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Abstract In recent years, porous shape memory

alloys have found several industrial applications.

Thanks to biocompatibility, corrosion resistance, and

superior mechanical properties, porous NiTi has been

introduced as a promising candidate for being used as

bone scaffolds. Since the mechanical response of a

scaffold is of importance in order to prevent stress-

shielding phenomena and trigger ossteointegration,

predicting the mechanical response of these scaffolds

before fabrication is inevitable. In this paper, a new

mesoscale model based on Voronoi tessellation of

three-dimensional space is presented for the simula-

tion of porous shape memory alloys. To do so, after

tessellating the space, some cells are selected ran-

domly to be assigned as pores and a suitable constitu-

tive model of dense SMA is attributed to the other

cells. The model is validated against experimental

findings reported in the literature demonstrating good

agreement. In addition, the effects of number of cells,

level of randomness, and the type of boundary

conditions on the stress–strain response is assessed.

The results show that in order to achieve desirable

results, the number of cells and the value of random-

ness must be chosen greater than minimum corre-

sponding values. As another result, the geometrically

periodic model is more computationally efficient than

the mechanically periodic one.

Keywords Porous shape memory alloys � Voronoi
tessellation � Bone scaffold � Microplane theory �
Periodic boundary conditions � Superelasticity

1 Introduction

Since the advent of porous shape memory alloys

(PSMA) in 90th decade, they have found several

industrial and biological applications due to excellent

mechanical and biological properties. These advanced

materials have the benefits of both shape memory

alloys (SMA) and porous materials. SMAs have the

ability to recover large applied deformations upon

heating to a specific temperature called austenite finish

temperature. This property is called shape memory

effect (SME). If the temperature at which the defor-

mation is applied is higher than the austenite finish

one, the deformation will be recovered after unload-

ing. This behavior is known as superelasticity. Among

shape memory materials, Nitinol (NiTi) is one of the

most promising candidates for industrial and
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biomedical applications because of high value of

maximum recoverable strain, good biocompatibility,

corrosion resistance, and similar mechanical proper-

ties to body tissues specially bone tissue.

Nowadays, commercial porous NiTi samples are

fabricated to be used as bone scaffolds in tissue

engineering. Similar to bone, NiTi scaffolds recover

up to 8% of the applied strains during a hysteresis

cycle in the superelastic regime [1] (the value is more

than 1% for bone). In addition, porous structure of

PSMAs allows the designer to adjust the mechanical

properties of the scaffold, specially its elastic modu-

lus, to be compatible with those of bone [2]. If the

elastic modulus of a scaffold is considerably higher

than that of surrounding bones (lower than 20 GPa),

the stress waves are absorbed by the scaffold and the

stress shielding phenomenon will occur leading to

osteoporosis [2]. Also, the bone cells may grow into

the porous surface of the scaffold providing a good

fixation between these two. In addition to the above

mentioned mechanical advantages, interconnected

pores of the microstructure of a bone scaffold allows

the body fluids to be transported between tissues [3].

All these advantages of porous NiTi may enhance

osseointegration and bone ingrowth [4] leading to fast

healing of patients.

As mentioned above, the mechanical properties of a

scaffold must be tailored to be similar to that of bone

for the sake of proper function. Since the fabrication

and characterization of PSMAs are time consuming,

expensive and sometimes uncontrollable, it is desir-

able to develop powerful numerical approaches for

predicting the mechanical response of PSMAs before

fabrication. Accordingly, several attempts have been

made by researchers worldwide to develop numerical

models for the simulation of the mechanical response

of PSMAs. In this regard, micromechanical averaging

technique [5–19] and finite element method [20–36]

are the most popular ones.

In micromechanical averaging approach, a PSMA

is supposed as a composite material in which the pores

are considered as inclusions and the matrix is assumed

to be as dense SMA. Then, a suitable homogenization

approach such as Eshelby dilute inclusion technique,

Mori–Tanaka scheme, or self-consistent method is

used to obtain the macroscopic response of PSMA.

Although this method is extensively used for the

simulation of the mechanical response of PSMAs, it is

just applicable for low porosity samples due to the

highly inhomogeneous stress field in highly porous

SMAs [14, 20].

In the finite element approach, a suitable geometri-

cal model is constructed for the porous structure and a

proper constitutive equation is attributed to the bulk

material. To construct the geometrical model of the

porous microstructure, two main approaches, i.e. unit

cell method (UCM) [20, 27, 31–36] and multi cell

method (MCM) [23, 28, 34, 37, 38] might be utilized.

In the UCM technique, it is assumed that the porous

microstructure is produced by a periodic distribution

of pores along different directions. Calling the

repeating unit as unit cell, it is just necessary to model

one unit cell with suitable periodic boundary condi-

tions. Although, this method is computationally effi-

cient, the assumption of a regular distribution of pores

will cause the overestimation (higher stress value at

the same value of strain) of the material response due

to the constraints of periodicity.

In the MCM approach, a representative volume

element (RVE) is constructed as the geometrical

model of porous sample. This RVE might be a

representative model of the real microstructure of

the porous sample containing a random distribution of

pores through the material. Karamooz Ravari et al.

[34] showed that using a MCM can lead to more

accurate results in comparison with UCM. In addition,

the RVE can be treated as a periodic unit at which the

periodic boundary conditions are imposed. Since the

RVE is not small enough to be called a unit cell and big

enough to be called a representative of the real

microstructure, it is called mesoscale model [21, 24].

Panico and Brinson [24] demonstrated that using

suitable boundary conditions, a mesoscale model

would predict the macroscopic response of PSMAs

with good accuracy and the lowest computational

efforts.

Beside the above mentioned methods, some theo-

retical [39], scaling [37, 38], and phenomenological

methods [40] are proposed. The main goal of these

studies were to introduce computationally efficient

and fast methods to predict the macroscopic mechan-

ical response of PSMAs.

In this paper, a mesoscale finite element model

based on Voronoi tessellation of three-dimensional (3-

D) space is developed for the simulation of the

mechanical response of PSMAs. To do so, two main

steps are followed. In the first step a 3-D constitutive

model of dense SMA, based on microplane theory, is
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introduced and formulated to be attributed as the bulk

material of PSMA. Then, a geometrical model of

PSMA is developed using Voronoi tessellation of 3-D

space and suitable boundary conditions are applied on.

In this paper, two kinds of periodic boundary condi-

tions, i.e. mechanically periodic boundary conditions

and geometrically periodic boundary conditions, are

applied to the model. The results are obtained in the

form of stress–strain response and compared to the

experimental findings reported in the literature. In

addition, the effects of number of cells, level of

randomness, and the applied boundary conditions on

the stress strain response are assessed.

Since in this proposed approach a representative

model of the real geometry is utilized, the stress

concentration can be taken into account so that, unlike

the micromechanical averaging techniques, it is not

limited to small values of porosity. In addition, the

model is big enough to be a good representative of the

real geometry and the cells are considered to be as low

as possible for the sake of computational efficiency.

Accordingly, unlike UC models, the obtained results

would be more similar to experimental ones. In

addition, UC models cannot predict some microstruc-

tural phenomena, such as localization, while this

model can. Comparing with MUC models, such as

those based on micro-CT images, the proposed model

is computationally more efficient.

2 Materials and method

In order to simulate the thermomechanical response of

PSMAs, two main steps must be followed. First, a

suitable constitutive model for the simulation of the

thermomechanical response of dense SMAs must be

developed. Then, a geometrical model which repre-

sents the real microstructure of the PSMA must be

constructed. By attributing the constitutive response of

dense SMA to the geometrical model and performing

the simulation through finite element method, the

thermomechanical response of PSMA could be

obtained. In this section, first, a constitutive model

of dense SMA based on microplane theory is

explained. Then, a geometrical model based on

Voronoi tessellation method is developed. Finally,

the necessary periodic boundary conditions are

introduced.

2.1 Microplane constitutive model for dense

SMAs

As mentioned above, in this paper, the constitutive

model based on microplane theory is chosen for

simulation purposes. Using this approach, all the

material parameters, that are necessary for 3-D

simulations, can be obtained using one-dimensional

(1-D) response of the base material. The main idea of

this theory is to generalize 1-D constitutive models to

3-D ones using a homogenization process [41–49]. To

do so, it is supposed that the stress components on each

generic plane passing through material points, called

microplane, are the projection of the macroscopic

stress tensor. After projecting the stress tensor on each

microplane as normal and shear components, a

suitable 1-D constitutive model is defined between

the corresponding stresses and strains. Finally, a

homogenization process, e.g. complementary virtual

work, is utilized to generalize the 1-D constitutive

equations to 3-D ones [41–43]. Referring to Fig. 1, the

macroscopic traction vector at a material point, t,

might be projected on a microplane as normal, rN , and
shear, rT , components. The traction vector and these

two projected components can be formulated using the

following equations [41, 42]:

ti ¼ rijnj ð1Þ

Fig. 1 Projection of the macroscopic stress tensor on a

microplane as normal and shear components
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rN ¼ rijninj ¼ rijNij ð2Þ

rT ¼ riknknj þ rjknkni

� 2rNninj=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rprrpsnrns � r2N

q

¼ Tijrij ð3Þ

where rij is the macroscopic stress tensor, and ni are

the components of the unit normal vector to a

microplane. It is previously proved that by splitting

the normal component, rN , to the volumetric and

deviatoric parts (Eq. 4), the microplane elastic moduli

are equal to the macroscopic ones [41, 42]:

rN ¼ rV þ rD: ð4Þ

In microplane theory, it is assumed that the

martensite transformation is just associated with the

shear component of microplane stresses [41, 42].

Accordingly, the following constitutive relations

between the 1-D stresses and strains are obtained:

eV ¼ 1� 2mð ÞrV=E ð5Þ

eD ¼ 1þ mð ÞrD=E ð6Þ

eT ¼ 1þ mð ÞrT=E þ e�ns ð7Þ

in the above relations, eV is the volumetric strain, eD
the deviatoric strain, eT the shear strain, m the Poisson
ratio, e� a material parameter called maximum

recoverable strain, ns the value of stress-induced

martensite volume fraction, and E the elastic modulus

of SMA which can be calculated using the Ruess

model as follow [41, 42]:

1

E
¼ 1� ns þ nTð Þð Þ=EA þ ns þ nTð Þ=EM ð8Þ

where EA and EM are respectively the elastic modulus

of pure austenite and pure martensite, and nT the value
of temperature-induced martensite volume fraction.

The value of stress- and temperature-induced marten-

site volume fraction at a given point, i, on an arbitrary

loading path, C, in the region, Rk, might be obtained

using the phenomenological relation of Eq. (9) and the

phase diagram shown in Fig. 2 [50]:

ni;q ¼
fi;q ni;s0;ni;T0;si; �ri;Ti

� �

if i 2 Rk and si � nk[0

ni0;q otherwise

�

:

ð9Þ

Considering T as the temperature, s as the tangent

vector to the loading path, �r as the equivalent von-

Misses stress, and ns0 and nT0 respectively as the initial
values of stress- and temperature-induced martensite

volume fractions, the evolution function, fi;q can be

expressed using the following relations [50]:

Fig. 2 The phase diagram

used for the calculation of

martensite volume fractions
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fi;s ¼

ns0
2

YA þ 1ð Þ if Rk ¼ A

ns0 if Rk ¼ MT

1

2
ns0 � 1ð ÞYMD1

þ ns0 þ 1ð Þf g if Rk ¼ MD1

1

2
ns0 � 1ð ÞYMD1

þ ns0 þ 1ð Þf g if Rk ¼ MD2;MD3

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð10Þ

fi;T ¼

nT0
2

YA þ 1ð Þ if Rk ¼ A

1� ns0 � nT0
2

1� YMT
ð Þ þ nT0 if Rk ¼ MT

nT0
2

1þ YMD1
ð Þ if Rk ¼ MD1

1� ns0 � nT0
4

1þ YMD2
ð Þ 1� YMT

ð Þ if Rk ¼ MD2

nT0
2

1þ YMD1
ð Þ if Rk ¼ MD3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð11Þ

where YA ¼ cos p CAs T�Asð Þ� �r½ �=ð CAs T�Asð Þ�½
CAf T�Af

� �

�Þ, YMD1
¼ cos p �r�rcrs �CM T�Msð Þ

� �

=
�

rcrf �rcrs

h i

Þ, YMD2;3
¼ cos p �r�rcrs

� �

= rcrf �rcrs

h i� 	

,

YMT
¼ cos p T�Ms½ �= Mf �Ms

� �� �

, and Mf , Ms, As,

and Af are martensite finish, martensite start, austenite

start, and austenite finish temperatures respectively.

CM , CAs, and CAf are the slopes of the transformation

bands in the phase diagram as shown in Fig. 2. The

subscript, i, denotes the given point, and the subscript

q stand for s and T.

By applying the principle of complementary virtual

work, the 1-D constitutive relations of Eqs. (5) to (7)

can be generalize to a 3-D one. Considering a unit

hemisphere whose surface and volume are respec-

tively X and V, the following relation will stand

between the 1-D and 3-D stresses and strains [43]:

r
V

eijdrijdV ¼ r
X
eVdrV þ eDdrD þ eTdrTð ÞdX: ð12Þ

Substituting Eqs. (2) to (7) into Eq. (12) and some

simplifications, the following constitutive relation

between stress and strain tensors would be obtained

[35, 41, 42]:

eij ¼ � m
E
rrrdij þ

1þ m
E

rij þ
3

2p
e�ns r

X
TijdX: ð13Þ

The numerical implementation of the above men-

tioned constitutive model is performed and completely

described by the authors [51] and is not presented here

for the sake of brevity. This constitutive model is also

enhanced by the authors to take the effects of tension–

compression asymmetry [43, 52] as well as cyclic

loading [53] into account.

2.2 Voronoi geometrical model

As mentioned earlier, it is necessary to construct a

geometrical model which is a good representative of

the real microstructure of the porous sample. Since it is

not possible to reproduce the real microstructure of a

porous sample in general, some simplified models

might be used. The most well-known models utilized

for the construction of microstructure of porous

materials are based on the tessellation of 2-D or 3-D

space according to Voronoi formulation. Considering

a set of initial points which are distributed through the

space, and some cells corresponding to each point of

the set, the Voronoi tessellation of the space is defined

in such a way that all the points in each cell have the

minimum distance with their corresponding initial

point rather than other initial points. After constructing

the Voronoi diagram of the 3-D space, some cells are

chosen randomly to be considered as pores. To do so,

considering N cells in the domain, a set of indexes, i.e.

1 2 . . . N½ �, is constructed. Each index of the set
is associated with a cell in the domain. Then a random

integer number between 1 and N is generated and its

associated cell is considered as a pore in the material.

When a cell is chosen as a pore, it is removed from the

part. After selecting each cell, the index of that cell is

stored in another set called ‘‘pores’ set’’. If the index of

a cell already exists in the ‘‘pores’ set’’, that cell is

ignored and another cell is chosen. The selection of

pore cells is continued until the desired value of

porosity is achieved. Since the pores are chosen

randomly, it is possible that the pore are arranged in

such a way that the part is divided into two (or more)

portions. To prevent this from happening, after

selecting each cell, it is examined that the main

domain is still continues by checking the number of

total parts in the model. If the number of parts is

greater than 1, the selected cell, which cause the part to

be torn in two or more, is ignored and another cell is

chosen, again randomly. Note that, to prevent this cell

to be chosen again, it is added to the pores’ set too.

Figure 3 demonstrates the flowchart for the procedure

presented above.
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In this paper, ABAQUS finite element package is

utilized for the sake of numerical implementation. To

construct the Voronoi diagram of 3-D space, first a set

of regularly distributed points, shown in Fig. 4, are

generated using a python script. Then, all these points

are moved to a random position in a spherical domain

utilizing the following equation:

xi ¼ x0i þ 2� /� 1ð Þ � k� a

2
ð14Þ

in this relation,/ is a random number between 0 and 1,

k the level of randomness, a ¼ L=N the distance

between two adjacent regular points, N the number of

points in each direction, and L the length of the initial

cubic domain (Fig. 4b). i stands for 1, 2, 3, and the

subscript 0 donates the value of xi coordinate in the

regular grid. It is worth-mentioning that by increasing

the value of k from 0 to 1, the level of randomness

increases too. For the value of k ¼ 0, the initial points

would remain regularly distributed in the domain.

After producing the initial points in the domain, the

Voronoi tessellation of the space must be performed.

To do so, in this paper, the available pyvoro python

program which is written and maintained by Rycroft

[54] is utilized. The output of the program is prepared

as a set of cells corresponding to each initial point.

Each cell of the set includes a set of faces which create

that cell. Each face is comprised of a set of vertexes

and their connections to create that face. These data

are then used to create a Voronoi tessellated cubic

domain in ABAQUS finite element package. To do so,

first, three independent vertexes of each face are used

to construct a local coordinate system. Then, all the

points of a face and their connections are used to create

that face of the cell as a shell. After creating all the

Fig. 3 The procedure for generating a porous RVE using Voronoi tessellation method. In this flowchart, Vf is the volume of the f � th

cell, Vpore the total volume of all the selected pores, VT the total volume of the RVE
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faces of a cell, the closed volume surrounded by these

faces is transformed to a volume. This process is

repeated until all the cells are produced. Finally, all the

cells are assembled to create the tessellated domain.

Figure 5a, b show the Voronoi tessellated domains

using N = 5 and N = 8 respectively. For these two

figures the value of k is chosen to be 0.5.

2.3 Interconnected pores

Since the most promising application of PSMAs,

especially porous NiTi, is to be used as bone scaffolds,

having interconnected pores is of great importance.

Interconnected pores provide a pathway for blood and

other body fluids between neighboring tissues and

enhance their nutrition. In order to construct a

geometrical model with interconnected pores, first,

an index is assigned to each cell of the Voronoi

tessellated domain. Once the first cell is chosen

randomly, to be a pore, a set of indexes of its

neighboring cells are created. Then, the next cell is

chosen from those existed in this set. After selecting

the second cell, its index is removed from the set, and

the indexes of its neighboring cells are added to this

set. This process is continued until the desired value of

porosity is achieved. Notice that after selecting each

cell, the continuity of the domain is checked and the

indexes which cause in-continuity would be removed

from the set.

2.4 Boundary conditions

To be able to obtain reasonable results with good

accuracy, it is necessary to apply suitable boundary

conditions on the model. The formulation of periodic

boundary conditions has been comprehensively

Fig. 4 Regularly distributed initial points for generating

Voronoi tessellation a 3-D view, b 2-D view

Fig. 5 Voronoi tessellation

of a 3-D domain using a 5

initial points b 8 initial

points
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investigated in the literature [17–19, 55, 56]. In this

section, first, the general periodic boundary condition

with periodic directions along the axes of Cartesian

coordinate system is briefly formulated. Then, the

periodic boundary conditions utilized in this paper are

introduced. Because of the translational symmetry of

unit cells, the displacements identically transform

from one cell to another. Accordingly, the relative

displacements at an arbitrary point, P, in a unit cell to

those at its counterpart in another cell might be related

to the macroscopic strains, e0x ; e
0
y ; e

0
y ; c

0
xy; c

0
xz; andc

0
yz,

using the following relation [56]:

u0 � u ¼ x0 � xð Þe0x þ y0 � yð Þc0xy þ z0 � zð Þc0xz
v0 � v ¼ y0 � yð Þe0y þ z0 � zð Þc0yz
w0 � w ¼ z0 � zð Þe0z

8

<

:

ð15Þ

in which x; y; zð Þ and x0; y0; z0ð Þ are respectively the

coordinates of P and P0. Note that in the derivation of

the above-mentioned displacement field, the rigid

body rotation is constrained considering the following

conditions:

ow

ox
¼ ov

ox
¼ ow

oy
¼ 0@ x ¼ y ¼ z ¼ 0: ð16Þ

Supposing a unit cell with the dimension of

2b� 2b� 2b, the coordinates of point P0 can be

related to those of point P as follow [56]:

x0; y0; z0ð Þ ¼ xþ 2ib; yþ 2jb; zþ 2kbð Þ ð17Þ

where i; j; andk determine the position of the cell at

which, point P0 is located. Substituting Eqs. (17) into

(15) leads to the following displacement constraints

[55, 56]:

u @x ¼ bð Þ � u @x ¼ �bð Þ ¼ 2be0x
v @x ¼ bð Þ � v @x ¼ �bð Þ ¼ 0

w @x ¼ bð Þ � w @x ¼ �bð Þ ¼ 0

8

<

:

ð18Þ

u @y ¼ bð Þ � u @y ¼ �bð Þ ¼ 2bc0xy
v @y ¼ bð Þ � v @y ¼ �bð Þ ¼ 2be0y
w @y ¼ bð Þ � w @y ¼ �bð Þ ¼ 0

8

<

:

ð19Þ

u @z ¼ bð Þ � u @z ¼ �bð Þ ¼ 2bc0xz
v @z ¼ bð Þ � v @z ¼ �bð Þ ¼ 2bc0yz
w @z ¼ bð Þ � w @z ¼ �bð Þ ¼ 2be0z

8

<

:

: ð20Þ

In this paper, two kinds of boundary conditions are

applied to the model. In the first model, it is supposed

that the cells’ faces on the boundaries of the porous

sample are not periodic (which is the case until now)

so that the geometrically periodic boundary condi-

tions, which are formulated above, cannot be applied.

Accordingly, a mechanically periodic boundary con-

dition proposed by Shen and Brinson [57] is used for

the sake of numerical implementation. This kind of

boundary condition and its associated model is called

BM1 model throughout this manuscript. As shown in

Fig. 6, in BM1 model it is assumed for side faces that

the opposite faces has the same value of displacement

along their normal directions. For upper and lower

faces it is supposed that the lower face is fixed along its

normal direction and the upper one is compressed by

the value of d along that direction [36].

In the second model, called BM2 model, the

periodic boundary condition, formulated at the begin-

ning of this section, is going to be applied. To do so, it

is first necessary to tessellate the domain in such a way

that the cells of the Voronoi diagram would be

periodic too. In another word, there must be the same

faces, edges, and vertexes on two opposite faces on

which the periodic boundary condition is going to be

applied. To generate such a geometric model, it is just

necessary to distribute the initial points in a periodic

manner. Referring to Fig. 7, for the boundary points

near the boundary Ri, the coordinate of the counterpart

Fig. 6 Mechanical periodic boundary condition applied in

BM1 model

123

3390 Meccanica (2018) 53:3383–3397



points, x
0
i, near boundary R

0
i might be calculated using

the following equation:

x
0
i ¼ L� xi
x
0
j ¼ xjj ¼ 1; . . .; 3 and j 6¼ i

�

: ð21Þ

Notice that in Fig. 7 only the boundary points are

shown for the sake of better clearness. Figure 8 shows

a 3-D domain tessellated by a periodic Voronoi

diagram using N = 4, and k ¼ 0:5.

3 Results and discussion

To construct the geometrical model of the PSMA, a

python script is developed through python 2.7-amd64

to be used as the input of ABAQUS 6.13-4 finite

element package. Since both initial point distribution

and pore choosing are done randomly, for each set of

the parameters, N and k, 25 models are produced and

their average output response is reported throughout

the paper. The model is meshed using 10-node

modified quadratic tetrahedron elements with four

integration points denoted by C3D10 M in ABAQUS.

For each simulation, a mesh sensitivity study is

conducted by repeatedly reducing the mesh size and

rerunning the analysis until changes in the results are

negligible. All the simulations are performed on an

Intel� CoreTM i7-4710HQ CPU @ 2.50 GHz with

12.0 GB ram. This section of the paper is organized as

follow. First the effect of number of cells, N, on the

stress–strain response of PSMA is investigated for the

sake of convergence of the results. In this regard both

BM1 and BM2 models are assessed. Then, the effects

of the value of randomness, k, is studied and the results
are compared with the experimental findings for 42

and 13% porous NiTi reported in [5] and [8]

respectively.

3.1 The effects of the number of cells

To see how the number of cells affects the predicted

stress–strain response of PSMAs, finite element mod-

els of porous samples with 20, 42, and 70 percent

Fig. 7 2-D illustration of BM2 boundary condition

Fig. 8 Periodic Voronoi

tessellation of 3-D cubic

domain a 3-D view b 2-D

view
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porosity under uniaxial loading are constructed using

both BM1 and BM2models. For all the simulations the

material is considered to be NiTi with the material

parameters reported in Table 1, which are associated

with the experimental measurements of a 42% porous

sample as reported by Karamooz Ravari et al. [36].

Referring to the experimental measurements, the test

temperature is T ¼ Af , so that the material is initially

in austenite phase and ns0 ¼ nT0 ¼ 0.

Figure 9a, b show respectively the uniaxial stress–

strain response of 42% porous NiTi obtained using

BM1 and BM2 models with k ¼ 0. As it can be seen,

the stress level decreases by increasing the number of

cells in the Voronoi tessellated domain. In addition,

Table 1 Material parameters utilized for numerical simulations of the 42% porous NiTi

EA MPað Þ EM MPað Þ m Mf
�Cð Þ Ms

�Cð Þ As
�Cð Þ Af

�Cð Þ

40,000 28,000 0.33 0.0 20.0 30.0 60.0

rcrs MPað Þ rcrf MPað Þ CM MPa=�Cð Þ CAs MPa=�Cð Þ CAf MPa=�Cð Þ e� T �Cð Þ

0.0 0.0 7.0 7.0 7.0 0.016 60.0

Fig. 9 The effect of the number of cells on the uniaxial stress–

strain response of 42% NiTi sample obtained using a BM1

model b BM2 model

Fig. 10 Maximum deviation of the converged stress–strain

curve for different values of number of cells obtained using

a BM1 model, b BM2 model
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the stress–strain response converges to a unique curve

by increasing the number of cells. In order to assess the

effects of the number of cells, the value of the

maximum deviation of the stress–strain response from

the converged curve is depicted in Fig. 10a, b for both

BM1 and BM2 models. Referring to this figure, by

increasing the number of cells, the maximum devia-

tion from the converged stress–strain curve decreases

and decays to zero for all values of porosity. The

maximum deviation from the converged results

increases by increasing the value of porosity. How-

ever, the rate at which the results converge also

increases as the porosity increases. Referring to

Fig. 10, the value of the number of cells at which the

convergence of the response is obtained are respec-

tively 9 and 6 for BM1 and BM2models. It can also be

concluded from this figure that the rate of convergence

of the second model, BM2, is higher than that of the

first one, BM1. In another word, BM2 model is more

efficient than BM1model from computational point of

view.

The minimum number of cells at which the

convergence of the stress–strain response is occurred

(the deviation is smaller than 10%) is illustrated in

Fig. 11 for different values of the level of randomness

and the porosity of 42% (the same results are obtained

for different values of porosity but not presented here

for the sake of brevity). As shown in Fig. 11, the level

of randomness has a slight effect on the number of

cells. The trend is almost similar for BM1 and BM2

models. The number of cells decreases by increasing

the level of randomness up to the value of 0.4 and gets

fixed for greater values. Notice that the number of cells

is always smaller for BM2model than for BM1model.

To see how the proposed model behave under

different loading histories, a biaxial loading strategy,

similar to that used by Sepe et al. [19], is considered

here. For this simulation, the samematerial parameters

with those of uniaxial case are used, and a compressive

strain of about 0.036 is applied on both perpendicular

sides of the RVE. Figure 12 shows the stress in one

direction versus the strain of that direction for different

number of cells using BM2 model. As can be seen, the

stress–strain response converges to a specific curve by

increasing the number of cells. The changes in the

response is not significant when the number of cells

increases more than 6 which means that the response

almost converges. The maximum difference between

the stress–strain response using 6 and 7 cells is about

5.34 MPa which is negligible in comparison to the

level of applied stress. Similar observation is made

using BM1 model with at least 9 cells in each

direction. The above-mentioned results show that the

required number of cells for obtaining the desired

convergence is independent of the loading history. It is

worth-mentioning that the same simulations are per-

formed for porosities of 20 and 70 percent and the

maximum different between that obtained stress–

strain respond using 6 and 7 cells in each direction is

found to be about 4.83 and 7.07, respectively.

According to the obtained results of this subsection

BM2 model with at least 6 cells in each direction is

used for all the rest of simulations throughout the

paper for the sake of computational efficiency.

Fig. 11 The effect of the level of randomness on the number of

cells at which convergence is obtained

Fig. 12 The effect of the number of cells on the biaxial stress–

strain response of 42% NiTi sample obtained using BM2 model
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3.2 The effects of the level of randomness

and comparison with experiment

The effects of the value of randomness on the stress–

strain response of 42% porous NiTi is depicted in

Fig. 13 and the results are compared with the exper-

imental curve reported by Entchev and Lagoudas [5].

As is seen, increasing the value of randomness causes

the reduction of the stress level in the stress–strain

response of PSMA. In addition, by increasing the

value of randomness, the stress–strain response would

decay to a specific curve. Based on the results reported

in Fig. 13, the difference between the stress–strain

response gets smaller by increasing the level of

randomness so that for greater values than k ¼ 0:6

the response changes scarcely. Comparing the

obtained results with experiment, the predictions of

the model for N� 6 and k� 0:6 is in good agreement

with the experimental response showing the ability of

the proposed model for the simulation of the mechan-

ical response of PSMAs.

In order to assess the effects of the value of porosity

on the predictions of the proposed model, a finite

element model of a 13% porous NiTi is generated

based on BM2 model. The material parameters

utilized in this case are obtained using the data

provided in [8, 35]. This sample is loaded at a constant

temperature of 58 �C which is higher than the

austenite finish temperature so that the material is

initially in the austenite phase. Since the experimental

stress–strain response of the material was reported at a

constant temperature [8], only the transformation

stresses associated with that temperature are available.

Although it is not possible to obtain the phase diagram

using just this stress–strain response, one can adjust

the parameters corresponding to the phase diagram so

that the same transformation stresses are achieved.

Considering the subscript ‘‘s’’ as ‘‘start’’ and ‘‘f’’ as

‘‘finish’’ and the superscript ‘‘M’’ as ‘‘martensite’’ and

‘‘A’’ as ‘‘austenite’’ the following equations might be

used for the calculation of the material parameters:

rMs ¼ rcrs þ CM T �Msð Þ ð22Þ

rMf ¼ rcrf þ CM T �Msð Þ ð23Þ

rAs ¼ CAs T � Asð Þ ð24Þ

rAf ¼ CAf T � Af

� �

: ð25Þ

Using the above-mentioned equations, the material

parameters associated with the 13% porous NiTi are

calculated and reported in Table 2.

The effects of the level of randomness on the stress–

strain response of the 13% porous NiTi are depicted

and compared with the experimental curve in Fig. 14.

As it is obvious, the trend is similar to that observed in

the case of 42% porous NiTi. However, it seems that

the rate of convergence of the results is faster for the

13% porous sample. To investigate this observation,

the value of the maximum error with the curve of k ¼
1 is plotted as a function of the level of randomness for

different values of porosity in Fig. 15. Referring to

this figure, the impact of the level of randomness on

Fig. 13 Effects of the level of randomness on the stress–strain

response of the 42% porous NiTi and comparison with

experiment

Table 2 Material parameters utilized for numerical simulations of the 13% porous NiTi

EA MPað Þ EM MPað Þ m Mf
�Cð Þ Ms

�Cð Þ As
�Cð Þ Af

�Cð Þ

75,000 53,000 0.33 5.39 20.65 19.3 38.82

rcrs MPað Þ rcrf MPað Þ CM MPa=�Cð Þ CAs MPa=�Cð Þ CAf MPa=�Cð Þ e� T �Cð Þ

37.6 1011.6 4.0 20.24 2.25 0.023 58.0
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the maximum error is more pronounced for higher

values of porosity. At the porosity of 20%, the value of

error is about 26.4% for k ¼ 0:0 which rapidly

decreases by increasing the value of k such that at

k ¼ 0:3, the value of error is about 4.5%. However, for

higher values of porosity, higher value of k is needed

in order to achieve convergence. As it can be seen,

k� 0:6 would provide reasonable results for all values

of porosity.

4 Conclusion

In this paper, a new model for the simulation of the

thermomechanical response of PSMAs is presented. In

this model, the Voronoi tessellation of a 3-D cubic

domain is used to construct the geometry of the PSMA

and the microplane theory is utilized as the constitu-

tive model of the matrix. Two types of boundary

conditions, called BM1 and BM2, are applied to the

models and the stress–strain responses are obtained

through finite element analysis. The effects of number

of cells, level of randomness, and type of boundary

conditions on the obtained response are investigated.

The results show that by increasing the number of cells

in both BM1 and BM2 models, the stress level

decreases and saturates to a specific curve. However,

the number of cells at which this convergence happens

is greater for the first model in comparison with the

second one. In addition, increasing the value of

randomness up to 0.6 decreases the level of stress in

stress–strain response. By further increasing of this

parameter, no considerable changes are observed. In

another word, increasing the value of randomness to

the values greater than 0.6 won’t change the stress–

strain response significantly in comparison with the

models with k ¼ 0:6. The obtained results are also

compared with the experimental findings reported in

the literature demonstrating good agreement. It shows

that the proposed model can be used for the simulation

of the mechanical response of PSMAs used in

biomedical applications.
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