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Abstract In this paper, plane strain surface waves,

also named generalized Rayleigh surface waves, in a

transversely isotropic piezoelectric semiconductor

half space are investigated. The governing equations

of generalized Rayleigh surface waves include the

equations of motion, Gauss’ law of electrostatics and

the conservation of charge. Based on the basic theory

of elastic-dynamic equations, the governing equations

are deduced as equations related to the displacement,

the electric potential and the perturbation of the carrier

density and are solved analytically. We discuss

dispersion curves and the attenuation tendency of

generalized Rayleigh waves for real wave number

cases. The results reveal that the semiconductor should

lead to phase velocity decreasing, and the anomalous

dispersion and damping of generalized Rayleigh

waves. However, enough in-plane biasing electric

field along the wave propagation should lead to the

amplification of the waves. The influence of the out-

plane biasing electric field is so slight that it can be

omitted. These properties should be reproduced in the

case of real frequencies. The results obtained may

provide theoretical guidance for the design of high-

performance surface acoustic wave devices made of

piezoelectric semiconductors.

Keywords Piezoelectric semiconductor �
Generalized Rayleigh surface � Biasing electric field �
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1 Introduction

Since scientists found that piezoelectric properties

exist in some semiconductor materials, they have

drawn conclusion that both II–VI material alloys and

III–V material alloys are piezoelectric semiconduc-

tors. Most of the early researches related to waves in

piezoelectric semiconductor were reported on the bulk

waves [11, 15]. Over the past decade, the research

group of Prof. Wang Zhonglin have proposed the

concept of piezotronics and have done much work on

the basic theory, principals and devices of piezoelec-

tric semiconductors [21–23]. To enhance the applica-

tion of surface acoustic wave (SAW) devices and bulk

acoustic wave devices, scientists have considered

utilizing the coupling properties of piezoelectric-

semiconductor materials to investigate the electric-

elastic dynamics problems [10, 13, 28].

An early report regarding wave propagation in

piezoelectric structures was a study on surface hori-

zontal shear waves in the piezoelectric half space by
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Bleustein [1] and Gulyaev [1], and the wave was

named the B–G wave. Subsequently, researchers have

investigated different waves in various piezoelectric

structures for application in acoustic wave device

design and nondestructive evaluation. The structures

include plane layered structures [12], cylindrical

structures [31], spherical structures [33], and other

curved surface structures [5]. The materials are not

limited to homogenous piezoelectric material, and

extend to functionally graded piezoelectric materials

[16] and piezoelectric–piezomagnetic materials

[4, 27]. The waves are related to plane strain surface

waves in a half space [24], Lamb waves in a thin film

or plate [4], and horizontal shear surface waves (Love

waves or B–G waves) [14] and horizontal shear (SH)

waves in a thin film or plate [19]. Many methods are

employed for solving the governing equations of wave

propagation problems, such as the exact analytical

solution [7], the special function method [6], the

power series method [3], the Legendre polynomials

method [32], and so on.

When the electric field is accompanied with

travelling acoustic waves in a piezoelectric semicon-

ductor, carriers can be transported by the acoustic

wave from one place to another. The phenomenon is

called acoustic charge transport [2, 17]. Up to now,

few studies have reported on semiconductor and

piezoelectric coupling effects on wave propagation

properties. Most of these studies, however, focus on

structures in which one piezoelectric layer is com-

pounded on another semiconductor layer [29, 30]. It

was found that an acoustic wave propagating in these

structures can be amplified by a dc electric field, which

is named an acoustoelectric amplification phe-

nomenon [8, 25, 26]. Few reports have been published

on piezoelectric semiconductor structures. SH waves

in a piezoelectric semiconductor half space have

recently been investigated by Gu and Jin [9]. They

found that semiconduction affects wave speed and

causes wave dispersion and attenuation, and that

waves can be amplified by the biasing electric field.

Scientists aim the plain strain surface wave, also

named Rayleigh surface wave, in a composite con-

sisting of homogeneous isotropic semiconductor half

space coated with a thin layer of homogeneous,

transversely isotropic, piezoelectric material [18].

However, no report has been published on the

Rayleigh waves in a half space made of the material

which have both piezoelectric and semiconductor

properties.

In this paper, we investigate the plane strain surface

in a piezoelectric semiconductor half space. Based on

the basic elastic-dynamic equations, we deduce the

governing equations with respect to the displacement,

the electric potential and the perturbation of the carrier

density. By solving the governing equations analyti-

cally, we obtain a dispersion equation with complex

variables. The influences of the steady-state carrier

density �n and the biasing electric field on dispersion

and attenuation are discussed.

2 Statement of the problem and basic equations

For a transversely isotropic piezoelectric semiconduc-

tor wafer, Cartesian coordinates are shown in Fig. 1. It

is assumed that the x1–x2 coordinate plane is an

isotropic plane; the direction of polling is the same as

the positive direction of the x3-axis. It is under a

uniform biasing electric field �Ej, j ¼ 1; 2; 3. The

carrier charge and steady-state carrier density are q

and �n, respectively.

The piezoelectric semiconductor constitutive equa-

tions can be expressed as

rij ¼ cijklSkl � ekijEk; Di ¼ eiklSkl þ eilEl;
Ji ¼ q�nlijEj þ qnlij �Ej � qdijn;j

ð1Þ

where i; j; k; l ¼ 1; 2; 3; rij and Skl are the stress and

strain tensors; the perturbation of the carrier density is

denoted by n; Di ;Ek and Ji are the electrical

displacement, the electrical field intensity and electric

current; cijkl, ekij and eil are the elastic, piezoelectric

and dielectric coefficients, respectively; and lij and dij

Fig. 1 A piezoelectric semiconductor wafer and Cartesian

coordinates
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are the carrier mobility and diffusion constants,

respectively.

The relationship between the mechanical displace-

ment and the strain components is as follows:

Sij ¼ ui;j þ uj;i
� ��

2 ð2Þ

where ui is the component of mechanical displacement

in the ith direction, and the comma followed by an

index denotes partial differentiation with respect to the

coordinate associated with the index.

The electric field Ek is related to the electric

potential u by

Ek ¼ �u;k: ð3Þ

The linear theory for the small and dynamic signals

consists of the equations of motion, Gauss’ law of

electrostatics and the conservation of charge, given by

rij;j ¼ q€ui; Di;i ¼ qn; q _nþ Ji;i ¼ 0; ð4Þ

where q is the mass density, the dot ‘‘�’’ represents

time differentiation, and the repeated index in the

subscript implies summation with respect to that

index.

Considering plane strain waves propagating along

x1 direction in a piezoelectric semiconductor wafer,

we suppose that the mechanical displacement compo-

nents, the electrical potential and the perturbation of

the carrier density can be expressed as

u1 ¼ u1 x1; x3; tð Þ; u2 ¼ 0; u3 ¼ u3 x1; x3; tð Þ;
u ¼ u x1; x3; tð Þ; n ¼ n x1; x3; tð Þ:

ð5Þ

When the thickness of the wafer is much greater

than the wavelength, the wafer can be considered a

piezoelectric semiconductor half space. Therefore, the

plane strain waves should be generalized Rayleigh

surface waves.

Typically, for the transversely isotropic piezoelec-

tric semiconductor material, substitution of Eq. (5)

into Eqs. (2) and (3), and then substitution of these new

equations into Eq. (1), leads to

r11 ¼ c11

ou1

ox1

þ c13

ou3

ox3

þ e31

ou
ox3

;

r22 ¼ c12

ou1

ox1

þ c13

ou3

ox3

þ e31

ou
ox3

;

r33 ¼ c13

ou1

ox1

þ c33

ou3

ox3

þ e33

ou
ox3

;

r12 ¼ 0; r13 ¼ c44

ou1

ox3

þ ou3

ox1

� �
þ e15

ou
ox1

;

r23 ¼ 0;D1 ¼ e15

ou1

ox3

þ ou3

ox1

� �
� e11

ou
ox1

;

D2 ¼ e15

ou1

ox3

þ ou3

ox1

� �
; D3 ¼ e31

ou1

ox1

þ e33

ou3

ox3

� e33

ou
ox3

;

J1 ¼ �q�nl11

ou
ox1

þ qnl11
�E1 � qd11

on

ox1

;

J2 ¼ qnl11
�E2; J3 ¼ �q�nl33

ou
ox3

þ qnl33
�E3

� qd33

on

ox3

:

ð6Þ

By substituting Eq. (6) into Eq. (4), we obtain the

governing equations expressed by u1, u3, u and n,

providing the following equation:

c11

o2u1

ox2
1

þ c44

o2u1

ox2
3

þ c13 þ c44ð Þ o2u3

ox1ox3

þ e31 þ e15ð Þ o2u
ox1ox3

¼ q€u1

c44

o2u1

ox3ox1

þ o2u3

ox2
1

� �
þ e15

o2u
ox2

1

þ c13

o2u1

ox1ox3

þ c33

o2u3

ox2
3

þ e33

o2u

ox2
3

¼ q€u3; e15 þ e31ð Þ o2u1

ox3ox1

þ e15

o2u3

ox2
1

þ e33

o2u3

ox2
3

� e11

o2u
ox2

1

� e33

o2u
ox2

3

¼ qn;

�nl11

o2u

ox2
1

� l11
�E1

on

ox1

þ d11

o2n

ox2
1

þ �nl33

o2u

ox2
3

� l33
�E3

on

ox3

þ d33

o2n

ox2
3

¼ _n:

ð7Þ
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The electrical potential u0 in the air satisfies the

Laplace equation, for z\0;

o2u0

ox2
3

þ o2u0

ox2
1

¼ 0: ð8Þ

Therefore, the third component of electrical displace-

ment of the air should satisfy

D30 ¼ �e0

ou0

ox3

ð9Þ

where e0 is the dielectric coefficient in the air.

For generalized Rayleigh surface waves propagat-

ing in an unelectroded piezoelectric semiconductor

half space, the following boundary conditions, conti-

nuity conditions and attenuation conditions should be

satisfied:

(a) Traction free conditions

r33 ¼ 0; r13 ¼ 0; at z ¼ 0: ð10Þ

(b) Continuity condition

u ¼ u0; _D3 þ J3 ¼ _D30; at z ¼ 0: ð11Þ

(c) The perturbation of the carrier density of the

surface

n ¼ 0; at z ¼ 0: ð12Þ

(d) The attenuation conditions for generalized

Rayleigh surface waves at z ! �1;

u1 ! 0; u3 ! 0; u ! 0; n ! 0;
as z ! þ1;

ð13Þ

u0 ! 0; as z ! �1: ð14Þ

3 Solution to the problem

For generalized Rayleigh surface waves propagating

along x1 direction in an unelectroded piezoelectric

semiconductor half space, as described above, the

solution of the governing equations can be expressed

as

u1 ¼ U1 x3ð Þ exp ik x1 � ctð Þ½ �;
u3 ¼ U3 x3ð Þ exp ik x1 � ctð Þ½ �;
u ¼ U x3ð Þ exp ik x1 � ctð Þ½ �;
n ¼ N x3ð Þ exp ik x1 � ctð Þ½ �;

ð15Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, k ¼ 2p=k is the wave number, k is the

wave length, c is the wave speed, and Ul x3ð Þ, U x3ð Þ,
N x3ð Þ and U0 x3ð Þ are undetermined functions of the

mechanical displacement, the electrical potential of

the piezoelectric semiconductor, the perturbation of

the carrier density and the electrical potential of air,

respectively, which are to be solved.

By substituting Eq. (15) into Eq. (7), we obtain a

series of ordinary differential equations with respect to

x3, as follows:

c44

d2U1

dx2
3

þ c13 þ c44ð Þik d2U3

dx3

þ e31 þ e15ð Þik dU
dx3

þ qc2 � c11

� �
k2U1 ¼ 0

c33

d2U3

dx2
3

þ ik c44 þ c13ð Þ dU1

dx3

þ qc2 � c44

� �
k2U3

þ e33

d2U
dx2

3

� e15k
2U ¼ 0

e15 þ e31ð Þik dU1

dx3

þ e33

d2U3

dx2
3

� k2e15U3 þ e11k
2U

� e33

d2U

dx2
3

� qN ¼ 0

�nl33

d2U

dx2
3

� �nl11k
2Uþ d33

d2N

dx2
3

� l33
�E3

dN

dx3

� ikl11
�E1N þ ikcN � d11k

2N ¼ 0

ð16Þ

Suppose the solution of Eq. (16) is

U1 ¼ A1 exp ax3ð Þ; U3 ¼ A3 exp ax3ð Þ;
U ¼ AU exp ax3ð Þ; N ¼ AN exp ax3ð Þ; ð17Þ

where A1, A3, AU and AN are the coefficients, and a
describes the decay rate from the free surface x3 ¼ 0

which should have a negative real part. Substituting

Eq. (17) into Eq. (16) and cancelling the common

exponential factor, we obtain a series of homogeneous

linear equations with respect to A1, A3, AU and AN , as

follows:
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c44a
2 þ qc2 � c11

� �
k2

� 	
A1 þ i c13 þ c44ð ÞkaA3

þ i e31 þ e15ð ÞkaAU ¼ 0;

i c13 þ c44ð ÞkaA1 þ c33a
2 þ qc2 � c44

� �
k2

� 	
A3

þ e33a
2 � e15k

2
� �

AU ¼ 0;

i e31 þ e15ð ÞkaA1 þ e33a
2 � e15k

2
� �

A3

þ e11k
2 � e33a

2
� �

AU � qAN ¼ 0;

�nl33a
2 � �nl11k

2
� �

AU þ d33a
2 � l33

�E3a� ikl11
�E1

�

þikc� d11k
2
�
AN ¼ 0:

ð18Þ

For the homogeneous linear equations shown in

Eq. (18), the sufficient and necessary condition for the

existence of a non-trivial solution is that the determi-

nant of the coefficient matrix has to vanish. Therefore,

a should satisfy:

Equation (19) is an eighth-order equation with

respect to a. Omitting the root with a positive real part,

we should obtain four roots with a negative real part:

aj, j from 1 to 4. aj depends on the wave speed c and

wave number k.

Once aj is known, by substituting aj into Eq. (18),

we obtain the linear relationship between A1, A3, AU

and AN , which can be expressed as

A3j ¼ b1jA1j; AUj ¼ b2jA1j; ANj ¼ b3jA1j;

where subscript j represents the case of different aj, A1j

are the undetermined constants, and b1j, b2j, and b3j,

which also depend on the wave speed c and wave

number k, can be calculated based on Eq. (18) and aj.
U1 x3ð Þ, U3 x3ð Þ, U x3ð Þ, and N x3ð Þ in Eq. (15) can be

rewritten as

U1 x3ð Þ ¼
X4

j¼1

A1j exp ajx3

� �
; U3 x3ð Þ ¼

X4

j¼1

b1jA1j exp ajx3

� �
;

U x3ð Þ ¼
X4

j¼1

b2jA1j exp ajx3

� �
; N x3ð Þ ¼

X4

j¼1

b3jA1j exp ajx3

� �
:

ð20Þ

The solution of Eq. (8) can also be expressed as

u0 ¼ U0 x3ð Þ exp ik x1 � ctð Þ½ �; ð21Þ

where

U0 x3ð Þ ¼
X4

j¼1

b2jA1j exp kx3ð Þ; ð22Þ

and is deduced from continuity conditions, as shown in

the first equation in Eq. (11), and attenuation condi-

tions, as shown in Eq. (14).

Upon the following sequence of substitution: (1)

Equations (20) and (22) into Eqs. (15) and (21), (2) the

modified Eqs. (15) and (21) into Eq. (6), (3) the new

equation into boundary condition Eqs. (10), (11), and

(12), the linear homogeneous equations with respect to

A1j, j from 1 to 4, can be obtained.

P4

j¼1

ikc13 þ c33b1jaj þ e33b2jaj
� �

A1j ¼ 0;

P4

j¼1

c44aj þ ikc44b1j þ ike15b2j

� �
A1j ¼ 0;

P4

j¼1

b3jA1j ¼ 0;

P4

j¼1

k2ce31 � ikcb1jaje33 þ ikce33b2jaj � ik2ce0b2j

�q�nl33b2jaj þ ql33
�E3b3j � qd33b3jaj

 !

A1j ¼ 0:

ð23Þ

c44a2 þ qc2 � c11ð Þk2 i c13 þ c44ð Þka i e31 þ e15ð Þka 0

i c13 þ c44ð Þka c33a2 þ qc2 � c44ð Þk2 e33a2 � e15k
2 0

i e31 þ e15ð Þka e33a2 � e15k
2 e11k

2 � e33a2 � q

0 0 �nl33a
2 � �nl11k

2
d33a

2 � l33
�E3a

�ikl11
�E1 þ ikc� d11k

2

 !



























¼ 0 ð19Þ
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For non-trivial solutions of Aj, j from 1 to 4, the

determinant of the coefficient matrix of Eq. (23) must

vanish, which gives an equation that determines the

wave speed c versus the wave number k, as follows:

Qij



 

 ¼ 0 ð24Þ

where Qij

� 	
is a 4 � 4 matrix, and

Q1j ¼ ikc13 þ c33b1jaj þ e33b2jaj;

Q2j ¼ c44aj þ ikc44b1j þ ike15b2j; Q3j ¼ b3j;

Q4j ¼ k2ce31 � ikcb1jaje33 þ ikc e33aj � e0k
� ��

�q�nl33aj
	
b2j þ q l33

�E3 � d33aj
� �

b3j;

and each item depends on the wave speed c and the

wave number k.

The relationship between the wave speed c and the

wave number k can be obtained from Eq. (24).

Furthermore, the relationship between the undeter-

mined constants A1j can be obtained from

Qij

� 	
A1j

� 	
¼ 0: ð25Þ

4 Numerical results and discussion

For numerical analysis with the theoretical model

developed above, we consider a half-space of ZnO

with

c11 ¼ 210 Gpa, c13 ¼ 105 Gpa; c33 ¼ 211 Gpa;

c44 ¼ 43 Gpa; e31 ¼ �0:57 C/m2;

e33 ¼ 1:32 C/m2; e15 ¼ �0:48 C/m2;

e0 ¼ 8:854 � 10�12 F/m, e11 ¼ 7:61 � 10�11 F/m;

e33 ¼ 8:85 � 10�11 F/m, q ¼ 5700 kg/m3;

q ¼ 1:602 � 10�19 C, l11 ¼ l33 ¼ 0:01 m2=Vs;

d11 ¼ d33 ¼ l11 KT/q,

where K is the Boltzmann constant and T is the

absolute temperature. At room temperature, KT/qe=-

0.056 V, where qe= 1.602 9 10-19 C is the electric

charge. For the carriers, we consider holes with q = qe.

With present technology, �n might be any value from

zero to 1019/m3. If the semiconductor is omitted, the

phase velocity of Rayleigh waves propagating in the

ZnO half space should be a constant which satisfies

cR= 2689.3 m/s. In this study, we consider it as a

normalizing speed.

Equation (24) is an equation with a complex

number, and so the solution should include a complex

number. If the surface wave is excited by a given load

frequency, it means that the frequency, x, is a real

number, and both the wave speed, c, and the wave

number, k, are complex numbers. Normally, for the

attenuation waves, the imaginary part of the wave

speed is negative and that of the wave number is

positive. Based on Eq. (15), it can be deduced that the

amplitude of the displacement and the potential should

decrease with propagating direction. On the other

hand, if the surface wave is excited by a given load

wavelength, both the wavelength and the wave

number, k, are real numbers. In this case, the wave

speed is a complex number, in which the real part

denotes the phase velocity and the imaginary part

determines the attenuation. Hereafter, waves with real

wave numbers are investigated, with the exception of

Sect. 4.4. The product of wave speed c and the wave

number k, defined as X, is also a complex number,

expressed as

X ¼ xþ i ~x ¼ ck ð26Þ

where x and ~x are the real part and the imaginary part

of X, respectively. For each item shown in Eq. (15),

this can be rewritten as

f ¼ F x3ð Þ exp ~xtð Þ exp i kx1 � xtð Þ½ �; ð27Þ

where f represents an arbitrary function shown in

Eq. (15) and F x3ð Þ exp ~xtð Þ denotes the amplitude of f .

If ~x is negative, the amplitude of f should decrease as

time increases. Here, we only consider that the wave

number is a real number and discuss the dispersion

behavior and the attenuation tendency through the

numerical examples.

4.1 Influence of steady-state carrier density �n

on dispersion and attenuation

Steady-state carrier density �n represents the semicon-

duction property of the piezoelectric material. To

investigate the effect of semiconduction on wave

speed, we first consider the case without a biasing

electric field, i.e. �E1 ¼ �E3¼0. Both the real part and

the imaginary part of the wave speed are plotted as

functions of wavenumber, as shown in Fig. 2.
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If the semiconduction property is not considered,

the Rayleigh wave in the unelectroded piezoelectric

half space is a non-dispersion wave. The wave speed,

also named the phase velocity, is a constant. For ZnO,

the phase velocity of Rayleigh waves, defined as CR0

and also plotted in Fig. 2, is 2689.3 m/s. When the

steady-state carrier density �n is smaller than 1015/m3,

the variation of the phase velocity is too small to

distinguish, and the imaginary part of the wave speed

approaches zero. The real part of the wave speed

represents the phase velocity, that is

cp ¼ Re cð Þ: ð28Þ

By considering Eqs. (26) and (28), we have

x ¼ cpk; ð29Þ

where x is the frequency.

If we do not omit the semiconduction property, the

steady-state carrier density �n should lead to decreased

phase velocity, as shown in Fig. 2a. Larger steady-

state carrier density causes larger decreases of phase

velocity. When the wave number is small, the

influence of the steady-state carrier density is obvious.

With increasing wave number, the difference in phase

velocity decreases and the phase velocity approaches a

constant. This implies that the effect of the semicon-

duction property on the phase velocity is more obvious

for lower frequencies and becomes slighter for higher

frequencies, and the effect relies on the steady-state

carrier density. For example, if the permission error of

phase velocity is 0.1%, the minimum frequency

should be 2.01 MHz when the steady-state carrier

density is 1 9 1016/m3; and, when the steady-state

carrier density reaches 1017/m3, the minimum fre-

quency should be 9.40 MHz.

The dispersion property depends on the relationship

between the phase velocity and the group velocity.

The definition of the group velocity cg is the velocity

of the wave energy, which is satisfied by

cg ¼
dx
dk

¼ cp þ k
dcp

dk
ð30Þ

If the phase velocity is larger than the group

velocity, the wave has normal dispersion. Conversely,

if the phase velocity is less than the group velocity, the

dispersion is anomalous. It is shown in Fig. 2a that the

phase velocity increases with wave number. In other

words, the phase velocity is less than the group

velocity. This means that the semiconduction property

should lead to the generalized Rayleigh waves having

anomalous dispersion.

Furthermore, the period of the oscillation of phase

should be

T ¼ 2p
kRe cð Þ : ð31Þ

To evaluate the attenuation tendency, we define the

damping coefficient g, which represents the attenua-

tion value in a period [20],

g ¼ exp �2p
Im cð Þ
Re cð Þ

� �
¼ exp � 2p ~x

x

� �
: ð32Þ

Fig. 2 The relationship of wave speed and wave number for the generalized Rayleigh waves in a piezoelectric semiconductor wafer

without a biasing electric field. a Real part of the wave speed. b Imaginary part of the wave speed
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When ~x is negative and the damping coefficient g is

larger than 1, the wave is an attenuation wave in which

the amplitude should decrease along the propagating

direction. The larger the damping coefficient, the

faster the wave attenuates. Conversely, when ~x is

positive and the damping coefficient g is less than 1,

the amplitude of the wave should increase along the

propagating direction. This case is discussed in the

next section.

For the case without a biasing electric field, the

damping coefficient g is larger than 1 and the

generalized Rayleigh waves are attenuation waves,

as shown in Fig. 3. For lower frequencies, the

damping coefficient g reaches a maximum. For higher

frequencies, the damping coefficient g decreases with

the increase of frequency. A large steady-state carrier

density should lead to the damping coefficient, g,

increasing for high frequencies. Especially for the

piezoelectric semiconductor with higher steady-state

carrier density, the permission frequency should be a

higher frequency when the allowance for the damping

coefficient g is selected. For example, if the allowance

for the damping coefficient, g, is 1.01, then the

frequencies should be larger than 6.45 MHz for �n ¼
2 � 1016

�
m3 and 27.0 MHz for �n ¼ 1 � 1017

�
m3.

4.2 Influence of the biasing electric field �E1

on dispersion and attenuation

It is shown in Eqs. (19) and (23) that both electric field
�E1 and electric field �E3 should affect dispersion

curves. To investigate the effect of electric field �E1, we

consider the case without a biasing electric field along

x3 direction, i.e. �E3 ¼ 0. �E1 represents the biasing

electric field in the plane parallel to the surface.

Consequently, �E1 should be named as the in-plane

biasing electric field intensity and we define the

normalized in-plane biasing electric field intensity as

~E1¼l11
�E1=cR0: ð33Þ

The real part and the imaginary part of the wave

speed, as functions of the wave number, are plotted in

Figs. 4 and 5, respectively. It is found that the phase

velocity and the dispersion curves show similarities

when the normalized biasing electric field intensity

equals 0 and 2. When the normalized biasing electric

Fig. 4 The relationship of the real part of the wave speed and the wave number for generalized Rayleigh waves in a piezoelectric

semiconductor wafer with biasing electric field �E3 ¼ 0, �E1 6¼ 0. a �n ¼ 2 � 1016
�

m3. b �n ¼ 1 � 1017
�

m3

Fig. 3 The relationship between the damping coefficient g and

the frequency x
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field intensity is 1, the phase velocity is less than in the

other two cases. For the case without the biasing

electric field, the imaginary part is negative, as shown

in Fig. 5b, and the wave is damped. When the

normalized biasing electric field intensity approaches

1, the imaginary part is positive, with k[ 568 at �n ¼
2 � 1016

�
m3 and k[ 2684 at �n ¼ 1 � 1017

�
m3.

When the normalized biasing electric field intensity

is 2, all of the imaginary part is positive, and the

generalized Rayleigh wave is amplified.

4.3 Influence of the biasing electric field �E3

on dispersion and attenuation

Similarly, to investigate the effect of the out-plane

biasing electric field on the generalized Rayleigh

waves, we also define the out-plane normalized

biasing electric field intensity as

~E3 ¼ l11
�E3=cR0: ð34Þ

We select the carrier charge and steady-state carrier

density �n ¼ 1 � 1017
�

m3 and plot the wave speed in

Fig. 6, including the real part and the imaginary part,

as a function of the wave number. Increased out-plane

Fig. 5 The relationship of the imaginary part of the wave speed and the wave number for the generalized Rayleigh waves in a

piezoelectric semiconductor wafer with biasing electric field �E3 ¼ 0, �E1 6¼ 0. a �n ¼ 2 � 1016
�

m3. b �n ¼ 1 � 1017
�

m3

Fig. 6 The relationship of wave speed and wave number for the generalized Rayleigh waves in a piezoelectric semiconductor wafer

with �E1 ¼ 0, �E3 6¼ 0, �n ¼ 1 � 1017
�

m3. a Real part. b Imaginary part
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normalized biasing electric field intensity leads to

decreased phase velocity, as shown in Fig. 6a. The

variation in phase velocity is small and the dispersion

remains anomalous. The minimum of the imaginary

part of the wave speed increases with increase in the

out-plane normalized biasing electric field intensity.

However, the influence is so limited that the attenu-

ation tendency of the generalized Rayleigh waves does

not change.

4.4 Propagation properties for the case of complex

wave number

Consider that the frequency, X, is a real number, and

that both the wave speed, c, and the wave number, k,

are complex numbers. The dispersion curves, which

plot the relationship between the real part of the wave

speed and the frequency, are shown in Fig. 7a. The

imaginary part of the wave speed versus frequency is

plotted in Fig. 7b. The frequency, X, is selected from

0:5 to 300 MHz, �n ¼ 1 � 1017
�

m3 and �E3 ¼ 0. A

similar conclusion should be obtained. The real part of

phase velocity is smaller than the Rayleigh wave speed

of the piezoelectric half space, increases gradually,

and approaches a constant with the increase of

frequency. The imaginary part of the wave speed is

negative when the structure does not undergo the

biasing electric field, and it is implied that the

imaginary part of the wave number should be positive

and that the wave should attenuate along the wave

propagation direction. If the structure undergoes

enough in-plane biasing electric field, then the imag-

inary part of the wave speed might be positive.

Therefore, the imaginary part of the wave number

should be negative and the amplitude of the general-

ized Rayleigh wave should increase along the wave

propagation direction.

5 Conclusion

Plane strain surface waves, also named generalized

Rayleigh waves, can propagate along the surface of an

unelectroded piezoelectric semiconductor wafer. The

mechanic–electric coupling governing equations are

solved analytically in this study. Supposing that the

wave length is real, and analyzing the complex wave

speed, we find that the semiconductor should lead to

phase velocity decreasing, and to the generalized

Rayleigh waves showing anomalous dispersion and

damping. The phase velocity changes with in-plane

biasing electric field intensity, but the anomalous

dispersion does not change. If the structure is subject

to enough in-plane biasing electric field, the waves

should increase rather than be damped. However, the

influence of the out-plane biasing electric field is too

limited to change the dispersion and attenuation

properties. If we must select materials with large

steady-state carrier densities and wish to omit the

effects of semiconductors on the generalized Rayleigh

waves, then high frequencies should be selected.

Furthermore, enough in-plane biasing electric field

Fig. 7 The relationship of wave speed and frequencies for the generalized Rayleigh waves in a piezoelectric semiconductor wafer with
�E3 ¼ 0, �n ¼ 1 � 1017

�
m3. a Real part. b Imaginary part

123

280 Meccanica (2019) 54:271–281



can overcome the damping caused by semiconductors.

The results obtained in the study may be used to

provide theoretical guidance for the design of high-

performance SAW devices.
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