate hydrodynamic instabilities. Thus, the

acceleration term ðq � rÞq has been neglected in the

equation of linear momentum. This also means that we

are considering only small scale convective motion

(see Siddheshwar et al. [45]). The physical quantities

involved in the governing Eqs. (1)–(4) are q, velocity

vector with horizontal and vertical velocity compo-

nent u andw respectively, qnl, density in kg=m
2, t, time

in s, p, pressure in Pa, lnl, dynamic coefficient of

viscosity in kg/ms, ðb1Þnl, thermal expansion coeffi-

cient in 1/K, ðb2Þnl, concentration analog of thermal

expansion coefficient in 1/kg, T, temperature in K, T0,

temperature of upper boundary in K, /, normalized

nanoparticle/nanotube volume fraction,

g ¼ ð0; 0;�½gþ g0ðX; tÞ�, where g is acceleration

due to gravity in m=s2, g0ðX; tÞ is time-dependent

modulated gravity, ðCpÞnl, heat capacity in J=½kg� K�,
knl, thermal conductivity in W=½m� K�,

DB ¼ ðkB0TÞ
3plbldnp

, Brownian diffusion coefficient and

DTh ¼ 0:26
kbl

2kbl þ knp

lbl
qbl

v, thermophoretic diffusion

coefficient, where v is the volume fraction of nanopar-

ticles/nanotube and is defined as

v ¼ Volume fraction of nanoparticles / nanotubes

Volumefractionofðnanoparticles = nanotubes þ baseliquidÞ :

The subscript bl and np refer to baseliquid and

nanoparticle/nanotube thermophysical properties and

are documented in Tables 1, 2 and 3. The subscript nl

refers to nanoliquid properties and these properties are

calculated using either the phenomenological laws or

mixture theory:

Phenomenological laws :

lnl
lbl

¼ 1

ð1� vÞ2:5
; ðBrinkman model ½10�Þ

knl

kbl
¼

knp

kbl
þ ðn� 1Þ

� �
� ðn� 1Þv 1� knp

kbl

� �

knp

kbl
þ ðn� 1Þ

� �
þ v 1� knp

kbl

� � ;

ðHamilton-Crosser model ½20�ÞFig. 1 Schematic of the Rayleigh–Bénard convection problem

with time-periodic vertical oscillations
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Mixture theory [24]:

ðqCpÞnl
ðqCpÞbl

¼ ð1� vÞ þ v
ðqCpÞnp
ðqCpÞbl

;

ðqbÞnl
ðqbÞbl

¼ ð1� vÞ þ v
ðqbÞnp
ðqbÞbl

;

anl ¼
knl

ðqCpÞnl
;
qnl
qbl

¼ ð1� vÞ þ v
qnp
qbl

;

9
>>>>>>>>>=

>>>>>>>>>;

:

In the Hamilton Crosser model, n is the shape factor

with n ¼ 3 for spherical shaped nanoparticles and n ¼
3:75 for nanotubes. The specific heat and thermal

expansion coefficient of nanoliquids are calculated

using the following expressions :

ðCpÞnl ¼
ðqCpÞnl
qnl

; bnl ¼
ðqbÞnl
qnl

:

At the basic state the nanoliquid is assumed to be at

rest and hence the pressure, temperature and the

nanoparticle concentration vary in the z�direction

only and are given by

qb ¼ ð0; 0Þ; p ¼ pbðx; zÞ; T ¼ TbðzÞ; / ¼ /bðzÞ:
ð5Þ

Using Eq. (5) in the governing Eqs. (1)–(4), we get the

solution of the basic temperature and nanoparticle

concentration as follows :

TbðzÞ ¼ 1� z

h

� 	
4 T þ T0;

/bðzÞ ¼ 1� z

h

� 	
4 /þ /0

9
>=

>;
: ð6Þ

We superimpose perturbations on the basic state

solution as given below:

q ¼ q0; p ¼ pb þ p0; T ¼ Tb þ T 0; / ¼ /b þ /0;

ð7Þ

where the prime denotes the perturbation. An external

heating and a time-periodic oscillation perturb the

system. Substituting the expression (7) in Eqs. (2)–(4),

using the basic state solution (6), eliminating the

pressure and introducing the stream function, w, in the
form:

u ¼ � ow
oz

; w ¼ ow
ox

; ð8Þ

we get the governing equation as given below:

qnl
o

ot
ðr2wÞ

� �
¼ lnlr2wþðqb1Þnl gþ g0ðX; tÞ½ �oT

0

ox

�ðqb2Þnl gþ g0ðX; tÞ½ �o/
0

ox
;

ð9Þ

Table 1 Thermophysical properties of four base liquids at 300�K (Siddheshwar et al. [47])

Baseliquids lbl qbl kbl bbl � 105 Cpbl

Water (W) 0.00089 997 0.613 21 4179

Ethylene glycol (W–G) 0.0157 1114.4 0.252 65 2415

Engine oil (W–O) 0.486 884 0.144 70 1910

Glycerine (G) 0.799 1259.9 0.286 48 2427

Table 2 Thermophysical properties of five nanoparticles at

300�K (Siddheshwar et al. [47])

Nanoparticles qnp knp bnp � 105 Cpnp

Copper (Cu) 8933 401 1.67 385

Copper Oxide (CuO) 6320 76.5 1.8 531.8

Silver (Ag) 10,500 429 1.89 235

Alumina (Al2O3) 3970 40 0.85 765

Titania (TiO2) 4250 8.9538 0.9 686.2

Table 3 Thermophysical properties of carbon nanotubes at

300�K (Siddheshwar et al. [41])

Nanotubes qnp knp bnp � 105 Cpnp

SWCNTs 2600 6600 0.16 425

MWCNTs 2640 15 2.1 730
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ðqCpÞnl
oT 0

ot
þ ow

ox

oT 0

oz
� ow

oz

oT 0

ox
þ ow

ox

dTb

dz

� �
¼ knlr2T 0;

ð10Þ

o/0

ot
þ ow

ox

o/0

oz
� ow

oz

o/0

ox
� ow

ox

d/b

dz

¼ DBr2/0 þ DTh

T0
r2T 0:

ð11Þ

Using the following non-dimensional variables

ðX; ZÞ ¼ x

h
;
z

h

� 	
; s ¼ ablt

h2
; W ¼ w

abl
;

H ¼ T 0

4T
;U ¼ /0

4/
;

ð12Þ

Equations (9)–(11) can be written in the non-dimen-

sional form as:

1

Prnl

o

os
ðr2WÞ ¼ a1r4Wþ 1þ gmðX; sÞ½ �Ranla21

oH
oX

� 1þ gmðX; sÞ½ �Ra/nl
a21

oU
oX

;

ð13Þ

oH
os

¼ a1r2Hþ oW
oX

� JðW;HÞ; ð14Þ

oU
os

¼ a1

Lenl
r2Uþ a1NAnl

Lenl
r2Hþ oW

oX
� JðW;UÞ;

ð15Þ

where Prnl ¼
lnl

qnlanl
is the nanoliquid Prandtl number

which characterizes the speed of propagation of

momentum and energy in the nanoliquid flow, a1 ¼

anl
abl

is the diffusivity ratio, Ranl ¼
ðqbÞnlDTh3g

lnlanl
is the

thermal Rayleigh number which represents the bal-

ance of energy released by the buoyancy force and the

energy dissipation by viscous and thermal effects,

Ra/nl
¼

ðqnp � qnlÞDUh3g
lnlanl

is the concentration Ray-

leigh number which is analog of thermal Rayleigh

number, Lenl ¼
anl

DBDU
is the Lewis number which is

the ratio of thermal and mass diffusivities, NAnl
¼

DThDT
DBT0DU

is the modified diffusivity ratio which

signifies the relative importance of thermophoresis

(Soret-type cross-diffusion) and molecular diffusion.

The dimensionless parameters as defined earlier are

based on nanoliquid properties and not on just base

liquid ones. This is very much unlike the case of the

classical Buongiorno model [11]. In Eqs. (14) and

(15), JðW;HÞ and JðW;UÞ are Jacobian defined as

JðW;HÞ ¼ oW
oX

oH
oZ

� oW
oZ

oH
oX

and JðW;UÞ ¼
oW
oX

oU
oZ

� oW
oZ

oU
oX

and in Eq. (13), gmðX; sÞ ¼
g0ðX; sÞ

g

is arise due to gravity modulation. There are three

different types of time-periodic oscillations (also

called g-gitter or gravity modulation) are considered

in the paper (see Fig. 2), viz.,

Case (i): Gravity modulation by trigonometric sine

wave-form

gmðX; sÞ ¼ df1ðX; sÞ ¼ d sinðXsÞ; ð16Þ

Case (ii) : Gravity modulation by triangular wave-

form

gmðX; sÞ ¼ 8df2ðX; sÞ ¼
8d
p2

X1

n¼1;3;5;���

ð�1Þ
ðn�1Þ

2

n2
sinðnXsÞ;

ð17Þ

Case (iii) : Gravity modulation by square wave-form

gmðX; sÞ ¼ df3ðX; sÞ ¼ d H
Xs
p

� �
� H

Xs
p

� 1

� �� �

� 1 ¼ 4d
p

X1

n¼1;3;5;���

1

n
sinðnXsÞ;

ð18Þ

where H
Xs
p

� �
is the Heaviside step function, d is the

amplitude of modulation and X is the frequency. In

Fig. 2 Schematic of wave forms for X� ¼ 4p
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cases (ii) and (iii), the Fourier series of f2 and f3 in

0;
2p
X

� �
are used.

Equations (13)–(15) are solved subject to stress-

free, isothermal, iso-nanoparticle concentration

boundary conditions on the horizontal boundaries:

W ¼ o2

oZ2

oW
oX

� �
¼ H ¼ U ¼ 0 at Z ¼ 0; 1; ð19Þ

and the periodicity conditions in the X� direction:

W X � 2p
pjc

; Z

� �
¼ WðX; ZÞ;

H X � 2p
pjc

; Z

� �
¼ HðX; ZÞ;

U X � 2p
pjc

; Z

� �
¼ UðX; ZÞ;

9
>>>>>>>>=

>>>>>>>>;

; ð20Þ

where jc is the critical wave number of the convecting

cell. Using a minimal mode truncated Fourier series

representation we make a weakly nonlinear stability

analysis of the system (13)–(20) and derive a gener-

alized Lorenz model in the next section.

3 Weakly nonlinear stability analysis

Minimal modes to describe the nonlinear interaction

for the present problem is five-mode with the stream

function, temperature and the nanoparticle concentra-

tion taken as follows:

W ¼
ffiffiffi
2

p
a1g2

p2j
AðsÞ sinðpjXÞ sinðpZÞ; ð21Þ

H ¼
ffiffiffi
2

p

prnl
BðsÞ cosðpjXÞ sinðpZÞ � 1

prnl
CðsÞ sinð2pZÞ;

ð22Þ

U ¼
ffiffiffi
2

p

p
LðsÞ cosðpjXÞ sinðpZÞ þ 1

p
MðsÞ sinð2pZÞ;

ð23Þ

where rnl ¼
Ranlp2j2

g6
and g ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2c

p
.

Substituting Eqs. (21)–(23) into Eqs. (13)–(15) and

multiplying the resultant equations by eigenfunctions

sinðpjXÞ sinðpZÞ, cosðpjXÞ sinðpZÞ and sinð2pZÞ and
integrating with respect to X and Z over one wave

length, viz.,
R 1

Z¼0

R 2p
jcp

X¼0 dXdZ, which involve both

rotating and counter-rotating Rayleigh–Bénard cells,

we get the generalized Lorenz model in the form

1

Prnl

dA

ds1
¼ a1 1þ gmðX; s1Þ½ �ð

B� A� 1þ gmðX; s1Þ½ �r/nl
LÞ;

ð24Þ

dB

ds1
¼ a1ðrnlA� B� ACÞ; ð25Þ

dC

ds1
¼ a1ðAB� bCÞ; ð26Þ

rnl
dL

ds1
¼ a1 rnlA� NAnl

Lenl
B� rnl

Lenl
Lþ rnlAM

� �
;

ð27Þ

rnl
dM

ds1
¼ a1

bNAnl

Lenl
C � brnl

Lenl
M � rnlAL

� �
; ð28Þ

where s1 ¼ g2s, r/nl ¼
Ra/nl

p2j2

g6
and b ¼ 4p2

g2
.

Using the linearized version of the Lorenz model

(24)–(28) we first make a linear stability analysis

under the following subsections:

1. Validity of the principle of exchange of stabilities

in the case of the no-modulation problem and

justification for using it in the modulation problem

and

2. Obtain the expression for the critical Rayleigh

number and the correction Rayleigh number using

Venezian [54] approach in the case of the

modulation problem.

3.1 Linear stability analysis

Linear stability analysis involves infinitesimal ampli-

tudes and hence we neglect the nonlinear terms in the

Lorenz model (24)–(28). That gives us the following

system of ordinary differential equations:

1

Prnl

dA

ds1
¼ a1 1þ gmðX; s1Þ½ �ð

B� A� 1þ gmðX; s1Þ½ �r/nl
LÞ;

ð29Þ

dB

ds1
¼ a1ðrnlA� BÞ; ð30Þ
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rnl
dL

ds1
¼ a1 rnlA� NAnl

Lenl
B� rnl

Lenl
L

� �
: ð31Þ

3.1.1 Validity of the principle of exchange

of stabilities (PES) in the case of the no-

modulation problem and justification for using

it in the modulation problem

With the intention of showing the PES is valid for the

unmodulated convection we assume the amplitudes A,

B andL ofEqs. (29)–(31) to vary as eixs1 which leads to:

� 1

Prnl
ixþ a1

� �
a1 �a1r/nl

a1rnl �ðixþ a1Þ 0

a1rnl
�a1NAnl

Lenl
� ixþ a1

Lenl

� �
rnl

2

666664

3

777775

�
A

B

L

2

64

3

75 ¼
0

0

0

2

64

3

75;

ð32Þ

where x is the natural frequency. The condition for a

non-trivial solution of the above system is given by:

� 1

Prnl
ixþ a1

� �
a1 �a1r/nl

a1rnl �ðixþ a1Þ 0

a1rnl
�a1NAnl

Lenl
� ixþ a1

Lenl

� �
rnl

����������

����������

¼ 0:

ð33Þ

Solving the determinant (33) for rnl we get the

expression of the critical scaled Rayleigh number for

oscillatory mode of convection as follows :

ðrnlÞosc ¼ Pðx2Þ þ ix Nðx2Þ; ð34Þ

where Pðx2Þ and Nðx2Þ given by

Pðx2Þ ¼ 1þ a21r/nl
ðLenl � NAnl

Þ
a21 þ Le2nlx

2

� x2 1

a21Prnl
� Le2nlr/nl

a21 þ Le2nlx
2

� �
;

ð35Þ

Nðx2Þ ¼ 1þ Prnlð Þ
a1Prnl

þ a1r/nl
Lenlð1þ NAnl

� LenlÞ
ða21 þ Le2nlx

2Þ :

ð36Þ

Solving the equation Nðx2Þ ¼ 0 we get the expression

for the frequency of oscillations in unmodulated

convection as:

x2¼�
a21 1þPrnlþPrnlLenlr/nl

ð1þNAnl
�LenlÞ

� �

Le2nlð1þPrnlÞ

� �
:

ð37Þ

It is quite obvious from the expression (37) that the

oscillatory unmodulated convection is possible only

when

Lenl [ 1þ NAnl
: ð38Þ

Table 4 Thermophysical properties of twenty eight nanoliq-

uids for volume fraction, v ¼ 0:05, at 300�K

Nanoliquids Prnl NAnl
Lenl Ra/nl

W � Cu 4.22677 4.27688 2.65408 2.86351

W � CuO 4.67228 4.69714 2.64933 2.86864

W � Ag 3.95458 4.04957 2.68579 2.82970

W � Al2O3 5.14669 5.15275 2.65177 2.86600

W � TiO2 5.17765 4.93780 2.60410 2.91848

W � SWCNT 5.31137 5.53994 2.73295 2.78087

W �MWCNT 5.44366 5.59635 2.66160 2.93034

EG� Cu 110.90618 4.42910 2.59585 2.92775

EG� CuO 121.41153 4.84051 2.59660 2.92690

EG� Ag 103.54036 4.21010 2.64296 2.87557

EG� Al2O3 132.13750 5.28144 2.60882 2.91320

EG� TiO2 131.54540 5.14775 2.59170 2.93244

EG� SWCNT 134.40910 5.77106 2.71252 2.86709

EG�MWCNT 137.25121 4.96770 2.65189 3.13951

EO� Cu 4575.17633 4.08368 2.50248 3.03698

EO� CuO 5084.45057 4.54025 2.50637 3.03227

EO� Ag 4194.50616 3.84931 2.57290 2.95387

EO� Al2O3 5612.21209 5.04781 2.52764 3.00676

EO� TiO2 5547.15282 4.93821 2.52326 3.01197

EO� SWCNT 5669.37919 4.42065 2.67889 2.45609

EO�MWCNT 5821.39785 4.95978 2.60356 1.74361

G� Cu 5136.36918 4.58597 2.61551 2.90574

G� CuO 5580.03308 4.97093 2.61547 2.90579

G� Ag 4825.16267 4.37745 2.65752 2.85981

G� Al2O3 6026.70821 5.37629 2.62553 2.89465

G� TiO2 6014.39828 5.23688 2.60477 2.91772

G� SWCNT 6119.03328 5.52541 2.71941 2.71154

G�MWCNT 6243.77484 4.52748 2.66107 2.45517
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Computation (see Table 4) reveals that this inequality

cannot be realised for all nanoliquids considered and

hence we may discount the oscillatory motion in our

problem and thereby implying the validity of ‘the

principle of exchange of stabilities’ for unmodulated

convection. The nanoparticle/nanotube effect is weak

due to dilute concentration, the modulation considered

is of small amplitude and not-so-large frequency and

hence this is assumed not to dramatically change the

underlying nature of stationary mode of unmodulated

convection at onset.

3.1.2 Expression for the critical stationary Rayleigh

number and the correction Rayleigh number

for the modulation problem

To find the expression of critical stationary Rayleigh

number and its correction we follow the Venezian [54]

approach. We take the gravity modulation to be of

first-order in �1, a very small amplitude, and assuming

that the thermophoretic effect is weak and to be first-

order in �1 and hence we expand amplitudes, A, B,

L and scaled Rayleigh number, rnl, in the form:

A ¼ A0 þ �1A1 þ �1
2A2 þ � � �

B ¼ B0 þ �1B1 þ �1
2B2 þ � � �

L ¼ L0 þ �1L1 þ �1
2L2 þ � � �

rnl ¼ rL0 þ �1r
L
1 þ �1

2rL2 þ � � �

9
>>>>>>=

>>>>>>;

: ð39Þ

Using Eq. (39) in the Eqs. (29)–(31) and equating

terms of the same order in �1 on either side of the

resulting equation, we get

Oð�10Þ : L1W0 ¼ 0; ð40Þ

Oð�11Þ : L1W1 ¼ ½RL
21 R

L
22 R

L
23�

Tr; ð41Þ

Oð�12Þ : L1W2 ¼ ½RL
31 R

L
32 R

L
33�

Tr; ð42Þ

where Tr represents the transpose, L1 and Wi, i ¼
0; 1; 2 are operators defined as:

L1 ¼

� 1
Prnl

d
ds1

þ a1

� 	
a1 �a1r/nl

rL0a1 � d
ds1

þ a1

� 	
0

rL0a1 0 �rL0
d
ds1

þ a1
Lenl

� 	

2

6664

3

7775
;

ð43Þ

Wi ¼ ½Ai; Bi; Li�Tr and RL
21, R

L
22, R

L
23, R

L
31, R

L
32 and

RL
33 are given by

RL
21 ¼ a1gmðX�; s1ÞB0 � a1gmðX�; s1Þr/nl

L0

RL
22 ¼ rL1a1A0; RL

23 ¼ rL1a1A0 �
a1r

L
1L0

Lenl

9
>=

>;
;

ð44Þ

RL
31 ¼ a1gmðX�; s1ÞB1 � a1gmðX�; s1Þr/nl

L1

RL
32 ¼ rL2a1A0; RL

33 ¼ rL2a1A0

a1NAnl
B0

Lenl
� a1r

L
2L0

Lenl

9
>=

>;
;

ð45Þ

where X� ¼ X
�1

and the over bar on gmðX�; s1Þ denotes
the time-average in 0; 2pX�

� �
.

The solution of the homogeneous system of equa-

tions, (40), yields:

W0 ¼ ½A0; r
L
0A0; LenlA0�Tr: ð46Þ

with the critical Rayleigh number :

ðrL0 Þ
s ¼ 1þ r/nl

Lenl: ð47Þ

We now use on Eqs. (41) and (42) the solvability

condition which states that ‘the inhomogeneous terms

must be orthogonal to the solution of the homogenous

equation’. This yields

rL1 ¼ 0 ð48Þ

and

rL2 ¼

Re
a1ðrL0 � r/nl

LenlÞ rL0 ðiX�Lenl � a1Þ � r/nl
LenlðiX� � a1Þ

� �

ðiX� � a1ÞðiX�Lenl � a1Þ iX�

a1Prnl
� 1þ a1r0

a1�iX� þ a1r/nl Lenl

a1�iX�Lenl

� 	

2

4

3

5

� NAnl
r/nl

;

ð49Þ

where Re denotes the real part. In the next subsection

we derive the first-order Ginzburg–Landau model

from the fifth-order Lorenz model using the method of

multiscales.

3.2 Derivation of the Ginzburg–Landau model

from the Lorenz model

Consider the following regular perturbation expansion

for the amplitudes and the scaled Rayleigh number:
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A

B

C

L

M

rnlc

2

666666666664

3

777777777775

¼

0

0

0

0

0

rL0

2

666666666664

3

777777777775

þ �2

A1

B1

C1

L1

M1

0

2

666666666664

3

777777777775

þ �22

A2

B2

C2

L2

M2

rN2

2

666666666664

3

777777777775

þ �32

A3

B3

C3

L3

M3

0

2

666666666664

3

777777777775

þ � � � ;

ð50Þ

where �2 is a small amplitude which is different from

�1 and �1 = O(�22). The essential difference between �1
and �2 is that the former was chosen from the

modulation term with small amplitude and latter

concerns finite amplitude convection. We assume the

small time-scale, s�1 ¼ �22s1 and a weak thermophoretic

effect, �22NAnl
and that the gravity modulation is of

second-order correction in �2. For the sake of conve-

nience let us define the operators L2 and V as follows:

L2 ¼

�a1 a1 0 � a1r/nl
0

rL0a1 a1 0 0 0

0 0 � ba1 0 0

rL0a1 0 0 � rL0
a1

Lenl
0

0 0 0 0 � rL0a1b

Lenl

2

66666664

3

77777775

and

Vi ¼

Ai

Bi

Ci

Li

Mi

2

66664

3

77775
; i ¼ 1ð1Þ3:

ð51Þ

Substituting Eq. (50) in Eqs. (24)–(28) and on

comparing the like powers of �2 on either side of the

resulting equations, we get the following equations at

various orders:

First-order system:

L2V1 ¼ 0; ð52Þ

Second-order system:

L2V2 ¼ ½R21;R22;R23;R24;R25�Tr; ð53Þ

Third-order system:

L2V3 ¼ ½R31;R32;R33;R34;R35�Tr; ð54Þ

where

R21 ¼ 0;R22 ¼ a1A1C1;R23 ¼ �a1A1B1;

R24 ¼ �A1M1;R25 ¼ �A1L1;
ð55Þ

R31 ¼
1

Prnl

dA1

ds�1
� a1PrnlgmðX�; s�1ÞB1

þ a1Prnlr/nl
gmðX�; s�1ÞL1;

R32 ¼
dB1

ds�1
� a1r

N
2 A1 þ a1A1C2;

R33 ¼ �a1ðA1B2 þ A2B1Þ þ
dC1

ds�1
;

R34 ¼ �a1ðA1M2 þ A2M1Þ þ
dL1

ds�1
� a1r

N
2 A1

þ a1
NAnl

Lenl
B1 þ

1

Lenl
L1;

R35 ¼ a1ðA1L2 þ A2L1Þ þ
dM1

ds�1
þ a1br

N
2

Lenl
M1;

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ð56Þ

where X� ¼ X

�22
.

The solution of the first- and second-order systems

is given by

½A1; B1; C1; L1; M1� ¼ ½A1; A1; 0; LenlA1; 0�Tr;
ð57Þ

½A2; B2; C2; L2; M2� ¼ ½0; 0; 1
b
A2
1; 0;

�Le2nl
b

A2
1�
Tr:

ð58Þ

For the purpose of determining the amplitude, A1, we

consider the Fredholm solvability condition as :

X5

j¼1

RijV̂1 ¼ 0; ð59Þ

where V̂1 represents the solution of the adjoint system

of Eq. (52).

The expression for correction Rayleigh number, rN2 ,

is obtained by considering the solubility condition for

steady part of third-order system which is given by

rN2 ¼ �ðgmðX�; s�1Þ þ r/nl
NAnl

Þ: ð60Þ

Substituting i ¼ 3 in Eq. (59) and on using Eqs. (52)

and (56) in the resulting equation, we get the

Ginzburg–Landau equation in the form:
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dA1ðs�1Þ
ds�1

¼ Q1 þ gmðX�; s�1ÞQ2

� �
A1ðs�1Þ � Q3A

3
1ðs�1Þ;

ð61Þ

where

Q1 ¼
a1PrnlðrN2 þ NAnl

r/nl
Þ

1þ PrnlðrL0 � Le2nlr/nl
Þ ;

Q2 ¼
a1PrnlðrL0 � r/nl

LenlÞ
1þ PrnlðrL0 � Le2nlr/nl

Þ ;

Q3 ¼
g2PrnlðrL0 � Le3nlr/nl

Þ
4p2 1þ PrnlðrL0 � Le2nlr/nl

Þ
� �

9
>>>>>>>>>=

>>>>>>>>>;

: ð62Þ

The Ginzburg–Landau equation (61) with its non-

autonomous nature is analytically intractable. Hence

we use Mathematica 8.0 to solve the equation

numerically with the initial condition A1ð0Þ ¼ 1.

In the next section we quantify the heat transport in

terms of the Nusselt number at the lower boundary

within awave-length distance in the horizontal direction.

4 Estimation of heat transport in nanoliquids

at the lower plate in the presence/absence

of gravity modulation

The thermal Nusselt number, Nunlðs�1Þ, is defined as:

Nunlðs�1Þ

¼ Heat transport by ðconduction þ convectionÞ
Heat transport by conduction

¼ 1þ knl

kbl

R 2p
pjc
0

oH
oZ

� �
dX

R 2p
pjc
0

dHb

dZ

� �
dX

2

664

3

775

Z¼0

; ð63Þ

where HbðZÞ ¼
TbðZÞ � T0

DT
.

Substituting Eqs. (6) and (22) in Eq. (63), we get

Nunlðs�1Þ ¼ 1þ knl

kbl

� �
2

rnl
Cðs�1Þ: ð64Þ

Using Eqs. (50), (57) and (58) in (64), we get

Nunlðs�1Þ ¼ 1þ 2

b

knl

kbl

� �
1� 1

rnl

� �
A1ðs�1Þ

2: ð65Þ

To have a detailed discussion on the heat transfer we

define the time-averaged Nusselt number (mean

Nusselt number), Nunlðs�1Þ, as follows :

Nunlðs�1Þ ¼
1

2p
X�

� �
Z 2p

X�

0

Nunlðs�1Þds�1;

where 0;
2p
X�

� �
is the interval chosen to calculate the

mean Nusselt number. With the necessary background

for analysing the results prepared in the previous

sections, in what follows we discuss the results

obtained and draw a few conclusions.

5 Results and discussion

The effect of gravity modulation on Rayleigh–Bénard

convection in nanoliquids is studied in the paper using

the generalized Buongiorno two-phase model with

thermophysical properties determined from the phe-

nomenological laws or the mixture theory. Three

different types of gravity modulation effects on onset

of convection and the heat transport are investigated in

the paper. Before we move on to the discussion on the

results of the paper we need to mention that the results,

their discussion and thereby the conclusion drawn lean

heavily on the actual values of thermophysical prop-

erties of nanoliquids (see Table 4) determined by using

thermophysical properties of the base liquids and the

nanoparticles/nanotubes (see Tables 1, 2, 3). This shift

from the classical approach to convection makes the

outcome of the paper more valuable in the context of

Rayleigh–Bénard convection of real Newtonian nano-

liquids or real Newtonian liquid.

In the present problem the principle of exchange of

stabilities is valid and hence the stationary mode of

convection is the preferred one at onset. The following

general results can be qualitatively obtained from

Fig. 3:

dRanlc
dNAnl

\0;
dRanlc
dRa/nl

\0;
dRanlc
dLenl

[ 0; ð66Þ

where Ranlc ¼ Ranl0 þ �21Ranl2 . The above general

results especially that for the Lewis number in

Eq. (66), have been arrived at by considering the fact

that Lenl\NAnl
which in turn means that Ranlc\Rablc .

The data documented in Table 4 and Fig. 3 point to this

fact. Thus the linear stability analysis clearly shows

that the onset of convection is advanced in the base

liquid when a dilute concentration of nanoparti-

cles/nanotubes is introduced.
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Figure 4 reveals that for the modulated system the

following are true :

(a) For X�\2:3

(i) RaTnlc\RaTSnlc\RaSnlc and RaTblc\RaTSblc\
RaSblc

(ii) Rad¼0
nlc

\Ra
d 6¼0
nlc

and Rad¼0
blc

\Ra
d 6¼0
blc

(b) For X� [ 2:3

(i) RaTnlc [RaTSnlc [RaSnlc and RaTblc [
RaTSblc [RaSblc

(ii) Rad¼0
nlc

[Ra
d6¼0
nlc

and Rad¼0
blc

[Ra
d 6¼0
blc

Fig. 3 Plot of the critical stationary Rayleigh number,Ranlc , versus the concentration Rayleigh number,Ra/nl
, diffusivity ratio,NAnl

and

the Lewis number, Lenl, for trigonometric sign modulation and for water-copper nanoliquid

Fig. 4 Plot of the critical Rayleigh number versus frequency of modulation, X�, for different waveforms and for water-copper

nanoliquid(left) and for water (right)
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Further, Ranlc\Rablc is true for all three types of

modulation and also for the no modulation case.

With a clear knowledge as to what the observed

effect of nanoparticles/nanotubes and the gravity

modulation on onset of convection is, we now move

on to discuss the results on nonlinear stability analysis

and what it has to say in the post-onset regime of

Rayleigh–Bénard convection.

The non-autonomous fifth-order Lorenz model is

reduced to the non-autonomous first-order Ginzburg–

Landau equation using the method of multiscales.

Using the Ginzburg–Landau equation, one of the

amplitudes is obtained numerically and the Nusselt

number is evaluated as a quadratic function of the

amplitude. The mean Nusselt number for four New-

tonian liquids (v ¼ 0) and for twenty-eight Newtonian

nanoliquids (for v ¼ 0:05) are presented for different

modulations.

From Table 5 it is apparent that amongst the three

modulations, triangular wave facilitates least heat

transport and square wave facilitates maximum heat

transport. Having a look at Fig. 2 it can be inferred that

the wave form that has the maximum area under its

curve facilitates maximum heat transport. Further, the

Table 5 clearly shows that the following results are

true:

(i) Nu
d¼0

nl [Nu
d 6¼0

nl for all three modulations and

is true for both Newtonian liquids (NL) and

Newtonian nanoliquids (NNL),

(ii) Nunl\Nubl for all three modulations and also

for the no modulation case.

Table 6 documents the effect of frequency ðX�Þ of

modulation on the mean Nusselt number. The effect of

increasing X� is to decrease the heat transport in the

case of all three types of modulation and the result is

true for Newtonian liquid as well as Newtonian

nanoliquids.

Table 7 reiterates the fact that dilute concentrations

of nanoparticle/nanotube when dispersed uniformly in

Newtonian liquid facilitates enhanced heat transfer.

The generalised fifth-order Lorenz model in

Eqs. (24)–(28) reduces to the third-order Lorenz

model associated with the single-phase model of

Khanafer et al. [24]. This can be seen on taking r/nl
¼

0 in the fifth-order Lorenz model. With r/nl
¼ 0,

Eqs. (24)–(28) get uncoupled from L and M resulting

in the third-order Lorenz model (see Siddheshwar and

Meenakshi [42] for no modulation):

1

Prnl

dA

ds1
¼ a1 1þ gmðX; s1Þ½ �B� Að Þ; ð67Þ

dB

ds1
¼ a1ðrnlA� B� ACÞ; ð68Þ

dC

ds1
¼ a1ðAB� bCÞ; ð69Þ

which is the Lorenz model obtained for single-phase.

Table 8 clearly points to the fact that the single-phase

model under predicts the mean Nusselt number in

comparison with that by the generalized two-phase

model of the current paper. This result can be

comprehended by seeing the results documented in

Table 8 in conjunction with Table 5.

The experimental and numerical results on Ray-

leigh–Bénard convection in Newtonian nanoliquids in

the presence/absence of gravity modulation for rigid

boundaries are summarized in Table 9. The findings of

the present study for free boundaries are compared

with these results by recollecting the results of

classical Rayleigh–Bénard convection on different

boundaries (see Chandrasekhar [12]) we may write

that :

Ra½FF�\Ra½RF�\Ra½RR� and Nu½FF�[Nu½RF�[Nu½RR�;

ð70Þ

where FF, RF and RR represents the free-free, rigid-

free and rigid-rigid boundaries. We note here that the

classical results on boundary effect on onset of

convection holds good in the presence of nanoparti-

cles/nanotubes also. Thus the relation (70) is true in

the case of nanoliquid also, i.e.,

Ra
½FF�
nl \Ra

½RF�
nl \Ra

½RR�
nl and Nu

½FF�
nl [Nu

½RF�
nl [Nu

½RR�
nl :

ð71Þ

The results reported from Fig. 4 and Table 5 for water

are in line with the experimental and numerical

findings of Gresho and Sani [19], Biringen and Peltier

[8] and Yu et al. [58] mentioned in Table 9.

Comparing the results of present problem with the

enclosure problem of Siddheshwar and Kanchana

[40, 41] we may conclude :
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Nu
½Rectangular enclosure�
nl \Nu

½Classical RBC�
nl ; 8nanoliquids:

ð72Þ

The Nusselt number for water-alumina nanoliquids

without gravity modulation at volume fraction, v ¼
0:08 is 2.8507 which is greater than the value obtained

by Elhajjar et al. [15] for rectangular enclosure (see

Table 9). Hence the relation (72) is satisfied in the

present study. Thus the present study reiterates the

numerical and experimental results obtained by earlier

investigators. In fact, the results of the weakly

nonlinear stability analysis of the present study can

Table 5 Values of Nunl for four Newtonian liquids and twenty eight Newtonian nanoliquids (v ¼ 0:05), rnl ¼ 5, X� ¼ 5 and for

different values of d and for different types of gravity-aligned oscillation

Nanoliquids Without modulation With modulation

Triangular wave Trigonometric sine wave Square wave

d ¼ 0:1 d ¼ 0:2 d ¼ 0:1 d ¼ 0:2 d ¼ 0:1 d ¼ 0:2

W 2.23140 2.01721 2.03330 2.02109 2.04168 2.03173 2.06446

EG 2.25173 2.03161 2.04607 2.03555 2.05416 2.04640 2.07974

EO 2.26613 2.04193 2.05652 2.04591 2.06709 2.05690 2.09065

G 2.24515 2.02694 2.04322 2.03086 2.05169 2.04164 2.07479

W � Cu 2.59476 2.28396 2.30432 2.28885 2.31494 2.30246 2.34414

W � CuO 2.60450 2.29039 2.31081 2.29529 2.32146 2.30896 2.35080

W � Ag 2.59433 2.28351 2.30389 2.28841 2.31452 2.30203 2.34374

W � Al2O3 2.61496 2.29728 2.31776 2.30219 2.32844 2.31592 2.35792

W � TiO2 2.56779 2.26118 2.28110 2.26596 2.29149 2.27930 2.32012

W � SWCNT 2.74222 2.39300 2.41488 2.39824 2.42630 2.41300 2.45803

W �MWCNT 2.67251 2.34020 2.36130 2.34526 2.37231 2.35944 2.40280

EG� Cu 2.71273 2.37244 2.39362 2.37750 2.40469 2.39190 2.43570

EG� CuO 2.71492 2.37370 2.39487 2.37876 2.40593 2.39315 2.43693

EG�Ag 2.72546 2.38198 2.40325 2.38706 2.41437 2.40154 2.44559

EG�Al2O3 2.72067 2.37756 2.39873 2.38261 2.40979 2.39702 2.44083

EG� TiO2 2.69911 2.36077 2.38172 2.36577 2.39267 2.38002 2.42335

EG� SWCNT 2.74222 2.39300 2.41488 2.39824 2.42630 2.41300 2.45803

EG�MWCNT 2.67251 2.34020 2.36130 2.34526 2.37231 2.35944 2.40280

EO� Cu 2.68600 2.35323 2.37422 2.35825 2.38519 2.37248 2.41581

EO� CuO 2.69004 2.35583 2.37683 2.36085 2.38780 2.37508 2.41844

EO� Ag 2.70656 2.36850 2.38965 2.37355 2.40070 2.38793 2.43166

EO� Al2O3 2.69992 2.36269 2.38372 2.36771 2.39472 2.38199 2.42546

EO� TiO2 2.68882 2.35401 2.37493 2.35901 2.38586 2.37320 2.41642

EO� SWCNT 2.84394 2.47315 2.49541 2.47846 2.50707 2.49373 2.54004

EO�MWCNT 2.80569 2.44386 2.46585 2.44911 2.47735 2.46414 2.50976

G� Cu 2.72574 2.38222 2.40346 2.38729 2.41457 2.40176 2.44575

G� CuO 2.72670 2.38256 2.40378 2.38762 2.41487 2.40208 2.44602

G� Ag 2.73726 2.39094 2.41226 2.39603 2.42341 2.41058 2.45477

G� Al2O3 2.73075 2.38516 2.40637 2.39022 2.41746 2.40468 2.44863

G� TiO2 2.70608 2.36594 2.38690 2.37094 2.39786 2.38522 2.42862

G� SWCNT 2.85919 2.48456 2.50689 2.48988 2.51858 2.50523 2.55173

G�MWCNT 2.81412 2.44960 2.47155 2.45483 2.48304 2.46988 2.51551
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serve as an initial value for numerical studies of the

full equations and this will form the topic for a

separate major study. With this remark we now draw

some general conclusions in the next section.

6 Conclusion

The effect of three different wave-types of time-

periodic gravity-aligned oscillations on Rayleigh–

Bénard convection in Newtonian liquids and in

Newtonian nanoliquids is studied in the paper using

the generalized Buongiorno two-phase model. The

principle of exchange of stabilities is shown to be valid

in the case of no modulation problem and justification

is provided for using it in the modulation problem and

hence the stationary mode of convection considered to

be a preferred one at onset. It is shown that the addition

of dilute concentration of nanoparticles/nanotubes to

Newtonian liquids leads to advancement of convec-

tion. The result may because the effect of increasing

Ra/nl
and NAnl

is to advance the onset of convection.

The Nusselt number is obtained using the solution of

Ginzburg–Landau equation which is in turn derived

from Lorenz model using the method of multiscales. It

is shown that effect of increasing amplitude of gravity

modulation is to increase the heat transport whereas

the effect of increasing frequency of gravity modula-

tion is to decrease the heat transport. This is true for all

three types of modulation. Further, the Nusselt number

Table 6 Values of Nunl for

twenty eight Newtonian

nanoliquids (v ¼ 0:05),
rnl ¼ 5, d ¼ 0:1, for
different values of X� and

for different types of

gravity- aligned oscillation

Nanoliquids Triangular wave Trigonometric sine wave Square wave

X� ¼ 5 X� ¼ 8 X� ¼ 5 X� ¼ 8 X� ¼ 5 X� ¼ 8

W � Cu 2.28396 2.07845 2.28885 2.08207 2.30246 2.09188

W � CuO 2.29039 2.08314 2.29529 2.08680 2.30896 2.09671

W � Ag 2.28351 2.07793 2.28841 2.08155 2.30203 2.09135

W � Al2O3 2.29728 2.08816 2.30219 2.09185 2.31592 2.10187

W � TiO2 2.26118 2.05892 2.26596 2.06248 2.27930 2.07217

W � SWCNT 2.39300 2.16490 2.39824 2.16894 2.41300 2.17996

W �MWCNT 2.34020 2.12236 2.34526 2.12622 2.35944 2.13671

EG� Cu 2.37244 2.15216 2.37750 2.15623 2.39190 2.16739

EG� CuO 2.37370 2.15290 2.37876 2.15698 2.39315 2.16814

EG�Ag 2.38198 2.16005 2.38706 2.16417 2.40154 2.17548

EG�Al2O3 2.37756 2.15574 2.38261 2.15983 2.39702 2.17103

EG� TiO2 2.36077 2.14185 2.36577 2.14588 2.38002 2.15693

EG� SWCNT 2.39300 2.16490 2.39824 2.16894 2.41300 2.17996

EG�MWCNT 2.34020 2.12236 2.34526 2.12622 2.35944 2.13671

EO� Cu 2.35323 2.13705 2.35825 2.14104 2.37248 2.15194

EO� CuO 2.35583 2.13883 2.36085 2.14282 2.37508 2.15374

EO� Ag 2.36850 2.14956 2.37355 2.15363 2.38793 2.16477

EO� Al2O3 2.36269 2.14402 2.36771 2.14803 2.38199 2.15903

EO� TiO2 2.35401 2.13685 2.35901 2.14084 2.37320 2.15177

EO� SWCNT 2.47315 2.23540 2.47846 2.23983 2.49373 2.25205

EO�MWCNT 2.44386 2.21102 2.44911 2.21533 2.46414 2.22720

G� Cu 2.38222 2.16030 2.38729 2.16442 2.40176 2.17571

G� CuO 2.38256 2.16029 2.38762 2.16440 2.40208 2.17569

G� Ag 2.39094 2.16760 2.39603 2.17176 2.41058 2.18318

G� Al2O3 2.38516 2.16212 2.39022 2.16624 2.40468 2.17755

G� TiO2 2.36594 2.14619 2.37094 2.15024 2.38522 2.16137

G� SWCNT 2.48456 2.24481 2.48988 2.24928 2.50523 2.26163

G�MWCNT 2.44960 2.21559 2.45483 2.21994 2.46988 2.23192
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in the presence of modulation is less than that in its

absence. When we see the following results on the

onset of convection and heat transport:

(i) RaTnlc\RaTSnlc\RaSnlc , for X
�\2:3,

(ii) RaTnlc [RaTSnlc [RaSnlc , for X
� [ 2:3,

(iii) Nunl
T\Nunl

TS\Nunl
S 8X�:

Seeing this in conjunction with Fig. 2 we may

conclude that the wave-form that has the maximum

area under its curve helps transport maximum heat.

Results on convection using the Khanafer–Vafai–

Lightstone single-phase model (Ref. [24]) can be

obtained as a limiting case of those obtained by the

generalized Buongiorno two-phase model of

Siddheshwar et al. [47]. In the presence/absence of

gravity modulation we may conclude that the single-

phase model under predicts heat transport compared to

that by two-phase model. The generalized Buongiorno

two-phase model uses actual thermophysical values

for nanoliquids and thus dealing with Rayleigh–

Bénard convection in nanoliquids is different from

that of binary liquid convection. The two-phase model

gives useful information for experimentalists whomay

seek information on the suitability of a particular

nanoliquid and for a given application situation. The

results of the present study makes a qualitative

confirmation of the numerical and experimental stud-

ies of Gresho and Sani [19], Biringen and Peltier [8],

Yu et al. [58] and Elhajjar et al. [15].

Table 7 Values of Nunl for

twenty eight Newtonian

nanoliquids for rnl ¼ 5,

d ¼ 0:1, X� ¼ 5 for

different values of v and for

different types of gravity-

aligned oscillation

Nanoliquids Triangular wave Trigonometric sine wave Square wave

v ¼ 0:04 v ¼ 0:05 v ¼ 0:04 v ¼ 0:05 v ¼ 0:04 v ¼ 0:05

W � Cu 2.23409 2.28396 2.23878 2.28885 2.25181 2.30246

W � CuO 2.23914 2.29039 2.24384 2.29529 2.25692 2.30896

W � Ag 2.23353 2.28351 2.23823 2.28841 2.25126 2.30203

W � Al2O3 2.24444 2.29728 2.24916 2.30219 2.26229 2.31592

W � TiO2 2.21664 2.26118 2.22126 2.26596 2.23408 2.27930

W � SWCNT 2.31754 2.39300 2.32252 2.39824 2.33644 2.41300

W �MWCNT 2.27753 2.34020 2.28236 2.34526 2.29585 2.35944

EG� Cu 2.31599 2.37244 2.32086 2.37750 2.33467 2.39190

EG� CuO 2.31706 2.37370 2.32193 2.37876 2.33574 2.39315

EG�Ag 2.32301 2.38198 2.32790 2.38706 2.34178 2.40154

EG�Al2O3 2.32002 2.37756 2.32489 2.38261 2.33871 2.39702

EG� TiO2 2.30710 2.36077 2.31193 2.36577 2.32563 2.38002

EG� SWCNT 2.31754 2.39300 2.32252 2.39824 2.33644 2.41300

EG�MWCNT 2.27753 2.34020 2.28236 2.34526 2.29585 2.35944

EO� Cu 2.30199 2.35323 2.30683 2.35825 2.32052 2.37248

EO� CuO 2.30415 2.35583 2.30899 2.36085 2.32268 2.37508

EO� Ag 2.31343 2.36850 2.31830 2.37355 2.33210 2.38793

EO� Al2O3 2.30947 2.36269 2.31432 2.36771 2.32805 2.38199

EO� TiO2 2.30276 2.35401 2.30759 2.35901 2.32124 2.37320

EO� SWCNT 2.39384 2.47315 2.39891 2.47846 2.41342 2.49373

EO�MWCNT 2.37195 2.44386 2.37697 2.44911 2.39129 2.46414

G� Cu 2.32409 2.38222 2.32897 2.38729 2.34284 2.40176

G� CuO 2.32442 2.38256 2.32930 2.38762 2.34316 2.40208

G� Ag 2.33049 2.39094 2.33539 2.39603 2.34932 2.41058

G� Al2O3 2.32641 2.38516 2.33128 2.39022 2.34515 2.40468

G� TiO2 2.31163 2.36594 2.31646 2.37094 2.33019 2.38522

G� SWCNT 2.40218 2.48456 2.40726 2.48988 2.42183 2.50523

G�MWCNT 2.37589 2.44960 2.37589 2.45483 2.39524 2.46988
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Table 8 Values of Nunl for

twenty eight Newtonian

nanoliquids (v ¼ 0:05) for
rnl ¼ 5, d ¼ 0:1, X� ¼ 5

and for different types of

gravity- aligned oscillation

using the single-phase

model (Ra/nl
¼ 0)

Nanoliquids Triangular wave Trigonometric sine wave Square wave

d ¼ 0:1 d ¼ 0:2 d ¼ 0:1 d ¼ 0:2 d ¼ 0:1 d ¼ 0:2

W � Cu 2.47842 2.21528 2.21992 2.23277 2.25181 2.30246

W � CuO 2.48368 2.21873 2.22338 2.23627 2.25692 2.30896

W � Ag 2.47780 2.21484 2.21948 2.23232 2.25126 2.30203

W � Al2O3 2.48886 2.22212 2.22677 2.23971 2.26229 2.31592

W � TiO2 2.45056 2.19152 2.19606 2.20867 2.23408 2.27930

W � SWCNT 2.58576 2.29886 2.30378 2.31755 2.33644 2.41300

W �MWCNT 2.53208 2.25602 2.26079 2.27410 2.29585 2.35944

EG� Cu 2.57844 2.29063 2.29545 2.30907 2.33467 2.39190

EG� CuO 2.57721 2.28961 2.29442 2.30803 2.33574 2.39315

EG�Ag 2.58758 2.29786 2.30269 2.31636 2.34178 2.40154

EG�Al2O3 2.57802 2.29019 2.29500 2.30861 2.33871 2.39702

EG� TiO2 2.56073 2.27615 2.28092 2.29439 2.32563 2.38002

EG� SWCNT 2.58576 2.29886 2.30378 2.31755 2.33644 2.41300

EG�MWCNT 2.53208 2.25602 2.26079 2.27410 2.29585 2.35944

EO� Cu 2.56379 2.27920 2.28400 2.29753 2.32052 2.37248

EO� CuO 2.56362 2.27902 2.28382 2.29734 2.32268 2.37508

EO� Ag 2.57856 2.29073 2.29556 2.30918 2.33210 2.38793

EO� Al2O3 2.56699 2.28160 2.28640 2.29994 2.32805 2.38199

EO� TiO2 2.55798 2.27426 2.27904 2.29251 2.32124 2.37320

EO� SWCNT 2.67199 2.36661 2.37162 2.38593 2.41342 2.49373

EO�MWCNT 2.64593 2.34534 2.35031 2.36445 2.39129 2.46414

G� Cu 2.58696 2.29737 2.30219 2.31587 2.34284 2.40176

G� CuO 2.58491 2.29569 2.30051 2.31417 2.34316 2.40208

G� Ag 2.59527 2.30400 2.30883 2.32255 2.34932 2.41058

G� Al2O3 2.58464 2.29543 2.30024 2.31389 2.34515 2.40468

G� TiO2 2.56491 2.27939 2.28416 2.29764 2.33019 2.38522

G� SWCNT 2.67971 2.37300 2.37802 2.39235 2.42183 2.50523

G�MWCNT 2.64695 2.34612 2.35107 2.36518 2.39524 2.46988

Table 9 Results from previous works and qualitative comparison with those of present work

Description of the convection problem Authors Method used Results that match with the present work

With Trignometric sine modulation and without

nanoparticles (for water layer)

Gresho and Sani

[19] Biringen and

Peltier [8]

Numerical At low modulated frequencies the effect

of gravity modulation is to delay the

onset of convection

Gresho and Sani

[19]

Numerical At low modulated frequencies the effect

of gravity modulation is to diminish the

heat transfer

Yu et al. [58] Experimental

and

Numerical

The gravity modulation destabilizes the

system

Without gravity modulation and with

nanoparticles (water-Alumina nanoliquid

(v ¼ 0:08) in rectangular enclosure)

Elhajjar et al. [15] Numerical Nu = 1.586
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