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Abstract A continuous contact problem of func-

tionally graded layer resting on an elastic semi-infinite

plane, which is loaded with through two different

blocks is addressed in this study. The elasticity theory

and integral transformation techniques are used in

solution of the problem. The problem is reduced to a

system of singular integral equations, and solved

numerically by the aid of appropriate Gauss–Cheby-

shev integration formula. It is assumed that the elastic

semi-infinite homogeneous plane is isotropic and all

surfaces are frictionless and continuous. The shear

modulus and the mass density of the FG layer vary

exponentially along the thickness direction.

Keywords Functionally graded layer � Contact
problem � Elasticity � Integral equation � Asymmetric

loading

1 Introduction

The contact problems have found a wide application

area in various engineering disciplines. The building

and machine elements in particular, are made up of

systems that contain contact. Knowing of the character

and length of contact as well as stress distribution over

the contact area in these systems provide convenience

in design and production of materials for engineers.

New generation materials with improved physical

and mechanical properties are used for today’s struc-

tures, which are more complex than older ones.

Composite materials, which combine the best proper-

ties of more than one material in particular, provide an

ideal solution at this point. In this respect, functionally

graded materials (FGM), which functionally change

from one surface of the material to the other, have

begun to be used.

Functionally graded materials are widely preferred

especially in aerospace, defense and automotive

industries due to their thermal resistance and high

strength properties. Various studies have been done

about FG layers in recent years.

Giannakopoulos and Suresh studied contact stres-

ses in axial symmetric functionally graded materials

loaded with frictionless flat, conical, and spherical

rigid pointed tips [1]. Dağ and Erdoğan solved the

contact and surface cracks problems of a semi-infinite

functionally graded plane under the effect of frictional

rigid punch with any profile [2]. Güler and Erdoğan
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solved the contact problem of a functionally graded

coating on a homogeneous body [3]. El Borgi et al.

examined the receding contact problem between a

functionally graded layer and a homogeneous layer in

their study [4]. Ke and Wang examined the moving

and frictional contact problem of an elastic half-plane

covered with a functionally graded layer [5]. Yang and

Ke analytically examined the two-dimensional contact

problem of a functionally graded layer, which is

covered by a homogeneous layer loaded through a

rigid cylindrical punch and resting on an elastic semi-

infinite plane [6]. Dağ examined fracture and contact

mechanics of orthotropic functionally graded materi-

als [7]. Rekik et al. analytically studied a crack

problem of a functionally graded layer on a homoge-

neous semi-infinite plane [8]. Elloumi et al. addressed

a two-dimensional nonlinear sliding contact problem

between a nonhomogeneous and isotropic functionally

graded half-plane and an arbitrarily shaped punch

subjected to normal load [9]. Rhimi et al. analytically

analyzed the axial symmetric double receding contact

problem of an elastic functionally graded layer loaded

with a rigid spherical punch and resting on a homo-

geneous half-plane [10]. Küçüksucu performed the

analysis of the contact mechanics of orthotropic

graded materials [11]. Güler et al. investigated the

contact mechanics of thin films bonded to functionally

graded coatings both mechanically and numerically

[12]. El Borgi et al., analyzed the frictional and

receding contact problem of a FGM layer resting on a

homogeneous plane [13]. Yaylacı et al. compared the

results by solving a receding contact problem accord-

ing to the elasticity theory and the finite element

method [14]. Chen et al. examined the frictional

contact problem of a functionally graded layer

directed randomly, and cylindrical punches [15].

Çömez examined the contact problem of a function-

ally graded layer loaded by means of a moving rigid

block [16]. Liu et al. made the axial symmetric stress

analysis of the receding contact problem belonging to

functionally graded with random gradation loaded by

a circular and rectangular block, separately [17]. Güler

et al. examined the frictional contact problem of a

cylindrical rigid punch sliding on a cylindrical func-

tionally graded orthotropic medium [18]. Öner et al.

solved the symmetric and continuous contact problem

of the functionally graded layer resting on an elastic

semi-infinite plane loaded by a rigid block according

to the elasticity theory [19]. Polat et al. analyzed the

frictionless and continuous contact problem of a FG

layer lying over an elastic semi-infinite plane by the

finite element method [20, 21]. Kaya et al. solved the

continuous contact problem on a FG layer loaded with

three flat rigid blocks and resting on an elastic semi-

infinite plane by the finite element method [22].

When the literature is examined in general, it can be

seen that there are various studies about the contact

problem of FG layers. The main purpose of this study

is to analytically investigate how the stress distribution

of a FG layer loaded by two different blocks changes

depending on the interaction between the blocks, and

calculate the first separation loads and distances,

accordingly. These calculations are done according to

an exponential change both the shear modulus and

mass density of the FG layer. The elasticity theory and

Fourier integral transform technique are used for the

solution of the problem. The problem is reduced to a

system of singular integral equations, and solved

numerically with the appropriate Gauss–Chebyshev

qaudrature.

2 Formulation of continuous contact problem

2.1 Case without the body forces

Geometry of the continuous contact problem is given

in Fig. 1. This study includes the solution of the

continuous contact problem of a functionally graded

layer resting on a homogeneous half-plane, loaded

with two blocks according to the elasticity theory. It is

assumed that all surfaces are frictionless and the width

of the layer is unit. FG layer extends in the range of

ð�1;þ1Þ. It is assumed that the blocks are rigid

and the contact surfaces can only transmit the

compressive stresses. Shear modulus change of the

FG layer material along its height h;

l1ðyÞ ¼ l0e
by � h\y� 0 ð1Þ

where l0 is the shear modulus on the upper surface of

the layer. b is a non-zero inhomogeneity parameter of

the FG material.

Equilibrium equations when the body forces are

neglected are written as follows:
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or1x
ox

þ os1xy
oy

¼ 0 ð2Þ

os1yx
ox

þ or1y
oy

¼ 0 ð3Þ

Stress–strain expressions can be written as

r1x ¼
l1 yð Þ
j1 � 1

j1 þ 1ð Þ ou1
ox

þ 3� j1ð Þ ov1
oy

� �
ð4Þ

r1y ¼
l1 yð Þ
j1 � 1

3� j1ð Þ ou1
ox

þ j1 þ 1ð Þ ov1
oy

� �
ð5Þ

s1xy ¼ l1 yð Þ ou1

oy
þ ov1

ox

� �
ð6Þ

u1 and v1 in Eqs. (4–6), denote the displacements in

the x- and y- directions, respectively, and j denotes the
Kolosov constant, which is taken to be 3� 4t in plane
strain problems. It is also assumed that the Poisson’s

ratio (t) does not change. Substituting Eqs. (4–6) into

Eqs. (2, 3), after some manipulations, following

equations are obtained:

j1 þ 1ð Þ o
2u1

ox2
þ j1 � 1ð Þ o

2u1

oy2
þ 2

o2v1

oxoy

þ b j1 � 1ð Þ ou1
oy

þ b j1 � 1ð Þ ov1
ox

¼ 0

ð7Þ

j1 � 1ð Þ o
2v1

ox2
þ j1 þ 1ð Þ o

2v1

oy2
þ 2

o2u1

oxoy

þ b 3� j1ð Þ ou1
ox

þ b j1 þ 1ð Þ ov1
oy

¼ 0

ð8Þ

That the Navier equations given above form a set of

partial differential equations makes the solution dif-

ficult. Navier equations are converted from a set of

partial differential equations into a set of ordinary

differential equations by applying Fourier integral

transform to the displacement statements u1 and v1 in

order to make the solution easier. Fourier transform of

displacements;

u1 x; yð Þ ¼ 1

2p

Zþ1

�1

/1 n; yð Þeinxdn ð9Þ

v1 x; yð Þ ¼ 1

2p

Zþ1

�1

w1 n; yð Þeinxdn ð10Þ

1

Q

x

y

z

h

d

c

b
a

Rigid Blocks
QP

I II

1

2

y

Fig. 1 FG layer loaded with two rigid flat blocks resting on the elastic semi-infinite plane
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Inverse Fourier transform of these statements are

obtained as follows;

/1 n; yð Þ ¼
Zþ1

�1

u1 x; yð Þe�inxdx ð11Þ

w1 n; yð Þ ¼
Zþ1

�1

v1 x; yð Þe�inxdx ð12Þ

where n indicates the transform variable. Substituting

the statements in (11, 12) are applied to the Navier

Eqs. (7) and (8), following sets of ordinary differential

equations are obtained:

� ðj1 þ 1Þn2/1 þ ðj1 � 1Þ d
2/1

dy2
þ 2in

dw1

dy

þ bðj1 � 1Þ d/1

dy
þ bðj1 � 1Þ inw1 ¼ 0

ð13Þ

� ðj1 � 1Þn2w1 þ ðj1 þ 1Þ d
2w1

dy2
þ 2in

d/1

dy

þ bðj1 þ 1Þ dw1

dy
þ bð3� j1Þ in/1 ¼ 0

ð14Þ

The solution of the differential equation system can

be in the form:

/1 ¼
X4
j¼1

Mj e
sjy ð15Þ

w1 ¼
X4
j¼1

Mjnje
sjy ð16Þ

where Mjðj ¼ 1; . . .; 4Þ in these statements are

unknown constants and will be obtained by use of

the boundary conditions of the problem. Substituting

Eqs. (15) and (16) into Eqs. (13) and (14), the

characteristic equation is obtained as follows:

ðs2 þ bs� n2Þ2 þ n2b2
3� j1
j1 þ 1

� �
¼ 0 ð17Þ

Roots of the characteristic equation are obtained as

follows:

s1 ¼ � 1

2
b� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ b2 þ 4ing

q
ð18Þ

s2 ¼ � 1

2
b� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ b2 � 4ing

q
ð19Þ

s3 ¼ � 1

2
bþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ b2 þ 4ing

q
ð20Þ

s4 ¼ � 1

2
bþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ b2 � 4ing

q
ð21Þ

where g is defined as:

g ¼ bj j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� j1
1þ j1

r
ð22Þ

In Eq. (16), nj ðj ¼ 1; . . .; 4Þ is defined as follows:

nj ¼
�2nisj þ nibðj1 � 3Þ

n2i2ðj1 � 1Þ þ ðj1 þ 1Þ sjbþ s2j

� � ð23Þ

Thus, the general equations for displacements and

stresses of the FG layer are obtained as

u1hðx; yÞ ¼
1

2p

Zþ1

�1

X4
j¼1

Mj e
sjyþinxdn ð24Þ

v1hmðx; yÞ ¼
1

2p

Zþ1

�1

X4
j¼1

Mjnje
sjyþinxdn ð25Þ

r1xhmðx; yÞ ¼
l1ðyÞ

ðj1 � 1Þ
1

2p

Zþ1

�1

X4
j¼1

inðj1 þ 1Þþ

ð3� j1Þnjsj

" #

�Mje
sjyþinxdn ð26Þ

r1yhmðx; yÞ ¼
l1ðyÞ

ðj1 � 1Þ
1

2p

Zþ1

�1

X4
j¼1

inð3� j1Þþ

ðj1 þ 1Þnjsj

" #

�Mje
sjyþinxdn ð27Þ

s1xyhmðx; yÞ ¼ l1ðyÞ
1

2p

Zþ1

�1

X4
j¼1

sj þ innj
	 


Mje
sjyþinxdn

ð28Þ

The solution of homogeneous elastic plane is also

found in the same way, and given by
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u2hmðx; yÞ ¼
1

2p

Zþ1

�1

A3

nj j
n
þ A4

j
n
þ nj j

n
y

� �� �
ie nj jyþinxdn

ð29Þ

v2hmðx; yÞ ¼
1

2p

Zþ1

�1

A3 þ A4y½ � e nj jyþinxdn ð30Þ

r2xhm ¼ �l2:
2p

Zþ1

�1

2A3 nj j þ A4 j2 þ 3ð Þ þ 2 nj jy½ �f ge nj jyþinxdn

ð31Þ

r2yhm ¼ l2
2p

Zþ1

�1

2A3 nj j þ A4 j2 � 1ð Þ þ 2 nj jy½ �f ge nj jyþinxdn

ð32Þ

s2xyhm ¼ il2:
2p

Zþ1

�1

2nA3 þ A4 j2 þ 1ð Þ nj j
n
þ 2ny

� �� �
e nj jyþinxdn

ð33Þ

The indices 1 and 2 in these equations represent the

FG layer and the homogeneous semi-infinite plane,

respectively, and the hm represents the state where the

body forces are neglected. In addition, l2 and j2 are

the shear modulus of the semi-infinite plane and the

Kolosov constant, respectively.

2.2 Case with the body forces of functionally

graded layer

The general expressions for the functionally graded layer

under the influence of body forces are found in this

section. The body forces of the layer are taken as X = 0

and Y ¼ �q1ðyÞg. In these equations, g represents the

acceleration of the gravity, q1ðyÞ represents the

density of the functionally graded layer and given by

q1ðyÞ ¼ q0 e
cy ð34Þ

where q0 indicates the density of the layer at y =0 and

c indicates the density parameters that vary along the

layer thickness.

Equilibrium equations when the body forces are

taken into account are given by

or1x
ox

þ os1xy
oy

þ X ¼ 0 ð35Þ

os1yx
ox

þ or1y
oy

þ Y ¼ 0 ð36Þ

The stress components of the functionally graded

layer are given in Eqs. (4–6). If the derivatives of the

stress statements in Eqs. (4–6) are taken and rewritten

in Eqs. (35, 36), the Navier equations are as follows;

j1 þ 1ð Þ o
2u1

ox2
þ j1 � 1ð Þ o

2u1

oy2
þ 2

o2v1

oxoy

þ b j1 � 1ð Þ ou1
oy

þ b j1 � 1ð Þ ov1
ox

¼ 0

ð37Þ

j1 � 1ð Þ o
2v

ox2
þ j1 þ 1ð Þ o

2v

oy2
þ 2

o2u

oxoy

þ b 3� j1ð Þ ou
ox

þ b j1 þ 1ð Þ ov
oy

¼ q0 e
c�bð Þyg j1 � 1ð Þ
l0eby

ð38Þ

The displacement statements in these equations are

taken as u = u(x) and v = v(y).

The boundary conditions are as follows:

u1 0ð Þ ¼ 0 ð39Þ

v1 �hð Þ ¼ 0 ð40Þ

r1y ¼
Z0

y

�q0g e
cy dy ð41Þ

Z0

�h

r1xdy ¼ 0 ð42Þ

Thus in the Eq. (43) the required stress statement

ryðx; yÞ is generally obtained by adding the body

forces.
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2.3 Numerical solution of singular integral

equation

The boundary conditions of the problem can be written

as

s1xyðx; 0Þ ¼ 0 �1\x\1 ð44Þ

s1xyðx;�hÞ ¼ 0 �1\x\1 ð45Þ

s2xyðx;�hÞ ¼ 0 �1\x\1 ð46Þ

r1yðx; 0Þ ¼

�pðxÞ a\x\b

�qðxÞ c\x\d

0 b� x� c

0 �1\x� a

0 d\x� þ1

8>>>><
>>>>:

9>>>>=
>>>>;

ð47Þ

r1yðx;�hÞ ¼ r2yðx;�hÞ �1\x\1 ð48Þ

o

ox
v1ðx;�hÞ � v2ðx;�hÞ½ � ¼ 0 �1\x\1

ð49Þ

o

ox
v1ðx; 0Þ½ � ¼ 0 a\x\b ð50Þ

o

ox
v1ðx; 0Þ½ � ¼ 0 c\x\d ð51Þ

Mjðj ¼ 1; . . .; 4Þ and Ajðj ¼ 3; 4Þ constants are

obtained by Eqs. (44–49) in terms of the unknown

contact stresses under the rigid blocks.

Unknowns p xð Þ and q xð Þ will be obtained by

solving the integral equation which will be found by

using boundary conditions (50) and (51). Singular

integral equations for p xð Þ and q xð Þ are obtained after

some simple manipulations as follows;

� 1

p l0

Zb

a

pðtÞdt k�1ðx; tÞ þ
ð1þ j1Þ

4

1

t � x

� �

� 1

pl0

Zd

c

qðtÞdt k�1ðx; tÞ þ
ð1þ j1Þ

4

1

t � x

� �
¼ 0

a\x\b

ð52Þ

� 1

p l0

Zb

a

pðtÞdt k�1ðx; tÞ þ
ð1þ j1Þ

4

1

t � x

� �

� 1

pl0

Zd

c

qðtÞdt k�1ðx; tÞ þ
ð1þ j1Þ

4

1

t � x

� �
¼ 0

c\x\d

ð53Þ

The equilibrium conditions of the punches are

Zb

a

p ðtÞ dt ¼ P ð54Þ

Zd

c

q ðtÞ dt ¼ Q ð55Þ

The statement k�1ðx; tÞ in the above-given equations
is defined as follows;

k�1ðx; tÞ ¼ k1ðx; tÞ �
j1 þ 1

4

� �� �
sin nðt � xÞdn½ �

ð56Þ

The stress statement given by (46) is written for the

interface between FG layer and elastic semi-infinite

plane is obtained to be

r1yðx; yÞ ¼

2P
eby

j1 � 1

Zþ1

0

X4
j¼1

in 3� j1ð Þ þ j1 þ 1ð Þnjsj
	 


Mje
sjy cos n t � xð Þ½ �dn

þ2Q
eby

j1 � 1

Zþ1

0

X4
j¼1

in 3� j1ð Þ þ j1 þ 1ð Þnjsj
	 


Mje
sjy cos n t � xð Þ½ �dn

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ q0g ecy � 1ð Þ
c

� h\y� 0

ð43Þ
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ry1ðx;�hÞ ¼
q0g e�ch � 1


 �
c

� 1

p

Zb

a

k2ðx; tÞpðtÞdt

� 1

p

Zd

c

k2ðx; tÞqðtÞdt; �1\x\1:

ð57Þ

where k1ðx; tÞ and k2ðx; tÞ are given in ‘‘Appendix’’.

For the numerical solution of the integral Eqs. (52)

and (53), the following dimensionless quantities are

defined:

x1 ¼
b� a

2
r1 þ

bþ a

2
; t1 ¼

b� a

2
s1 þ

bþ a

2

x2 ¼
d � c

2
r2 þ

d þ c

2
; t2 ¼

d � c

2
s2 þ

d þ c

2

g1ðs1Þ ¼ p
b� a

2
s1 þ

bþ a

2

� ��
P=h;

g2ðs2Þ ¼ q
d � c

2
s2 þ

d þ c

2

� ��
P=h

ð58a�fÞ

Substituting these quantities into Eqs. (54) and

(55), the followings are obtained.

Z1

�1

g1ðs1Þ
b� a

2h
ds1 ¼ 1 ð59Þ

Z1

�1

g2ðs2Þ
d � c

2h
ds2 ¼ Q=P ð60Þ

Here gðsÞ are the dimensionless contact stresses

under the rigid blocks. These have singularity at the

block corners. Therefore, the index of the integral

equations is? 1. Thereby the solution can be assumed

as follows [23];

gi sið Þ ¼ Gi sið Þ 1� s2i

 ��1

2 �1� si � þ 1 i ¼ 1; 2ð Þ
ð61Þ

where Gi �1;þ1½ � is a closed function. Integral

equations are obtained by using the appropriate

Gauss–Chebyshev integration as follows:

1. Integral equation:

�
Xn
i¼1

Wi G1 s1ið Þ b� a

2h
U1ðr1j; s1iÞ þ

ð1þ j1Þ
4

1
b�a
2


 �
s1i � r1j

 �

" #

�
Xn
i¼1

Wi G2 s2ið Þ d � c

2h

� U2ðr1j; s2iÞ þ
ð1þ j1Þ

4

1
d�c
2
s2i þ dþc

2


 �
� b�a

2
r1j þ bþa

2


 �
 �
" #

¼ 0

j ¼ 1; . . .; n� 1ð Þ

ð62Þ

2. Integral equation:

�
Xn
i¼1

Wi G1 s1ið Þ b� a

2h

� U3ðr2j; s1iÞ þ
ð1þ j1Þ

4

1
b�a
2
s1i þ bþa

2


 �
� d�c

2
r2j þ dþc

2


 �
 �
" #

�
Xn
i¼1

Wi G2 s2ið Þ d � c

2h
U4ðr2j; s2iÞ þ

ð1þ j1Þ
4

1
d�c
2


 �
s2i � r2j

 �

" #
¼ 0

j ¼ 1; . . .; n� 1ð Þ

ð63Þ

Dimensionless normal stress at the contact surface

between the FG layer and the elastic semi-infinite

plane is

r1yðx;�hÞ
P=h

¼
e�ch � 1

 �

ch
1

k

�
Xn
i¼1

WiG1 s1ið Þ b� a

2h
U5 r1j; s1i


 �

�
Xn
i¼1

WiG2 s2ið Þ d � c

2h
U6 r2j; s2i


 �
� 1\r1; r2\þ 1

ð64Þ

where Wi ; rj ; si are given by

W1 ¼ Wn ¼
1

2n� 2
; Wi ¼

1

n� 1
; i ¼ 2; . . .; n� 1ð Þ

s1i ¼ s2i ¼ cos
i� 1

n� 1
p

� �
i ¼ 1; . . .; nð Þ

r1j ¼ r2j ¼ cos
2j� 1

2n� 2
p

� �
j ¼ 1; . . .; n� 1ð Þ

ð65a�cÞ

k ¼ P
�
q0gh

2 is the load factor. It should be

compressive at every point along the contact surface

ðkcr � kÞ for the continuous contact problem. There-

fore, it is important to find the value of the critical load

which will cause the separation. Equation (64) must

be equal to zero in order to find the critical load. xcr
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value and corresponding Pcr value providing this

expression gives the point at which separation begins

and the critical load, respectively. The 2n algebraic

equations with 2n unknowns are obtained along with

the integral equations and equilibrium equations.

G1ðsiÞ and G2ðsiÞ ði ¼ 1; . . .; nÞ can be calculated by

solving these equation systems. Thus, the contact

stress values under the blocks are found as

dimensionless.

3 Results and discussion

The effect of the distance variation c� bð Þ=h between
the blocks on stress distribution at contact surfaces is

investigated. In addition, initial separation loads and

distances between the layer and elastic plane are

determined.

The variation of the rigidity and density parameters

is defined as follows:

• If bh[ 0 and ch[ 0, the rigidity and density of

the upper surface of the FG layer are higher than

lower surface.

• When bh ¼ 0:0001 and ch ¼ 0:00001, the FG

layer shows homogeneous behavior, and the study

can be compared to the solution that was found

according to the homogeneous layer.

• In case bh\0 and ch\0, the rigidity and density

of the lower surface of the FG layer is higher than

the upper surface.

For the second case, the results of this study are

compared with the homogeneous solution made by

Özşahin [24] in Table 1. As seen, the results are in

good agreement.

The dimensionless contact stresses under the blocks

depending on the variation of rigidity parameter bh are
shown in Fig. 2. The (a) and (b) in the figure show the

contact stresses under the 1st and 2nd block,

respectively.

In case the rigidity of the upper surface of the FG

layer is higher than the bottom surface of layer, while

the contact stresses at the bottom of the blocks reduce,

the stresses at the corners of the blocks increase. Since

the 2nd block width is twice larger than the 1st block

and the contact is spread over a larger area, the stress

values are closer to each other, although Q = 1.5P.

The dimensionless contact stresses under the blocks

are given in Fig. 3 according to the distance variation

between the blocks. When the blocks are approached

to each other, while the stress values are more at the far

points of the blocks they decrease at the corners which

are closer. It is also found that as the interaction

between the blocks ended, the system behaved like

two separate blocks and stress values are very close to

each other.

Initial separation loads and distances between the

FG layer and the elastic semi-infinite plane according

to the variation of distance between blocks for various

values of bh and ch are given in Table 2. As seen, the

initial separation loads and the initial separation

distances increase as the distance between the blocks

increases. As the rigidity and density of the lower

surface of the FG layer increase in comparison with

the upper surface, it is seen that separation occurs at a

closer point to the blocks, but it is harder to occur.

Additionally, the results are found closer, because as

the distance between the blocks increases, the inter-

action between them decreases.

Table 1 According to the distance variation between the

blocks, the comparison of the initial separation loads and

distances between FG layer and elastic semi-infinite plane (a/

h = 3, (b - a)/h = 0.5, (d - c)/h = 1, l0 = 1, l2/l-h = 1,

bh = 0.0001, ch = 0.0001, j1 = j2 = 2, y = - h, h = 1)

ðc� bÞ=h Q ¼ 1:5P Q ¼ 3P

Present Özşahin [24] Present Özşahin [24]

xcr=h kcr xcr=h kcr Error (%) xcr=h kcr xcr=h kcr Error (%)

0.2 7.22 76.446 7.22 76.472 0.034 7.24 44.960 7.24 44.969 0.020

1 8.04 90.568 8.04 90.603 0.038 8.06 48.927 8.06 48.937 0.020

5 12.08 104.669 12.08 104.718 0.048 8.73 52.561 12.08 52.573 0.023

10 17.08 105.219 17.08 105.317 0.093 17.08 52.705 17.08 52.723 0.034
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Fig. 2 The contact stress distribution under the blocks according to the variation of rigidity parameter (bh) (a/h = 3, (b - a)/h = 0.5,

(c - b)/h = 1, (d - c)/h = 1, l0 = 1, j1 = j2 = 2, Q = 1.5P, y = 0, h = 1, l2/l-h = 1)
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Fig. 3 The distribution of the contact stresses under the blocks according to the distance variation between the blocks (a/h = 3,

(b - a)/h = 0.5, (d - c)/h = 1, l0 = 1, bh = - 0.6931, j1 = j2 = 2, Q = 1.5P, y = 0, h = 1, l2/l-h = 1)
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The dimensionless ry x;�hð Þ
�
P=h contact stress

distribution according to various bh values is given in

Fig. 4. In case of the condition where 2nd block load is

taken two times greater, when the rigidity of upper

surface is more than the lower surface, the separation

occurs at a further point, while the layer is separated

from the plane with a less load. While the stress values

under the blocks decrease, it increases between the

two blocks.

The dimensionless ry x;�hð Þ
�
P=h contact stress

distribution according to the distance between the

blocks is given in Fig. 5. As the distance between the

blocks increases, the initial separation distances and

loads increase. In addition, the block interactions

caused to increase in the stresses depending on the

proximity of the blocks to each other.

The variation of ry along the depth of the FG layer

in the middle of two blocks with respect to the

variation of the distance between the blocks is given in

Fig. 6. Stress values increase considerably due to the

interaction between the blocks when they are

approaching to each other. However, the dimension-

less stress values gradually decrease as the blocks are

moved away. Furthermore, it is seen that the stress

values on the upper surface of the layer are zero and

fulfill the boundary conditions.

Table 2 The examination of initial separation loads and

distances between the FG layer and the elastic semi-infinite

plane according to the variation of distance between blocks for

various values of bh and ch (a/h = 3, (b - a)/h = 0.5, (d - c)/

h = 1, l0 = 1, l2/l-h = 1, j1 = j2 = 2, y = - h, h = 1,

Q = 2P)

ðc� bÞ=h bh ¼ ch = 1.6094 bh ¼ ch = 0.0001 bh ¼ ch = - 1.6094

ðxcr � dÞ=h kcr ðxcr � dÞ=h kcr ðxcr � dÞ=h kcr

0.2 3.13 27.081 2.53 61.988 2.16 221.546

1 3.14 30.653 2.56 70.556 2.19 249.741

5 3.21 35.496 2.58 78.671 2.19 272.745

10 3.21 35.655 2.59 78.985 2.19 274.161

Fig. 4 The dimensionless ry x;�hð Þ
�
P=h contact stress distri-

bution between the FG layer and the elastic semi-infinite plane

for various b h values (a/h = 2, (b - a)/h = 1, (c - b)/h = 2,

(d - c)/h = 1, l0 = 1, l2/l-h = 1, ch = - 0.6931, y = - h,

h = 1, j1 = j2 = 2, Q = 2P)
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Fig. 5 The dimensionless ry x;�hð Þ
�
P=h contact stress distri-

bution between the FG layer and the elastic plane according to

the distance variation between blocks (a/h = 3, (b - a)/h = 0.5,

(d - c)/h = 1, l0 = 1, bh = - 0.6931, ch = - 0.6931, j1-
= j2 = 2, Q = 1.5P, y = - h, h = 1, l2/l-h = 1)
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4 Conclusion

A continuous contact problem of a functionally graded

layer resting on an elastic semi-infinite plane loaded

with through two different blocks is addressed in this

study. The effect of the distance between the blocks on

the stress values is examined depending on the

variation of inhomogeneity parameters bh and ch of

the materials. When the distance between the blocks

decrease, the interaction is formed and accordingly the

initial separation distances decrease while the initial

separation loads increase. When the blocks are

approached to each other, the dimensionless contact

stress values under the blocks are higher at the far

points of the blocks, while they decrease at the corners.

Similarly, as the blocks are approached to each other,

the stresses along the layer depth increase due to the

interaction. In case the rigidity and density of the

lower surface of the FG layer is greater than upper

surface of the layer, the contact stresses under the

blocks increase. Additionally, while the FG layer

separated from the elastic semi-infinite plane in a point

which is closer to the blocks, the load causing the

separation increases notably. Thus, the layer is sepa-

rated from the elastic plane with more difficult.
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Appendix

A1 ¼ k1ðx; tÞ

¼
Z1

0

ðj2 þ 1Þ

eh s1þs2ð Þ D1D3E4n2 � D1D4E3n2 � D2D3E4n1 þ D2D4E3n1ð Þ

þeh s1þs3ð Þ �D1D2E4n3 þ D1D4E2n3 þ D2D3E4n1 � D3D4E2n1ð Þ

þeh s1þs4ð Þ D1D2E3n4 � D1D3E2n4 � D2D4E3n1 þ D3D4E2n1ð Þ

þeh s2þs3ð Þ D1D2E4n3 � D1D3E4n2 � D2D4E1n3 þ D3D4E1n2ð Þ

þeh s2þs4ð Þ �D1D2E3n4 þ D1D4E3n2 þ D2D3E1n4 � D3D4E1n2ð Þ

þeh s3þs4ð Þ D1D3E2n4 � D1D4E2n3 � D2D3E1n4 þ D2D4E1n3ð Þ

2
66666666666664

3
77777777777775

þ4n2m

eh bþs1þs2ð Þ �D1D3n2n4 þ D1D4n2n3 þ D2D3n1n4 � D2D4n1n3ð Þ

þeh bþs1þs3ð Þ D1D2n3n4 � D1D4n2n3 � D2D3n1n4 þ D3D4n1n2ð Þ

þeh bþs1þs4ð Þ �D1D2n3n4 þ D1D3n2n4 þ D2D4n1n3 � D3D4n1n2ð Þ

þeh bþs2þs3ð Þ �D1D2n3n4 þ D1D3n2n4 þ D2D4n1n3 � D3D4n1n2ð Þ

þeh bþs2þs4ð Þ D1D2n3n4 � D1D4n2n3 � D2D3n1n4 þ D3D4n1n2ð Þ

þeh bþs3þs4ð Þ �D1D3n2n4 þ D1D4n2n3 þ D2D3n1n4 � D2D4n1n3ð Þ

2
66666666666664

3
77777777777775

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

=D

A2 ¼ D ¼ ð�ne�h bþ2nþs1þs2þs3þs4ð Þ iððj2 þ 1Þðeh s1þs2ð ÞðD1D3E2E4 � D1D4E2E3 � D2D3E1E4 þ D2D4E1E3Þ
eh s1þs3ð Þð�D1D2E3E4 þ D1D4E2E3 þ D2D3E1E4 � D3D4E1E2Þ þ eh s1þs4ð ÞðD1D2E3E4 � D1D3E2E4

� D2D4E1E3 þ D3D4E1E2Þ þ eh s2þs3ð ÞðD1D2E3E4 � D1D3E2E4 � D2D4E1E3 þ D3D4E1E2Þ
þ eh s2þs4ð Þð�D1D2E3E4 þ D1D4E2E3 þ D2D3E1E4 � D3D4E1E2Þ þ eh s3þs4ð ÞðD1D3E2E4 � D1D4E2E3

� D2D3E1E4 þ D2D4E1E3ÞÞ þ 4nmðeh bþs1þs2ð Þð�D1D3E2n4 þ D1D4E2n3 þ D2D3E1n4 � D2D4E1n3Þ
þ eh bþs1þs3ð ÞðD1D2E3n4 � D1D4E3n2 � D2D3E1n4 þ D3D4E1n2Þ þ eh bþs1þs4ð Þð�D1D2E4n3 þ D1D3E4n2

þ D2D4E1n3 � D3D4E1n2Þ þ eh bþs2þs3ð Þð�D1D2E3n4 þ D1D3E2n4 þ D2D4E3n1 � D3D4E2n1Þ
þ eh bþs2þs4ð ÞðD1D2E4n3 � D1D4E2n3 � D2D3E4n1 þ D3D4E2n1Þ þ eh bþs3þs4ð Þð�D1D3E4n2 þ D1D4E3n2

þ D2D3E4n1 � D2D4E3n1ÞÞÞÞ

A3 ¼ k2ðx; tÞ ¼
eby

j1 � 1

Zþ1

0

X4
j¼1

in 3� j1ð Þ½

þ j1 þ 1ð Þnjsj


Mje

sjy cos n t � xð Þ½ �dn

U1ðr1; s1Þ ¼ k�1ðx1; t1Þ; U2ðr1; s2Þ ¼ k�1ðx1; t2Þ

U3ðr2; s1Þ ¼ k�1ðx2; t1Þ; U4ðr2; s2Þ ¼ k�1ðx2; t2Þ

U5ðr1; s1Þ ¼ k2ðx1; t1Þ; U6ðr2; s2Þ ¼ k2ðx2; t2Þ
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