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Abstract Whereas typical Finite Element (FE)

computations are performed off-line, many virtual-

reality (VR) applications put a demand for interactive

simulations involving deformable objects. Interactive

simulation implies real-time or nearly real-time com-

putation and graphical representation of modeled

deformable objects. The growing computational

power of modern conventional hardware calls for

FEM developments in this direction. Depending on

specific VR applications, the developments need to

account for different aspects of physical behavior,

with geometrically nonlinear deformations emerging

as one of most important and frequent. This paper

proposes a simplified co-rotational FE formulation

that considers the overall finite element motion as a

superposition of rigid-body rotation and deformation

described by a linear model with respect to the co-

rotated reference frame. By neglecting the stress

stiffening effect and the dependence of the element

stiffness matrix on the deformational displacements,

the formulation aims at meeting the objectives of

highly efficient simulation, under certain conditions

even real-time simulation, and with acceptable devia-

tion in accuracy compared to the rigorous nonlinear

FE formulation. Computations with both solid and

shell elements are addressed. A set of examples is

provided to illustrate and discuss the aspects of

accuracy and achievable simulation speed.

Keywords Real-time simulation � Co-rotational
FEM � Geometric nonlinearity � Solid � Shell

1 Introduction

In the last several decades, the tools for computer

aided engineering (CAE) have offered invaluable

assistance to engineers. Their continuous development

aims at providing the maximum in terms of perfor-

mance and reliability in a variety of engineering tasks.

An important ingredient of those tools is the simula-

tion of physical processes and phenomena. The

conventional approach implies off-line simulations

followed by the assessment and analysis of the

obtained results in postprocessors in order to gain an

insight into the physical quantities of interest that

characterize the processes. However, the strong

development of advanced visualization systems, fol-

lowed by further development of already existing

software components and necessary hardware, have
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enabled the integration of a novel concept into many

areas of engineering and other fields of application.

The concept is based on the Virtual Reality (VR) or

Augmented Reality (AR) technology and real-time

simulations, thus offering the possibility of manipu-

lating and analyzing a 3D virtual world.

The finite element method (FEM), as an established

numerical method in the field of structural analysis, is

typically addressed to compute the behavior of

deformable structures. Although numerically demand-

ing, with the increasing computational power of

modern hardware it is also the method of choice for

interactive and real-time simulations, either used

directly for the computation or as a part of particularly

developed techniques. The possibility of FEM-based

real-time simulations has been a subject of interest in a

number of fields.

With the purpose of enhancing structural analysis

with AR technologies, Huang et al. [17] proposed a

system that integrates sensor measurement and real-

time FEA simulation into an AR-based environment

and superimposes the FEA results directly onto real-

world objects. In order to speed up the computation,

the authors introduce the assumption of linear and

quasi-static behavior, while the real-time solver is

based on the concept of pre-computing the inverse of

the stiffness matrix. Similarly, Fiorentino et al. [15]

presented an AR-based application that visualizes the

linear FEM results overlaid over the real model for

interactive teaching of dynamic stress/strain distribu-

tion in engineering education. Cerracchio et al. [6]

implemented the linear inverse FEM for real-time

reconstruction of the deformed structural shape using

in situ strain measuremenets. Adopting linear behavior

in the aforementioned applications allowed significant

numerical savings and therewith acceleration of

computational processes. If, however, the considera-

tion of nonlinear behavior is a necessity for reasonable

simulation accuracy, the numerical effort and the

complexity of simulation increase notably.

A number of authors have addressed the difficulty

of performing real-time FEM computations of non-

linear structural deformations by suggesting

approaches based on neural-networks to obtain highly

efficient, real-time solutions. Such approach consists

in using the nonlinear FEM computations to provide a

set of results for the training phase and can thus be

classified as model reduction technique. It was applied

to a number of problems such as real-time simulation

of impact [16], geometrically nonlinear deformation

of a cantilever beam [38] and a shell structure [8], etc.

Dulong et al. [12] proposed a similar approach for

real-time interaction between a designer and a virtual

prototype as a support to design optimization. They

also used a set of nonlinear FEM computations in what

they refer to as training phase, while the actual

deformation for a specific load case is determined by

an interpolation method proposed by the authors.

Furthermore, a real-time control system can also

benefit from reduced but sufficiently accurate models

of the system being controlled to improve the predictor

part of the controller. Kalkkuhl et al. [20] applied the

nonlinear FEM-based neural-network approach to a

longitudinal vehicle dynamics control. Generally

speaking, the approach based on a pre-computed set

of deformed configurations is promising but the

validity of the resulting model is strongly dependent

on the deformation set density and range of deforma-

tion covered in the training phase.

In the field of multi-body system (MBS) dynamics

with flexible bodies, real-time simulation is not a strict

requirement, but high simulation efficiency belongs to

the priorities. Though apparent savings are made by

considering parts mainly as rigid-bodies, accounting

for deformational behavior of some parts becomes

crucial in certain simulations. In such a case, model

reduction is one of the basic ideas on how to cope with

the computational burden. On the contrary to the

above mentioned technique of model reduction (train-

ing of neural-networks), a kind of direct FE-model

reduction is introduced here based on modal coordi-

nates. It implies that orthogonal mode shapes, calcu-

lated in a step prior to simulation, represent the

degrees of freedom, in terms of which the elastic

behavior of the body is described. The solution used by

commercial MBS software packages is the Compo-

nent Mode Synthesis (CMS) technique, particularly

the Craig–Bampton method [9]. The flexible behavior

remains linear with respect to the floating reference

frame attached to the body. Some modal-based

solutions are proposed to account for moderate

geometric nonlinearities by means of the geometric

stiffness matrix [41, 26, 27] or modal warping

[27, 7, 29]. It is also possible to divide a model into

a linear part that is further reduced and a part that

considers the geometrically nonlinear effects in order

to efficiently account for local nonlinearities [29]. The

success of these solutions is strongly dependant on the
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character and range of deformation and modes

provided, so they need to be used with special care.

Many solutions for interactive VR-simulations

have been developed and most advances have been

motivated by the demand for providing real-time

deformation of human tissue in surgical simulations.

Pioneer works in the 90s were based on linear FE

models. Bro-Nielsen and Cotin [4] used simple

tetrahedral elements in the framework of linear

elasticity. In order to further reduce the numerical

effort during simulation, the stiffness matrix was

condensed so that only the surface nodes were

involved and the so-obtained stiffness matrix was

additionally inverted prior to simulation. All these

steps done to produce high numerical efficiency reflect

the limitations of available hardware at that time.

Model reduction techniques were also exploited in this

field, combined with nonlinear visco-elastic material

models [11, 35] or with the extended finite element

method (XFEM) [36]. Certain developments rely on

use of modern hardware tools to provide the necessary

computational power for the demanding real-time

simulations [18]. Cueto and Chinesta [10] gave a

survey of developed solutions for real-time simulation

in surgery including techniques that involve super-

computing facilities, parallel implementations on

GPUs (graphics processor units), model order reduc-

tion, etc.

2 Setting objectives and the choice of method

Strictly speaking, real-time simulation could be

understood as a simulation, in which the computer

model runs at the same rate, or even faster, than the

actual physical system. The standard DIN ISO/IEC

2382 [40] defines real-time simulation in a somewhat

looser manner, by essentially stating that it refers to

the operation of a computing system, whereby the

programs process data in such a manner that the

processing results are available within a predeter-

mined period of time. According to the standard, the

processing time is not necessarily the same or faster

than the real-time. Indeed, in certain fields of appli-

cation, a simulation would still do what it is meant for,

even if it performed somewhat slower than the real

time, but the resulting simulation could be played at an

interactive frame rates.

One can easily identify the means that can be

addressed to achieve the objective of real time

simulation:

– Powerful hardware components,

– Optimization and parallelization of computer

programs,

– Appropriate formalisms and algorithms for the

computation of physical processes.

In the recent years, hardware components have seen a

rapid pace of development offering ever increasing

computational power. This refers to both the central

processing units (CPU) and graphics processing units

(GPU). Particularly modern GPUs can be used as a

modified form of stream processors providing a

massive computational power [18, 37].

Program optimization with respect to the require-

ments of real time simulation implies modifications in

the program so that it executes more rapidly. Modern

compilers offer significant assistance in this aspect. As

modern processors contain multiple cores, the possi-

bility of parallelization is another important aspect.

This may also affect the choices made in the third

group, because different solver types possess different

parallelization potential. By the choice of adapted

formalisms to describe and compute deformational

behavior of structures, one can significantly affect the

numerical efficiency and possibly make a trade-off

between the efficiency and accuracy. Certain solutions

even allow to perform this trade-off dynamically, i.e.

during the simulation, based on immediate

requirements.

This paper is focused on the third aspect. It aims at a

FEM-based solution that keeps full fidelity FE models

(no model reduction is performed), covers geometric

nonlinearities to a large extent, performs fast even on

conventional hardware tools and offers acceptable ac-

curacy, the definition of which depends on specific

application. Keeping the focus on developments with

similar objectives, available literature offers several

approaches. The simplest one would be a model based

on mass-spring system, which substitutes a continuum

with a collection of point masses connected by a

network of massless springs, which are reminiscent of

early days of discretization methods. The main

advantages are the simplicity and ability to cope with

geometric nonlinearities with a relatively small

numerical effort and hence the interest in the approach
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for the purpose of real-time simulation in various

simulators [30, 22]. But it also brings serious draw-

backs related to achievable accuracy and ambiguity of

model building [32]. Due to rapid hardware develop-

ment the attention was turned to more demanding FE

models. The rigorous geometrically nonlinear FEM is

computationally very demanding and, hence, carefully

chosen simplifications of the rigorous geometrically

nonlinear FEM are required in order to meet the

aforementioned objectives. The potential of the co-

rotational approach was recognized in a number of

works, particularly in the field of computer graphics.

Capell et al. [5] proposed division of objects into sub-

domains, while their local rigid-body rotations were

considered by means of local coordinate frames. A

similar but extended idea was proposed by Müller

et al. [31] who implemented local coordinate frames at

nodes. The idea was modified by Etzmuß et al. [13] by

using local coordinate frames attached to triangular

elements in order to model cloth behavior. The authors

of the present work consider the possibility of using a

simplified co-rotational FEM formulation with ele-

ment-based rotation in combination with shell and

solid elements to meet the above set objectives.

3 A simplified co-rotational FEM formulation

The total and updated Lagrangian formulations [2] are

known as classical FE formulations for geometrically

nonlinear analysis used in most commercially avail-

able FE software packages. The only difference

between the two formulations lies in the choice of

different reference configurations and, provided the

appropriate constitutive tensors are employed, they

yield identical results [2]. They provide the accuracy

necessary for engineering tasks, but are also numer-

ically quite demanding and may also exhibit conver-

gence issues.

A high-quality overview of different co-rotational

formulations including a detailed analysis of their

properties is given by Felippa and Haugen [14].

Having in mind the set objectives, the authors of the

present work propose a rather simplified co-rotational

FE formulation that combines the advantages of the

linear and geometrically nonlinear FE analysis. The

idea of the approach is to cover geometric nonlinear-

ities to a significant extent through the consideration of

the element-based rigid-body rotation and to neglect

further effects such as the geometric stiffness and the

dependence of the element stiffness matrix on the

deformational displacements. These simplifications

mean that the formulation is not suitable for certain

types of analyses, such as buckling analysis, which is

primarily due to the lack of the geometric stiffness

matrix. The idea can be seen as a refinement of the

approach used in MBS programs. Within MBS the

overall flexible body motion is decomposed into a

rigid-body motion and (typically small, linear)

deformable motion. The same idea is used in this

work, but it is applied on the element level. Hence, in

the present approach the elastic behavior of each

element is considered to be linear with respect to the

local element frame that is attached to the element and

follows its rigid-body motion. In what follows, the

computation of internal forces and tangential stiffness

matrix together with some details of handling trans-

lational and rotational degrees of freedom within the

framework of the applied co-rotational formulation

will be addressed. Given the rotation matrix at time t,
tRe, which describes the rigid-body rotation of an

element between its initial configuration, 0xe, and its

current configuration, txe, the rotation-free transla-

tions between the two configurations, read (see Fig. 1):

t
0uR ¼ tRe

T txe � 0xe ð1Þ

where the left superscript denotes the time at which the

quantity of interest is given, while the left subscript

(where applicable) refers to the element orientation

with respect to which the quantity is given. The left

subscript is omitted with the rotation matrix as it is

always given with respect to the initial element

configuration (at time t ¼ 0).

As already mentioned, the element behavior is

considered to be linear with respect to the local

Fig. 1 Co-rotational concept rotation-free translations in the

original element orientation
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reference frame and, hence, the element internal forces

with respect to the initial configuration can be simply

computed by means of a pre-computed element

stiffness matrix, 0Ke:

t
0Fe ¼ 0Ke

tRe
T txe � 0xe

� �
ð2Þ

To proceed with the solution, the internal forces are

rotated by means of tRe to the current element

orientation:

t
tFe ¼ tRe

t
0Fe ¼ tRe

0Ke
tRe

T txe � tRe
0Ke

0xe ð3Þ

It should be noticed that the term 0Ke
0xe can be

computed in a pre-step, i.e. prior to simulation and

further used during the simulation. Also, Eq. (3)

reveals the updated element stiffness matrix, which is

simply given by rotating the initial, linear element

stiffness matrix, 0Ke, through
tRe:

tKe ¼ tRe
0Ke

tRe
T ð4Þ

As solids have only translational degrees of freedom

and nodal forces as loads, Eqs. (1–4) give the essence

of the co-rotational FEM formulation for this type of

finite elements. Typically, shell elements also employ

rotations as degrees of freedom and the procedure

needs to be adequately extended. The rotations and

translations do not share the same properties and the

update of rotational degrees of freedom is more

demanding. The incremental nodal rotations com-

puted in each time-step are used to update the shell

normals at each node starting from normals in the

previously determined configuration. This is done by

computing the incremental rotation matrix of a shell

normal as [1]:

t�DtQi

¼ Iþ sin t�Dtci
t�Dtci

t�DtSi þ
1

2

sin t�Dtci=2
� �

t�Dtci=2ð Þ

� �2

t�DtSi
2

ð5Þ

where

t�Dtci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�DtDh2i1 þ t�DtDh2i2 þ t�DtDh2i3

q
ð6Þ

and

t�DtSi ¼
0 �t�DtDhi3 t�DtDhi2

t�DtDhi3 0 �t�DtDhi1
�t�DtDh2i2

t�DtDhi1 0

2

64

3

75

ð7Þ

with t�DtDhi1; t�DtDhi2 and t�DtDhi1 denoting the 3

incremental global nodal rotations between the con-

figurations at times t � Dt and t, while the index i

refers to node i. The rotation matrix t�DtQi is further

used to update the orientation of the shell normal at

node i, ni:

tni ¼ t�DtQ t�Dtni ð8Þ

Rotations are further handled in a similar manner as

translational degrees of freedom. The updated node

normal is rotated backwards to the initial element

configuration by means of tRe
T :

tnRi ¼ tRe
T tni ð9Þ

and further compared to the original node normal in

order to determine the deformational nodal rotations,

free of rigid-body rotation, and with respect to the

initial configuration, Fig. 2. Now, the same approach

already elaborated in Eqs. (2) and (3) is applied. The

deformational translations and rotations are used with

the linear stiffness matrix to obtain the internal forces

and moments with respect to the initial configuration,

which are finally rotated to the current element

configuration.

Obviously, extraction of the element rotation

matrix from the overall motion is an important aspect

in the co-rotational formulation. Generally speaking,

each incremental volume of the structure may exhibit

different rigid-body rotation. But in the framework of

the present co-rotational FEM, a single rotation matrix

is used per element which implies averaging of the

Fig. 2 Co-rotational concept handling of shell normals
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rigid-body rotation over the element domain. The

rotation matrix at a material point can generally be

obtained by polar decomposition of the deformation

gradient matrix at that point. For relatively simple

elements, such as the linear tetrahedron or linear

triangular element, the deformation gradient matrix is

constant over the whole element domain which fits

nicely into the formulation. With more complex

elements (e.g. quadratic elements), the polar decom-

position of the deformation gradient matrix at the

element centroid is used here.

Hence, the formulation uses the element linear

stiffness matrix, which is computed only once, in a

pre-step. In further computation, the element rotation

matrix between the initial and current configurations is

determined in order to update the element stiffness

matrix and compute the internal forces and moments

(where applicable). The global stiffness matrix is re-

assembled using the rotated element stiffness matrices

and the vector of internal forces is updated, so that

either static or dynamic nonlinear analysis may

proceed. It should be noticed that the formulation

neglects the influence of the change in the element

shape and initial stress state onto the element stiffness

matrix.

4 Aspect of accuracy—static shell examples

As emphasized above, the presented formulation

implements certain simplifications, i.e. neglects cer-

tain geometrically nonlinear effects. An important

question rises: how is the accuracy of obtained results

affected by those simplifications?

The achievable accuracy in terms of numbers by

means of the presented co-rotational FEM in combi-

nation with the linear tetrahedral element has been

considered by Marinkovic et al. [28]. Additionally, in

the same reference, a technique was proposed to

improve the accuracy in cases involving moderate

strains, but it implies a larger numerical effort because

the co-rotational formulation is extended by a secant

approach with an update of the element stiffness

matrix. Another approach to improve the accuracy

with some additional numerical effort is based on the

so-called projector matrix [14, 34].

Thin-walled structures are known for their suscep-

tibility to large rotations, whereby the strains remain

small. This is why they represent a good candidate to

consider this aspect. A couple of illustrative examples

are chosen for this consideration. Those examples

have also been a subject of interest of other authors

(e.g. [23, 21, 19]). It is not intended here to study this

aspect exhaustively but rather to get a general

impression on what can be expected. In typical

applications involving interactive simulations, dis-

placements are the result of primary interest.

Two shell elements were implemented with the

presented co-rotational formulation. The full biqua-

dratic nine-node shell element, denoted here by S9

(Fig. 3, left), belongs to the family of degenerated shell

elements. It was originally developed as a piezoelec-

tric shell element by Marinković et al. [24] and tested

in the commercially available FEM software package

ABAQUS [33]. The linear triangular shell element,

denoted by S3 (Fig. 3, right), is the mechanical part of

the electro-mechanical shell element presented and

tested byMarinković and Rama [25] and Rama [39]. A

few remarks on the shell elements would be worth-

while at this point. Both elements implement the

Mindlin–Reissner kinematics and, hence, include

transverse shear. Due to the flat shape of the S3

element, a FE discretization of a curved geometry is

represented as a set of facets thus demanding a finer

mesh. However, the element itself is computationally

very efficient and, additionally, the finer discretization

also talks in favor of the applied co-rotational

formulation (rigid-body rotation accounted for ele-

ment-wise). The full biquadratic shape functions of the

S9 element facilitate covering of a relatively large

range of curvatures. Although this implies that

reasonably rough meshes can be used to discretize a

complex geometry with the S9 element (compared to

linear elements), this advantage may easily be lost

with substantial geometrically nonlinear deforma-

tions. The results obtained with the implemented shell

elements are compared with those obtained using

ABAQUS 3-node linear shell element (A-S3) and

ABAQUS 8-node biquadratic shell element (A-S8R)

Fig. 3 Full biquadratic quadrilateral and linear triangular shell

elements
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and the rigorous geometrically nonlinear (updated

Lagrangian) FEM formulation.

4.1 Curled cantilever beam

A clamped beam exposed to a bending moment at the

free tip is considered in the first example. If the

bending moment is slowly increased, the beam will

bend until it gets curled into a complete circle. The

required overall bending moment for this deformation

is analytically determined as M ¼ pEbh3=6l [3],

where a denotes the length, b the width, h the

thickness, and E is the Youngs modulus.

The geometry is chosen here so that l ¼ 10m , b ¼
0:5m and h ¼ 0:01m, see Fig. 4. As for material

properties, the Youngs modulus is taken to be E ¼
2� 1011 N/m2 and in order to use the analytical

solution for the beam, the Poissons coefficient is taken

as equal to 0. Hence, in this specific case the edge

distributed bending moment is obtained as

Ml ¼ ðp=3Þ104 N.The mesh of 10� 1 elements was

used with the quadratic quadrilaterals, while the

discretization with the linear triangular elements was

finer in order to capture the bending adequately, so that

20 element-stripes were used along the length with

each’ stripe containing 4 elements across the width,

hence 80 elements altogether. These meshes give

converged results with the implemented S9 and S3

element. Figure 5 shows the initial and deformed

geometries computed with the S9 element and co-

rotational formulation, with the intermediate config-

urations depicted upon each 20. The computations

with the S9 and S3 elements were performed using

increments of 10%. The analysis in ABAQUS was

done using the same meshes (for respective elements)

and it was set to use an automatic increment size with

the initial increment size of 10%. With the A-S8R

element ABAQUS performed 252 increments, but

aborted the analysis at the load level of 87.28% due to

convergence issues. The computation with A-S3

element was completed (100% of the load) and was

done in 314 increments. As representative results, the

displacements of the beam tip in the x- and y-direc-

tions are chosen and can be seen in Figs. 6 and 7,

respectively. All the results are in very good agree-

ment, with the given remark that A-S8R element failed

to complete the analysis with the used mesh.

It should also be emphasized that, for better

accuracy of the analysis, the size of deformation in

this case would also require to account for the change

in the thickness (the thinning in tension and the

thickening in compression) [42], which also gives rise

to the neutral surface shift during the deformation.

However, in this analysis the Poisson coefficient was

set to zero. But even if this was not the case, this effect

is neglected with all the used elements as well as in the

analytical solution that yielded the bending moment

required to produce the considered deformation.

Fig. 4 Geometry of the cantilever beam and loading

Fig. 5 Intermediate configurations at constant load increments

of 20%

Fig. 6 Displacement of the beam tip in the x-direction
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4.2 Pinched hemisphere

In the second case, a structure with a doubly curved

geometry is considered. It is a hemispherical shell with

an 18�-hole at the top, radius r ¼ 10m and thickness

h ¼ 0:04m, Fig. 8. The Young’s modulus of the

material is taken to be E ¼ 6:825� 1010 N/m2 and the

Poisson ratio m ¼ 0:3. The structure is exposed to two

pairs of concentrated forces acting on the bottom edge

of the shell. The magnitude of each of the forces is

150 kN. The pair of forces that is symmetric with

respect to the yz-plane acts so as to stretch the

hemisphere along the x-axis, while the pair symmetric

with respect to the xz-plane compresses it along the

y-axis.

The double symmetry allows modeling of only a

quarter of the hemisphere with the adequate kinemat-

ical boundary conditions applied (Fig. 9, left). In order

to capture the local rotations appropriately, finer

meshes were needed. After convergence analysis, the

results obtained with the FE mesh containing 400

(20� 20) quadrilateral elements (Fig. 10, left) and the

FE mesh containing 800 triangular elements (Fig. 9,

right) were taken as representative.

For a better insight into the size of deformation the

structure is exposed to, Fig. 10 depicts the original and

deformed configurations at the full load from different

perspectives and without scaling, i.e. the scale factor

equals 1.

The diagrams in Figs. 11 and 12 show the

development of the displacements of points A and B

Fig. 7 Displacement of the beam tip in the y-direction

Fig. 8 Pinched hemisphere geometry and loads

Fig. 9 Pinched hemisphere—FEM mesh with quadrilateral

(left) and triangular (right) elements

Fig. 10 Initial and deformed hemisphere (scale factor equals 1)
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(Fig. 9) along the x- and y-axes, respectively, with the

increasing load. A good agreement of the results by all

four elements can be noticed. It was important in this

case to use a sufficiently fine mesh so that the local

rigid-body rotations are adequately captured in the co-

rotational formulation. Whereas in the first considered

case the element rigid-body rotation was practically

around one axis, the overall displacement field in this

case is more complex.

5 Aspect of efficiency

In various applications that involve interactive simu-

lation, the simulation speed is the primary aspect. A

distinctive example of such an application is a surgical

simulator, e.g. for the laparoscopic surgery. Due to the

high level of complexity of this type of surgery,

surgeons frequently emphasize their wish for high-

quality VR-based simulators for the purpose of

training. Obviously, the real-time requirement has

the highest priority in such an application, while the

accuracy requirement is not defined in terms of

numbers and may be violated as long as the on-screen

behavior appears realistic to human perception.

Though in many commercially available devices this

is achieved bymeans of the simplest approach, namely

the mass-spring systems, the presented co-rotational

FEM formulation represents a more sophisticated

alternative.

Beside the formalism used for the computation of

deformable body behavior, there are some further

computational parameters that play a very important

role with respect to the defined objective. They are not

in the very focus of this paper, but need to be addressed

briefly for adequate comprehension of the results

given below.

The FE mesh plays an important role in every FEM

analysis. In typical engineering FE analyses it needs to

be set with very special care. However, if the required

minimum accuracy is defined as plausible behavior,

then the idea of coupled meshes can be applied.

Namely, a relatively fine mesh of surface vertices can

be used to represent the actual object geometry in

sufficient detail, while a relatively rough FE mesh can

be used for the computation. The surface vertices are

connected into triangles to give a triangulated surface

representation, see Fig. 13, right. The two meshes are

coupled to each other based on the local element

coordinates of the surface vertices with respect to the

finite elements. A vertex that is inside an element is

assigned to that element. Upon deformation the global

vertex coordinates are recovered based on its element

local coordinates and global position of the element

nodes. Hence, the FE mesh does not have to fit the

actual geometry, but can instead only resemble the

actual geometry with more (Fig. 14b) or less precision

(Fig. 14c). In this manner the computational burden

can be adjusted to the available hardware and other

simulation parameters and requirements.

Time integration, solver type and time-step size are

important aspects in dynamic FE computations.

Whereas the explicit time-integration schemes are

Fig. 11 Displacement of point A in the x-direction

Fig. 12 Displacement of point B in the y-direction

Fig. 13 Liver model geometry: 2598 vertices and 5192 faces
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very efficient in computing a single time-step, pro-

vided a lumped mass and damping matrix is used, the

time-step size is on the other hand severely limited due

to the conditional stability. Therefore, the explicit

integration schemes are used for highly nonlinear (no

iterations) and fast dynamics problems. In an interac-

tive simulation, the dynamics that is visible to the

human eye is of interest, i.e. relatively slow dynamics.

This fact permits to simply filter high frequency

dynamics out, which is effectively done by using

sufficiently large time-steps. This talks in favor of an

implicit time integration with a time-step that is

sufficiently large not only to compensate for the larger

numerical effort per time-step, but also to provide

better overall numerical efficiency compared to

explicit time-integration. An implicit time-integration

scheme keeps the system of equations coupled [17]:

MtþDt €uþ tCtþDt _uðkÞ þ tKtþDtDuðkÞ

¼tþDt Fext �tþDt F
ðk�1Þ
int

ð10Þ

whereK andC are the structural stiffness and damping

matrices, respectively, u are the nodal displacements,

dots above u denote the time derivatives, i.e. velocities

(one dot) and accelerations (two dots), D denotes the

increment, while Fext and Fint are the nodal external

and internal forces, respectively. The implicit time-

integration of a nonlinear problem demands iterations

and (k) in the right superscript denotes the iteration

number. In each iteration, the linearized system of

equations can be resolved by a direct or iterative

solver. An iterative solver, such as the method of

preconditioned conjugate gradients (PCG), is an

interesting choice due to several reasons. In dynamics,

particularly relatively slow dynamics, the velocities do

not change dramatically within a time-step and, hence,

a good choice of the starting vector is already

available, thus reducing the number of iterations

notably. A further reason would be the fact that a

trade-off between the numerical efficiency and accu-

racy can be performed easily by limiting the number of

iterations, and this can even be done dynamically,

during a simulation. Finally, the PCG solver has a

great parallelization potential.

Interactive simulations of three solid test

objects/models are considered below to provide an

insight into the aspect of efficiency by means of the

presented formulation in combination with the linear

tetrahedral element and the PCG solver. The time step

of 0:01 s is used. The simulation is set so that 4

configurations are computed before the current con-

figuration is shown on the screen, which implies that

25 frames per second would correspond to the real-

time computation (25� 4� 0:01 ¼ 1). The test

objects, i.e. models used in the interactive simulations

are:

– a torus-like model, FE mesh: 2487 elements, 1956

degrees of freedom (DOFs), see Fig. 15a;

– a spleen model, FE mesh: 2226 elements, 1656

DOFs, the geometric model: 962 vertices, 1920

faces, see Fig. 15b;

Fig. 14 a Geometric liver model with two FE meshes: b FE

mesh A (846 nodes, 2945 elements), c FE mesh B (660 nodes,

2640 elements)
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– the liver model depicted in Figs. 13 and 14, with

the finer FE mesh (Fig. 14b): 2945 elements, 2538

DOFs; the geometric model: 2598 vertices, 5192

faces, see Fig. 15c.

Obviously, the latter two models are motivated by a

possible application in the field of surgical simulation

and they make use of the coupled mesh technique. The

spleen model uses a uniform FE mesh that only

roughly resembles the geometric model, while for the

liver model the adaptive FE mesh A depicted in

Fig. 14b is used. This analysis represents an extension

of a similar analysis given in [28], in which only

uniform meshes together with older hardware config-

urations were considered. Figure 16 gives several

screen-shots from the interactive simulations with the

aforementioned models demonstrating the ability of

the co-rotational FEM to cover large displacements

and rotations producing plausible behavior. Based on

the accuracy demonstrated in the previous section,

plausible behavior is expectable, but one should also

have in mind that the coupled mesh technique is

applied in the later two examples.

The same settings are used for an interactive

simulation of two shell models, both meshed using

the S3 element:

– an annular slit plate, with one side of the slit

clamped and the other one free, meshed by 234

elements, 960 DOFs, see Fig. 17a;

– the hemisphere from Sect. 4.2 with the edge of the

18-hole clamped, meshed by 1040 elements, 3432

DOFs, see Fig. 17b.

Proceeding in the similar way as with the solid

structures, Fig. 18 gives several screen-shots from the

interactive simulations with the considered shell

structures involving rather large deformations com-

puted by the presented co-rotational formulation. The

results regarding the simulation speed are summarized

in Tables 1 and 2 for different hardware configura-

tions. Three hardware configurations have been used,

all of which can be described as conventional personal

computers. Information on the CPU and GPU in each

configuration is given as those are the components

with the main impact onto the simulation efficiency.

The considered hardware configurations involve mul-

ti-core CPUs, but only one core is used for the

computation, i.e. parallelization is not used. The main

results in the tables are ratio and the number of frames

per seconds (F/s). Ratio denotes the ratio between the

clock pace of the simulation and the real time needed

for the simulation. If its value is greater than 1 it means

the simulation time runs at a pace faster than real time,
Fig. 15 Models for interactive simulations: a torus-like

structure, b spleen and c liver

Fig. 16 Screen-shots from an interactive simulation: a torus

model, b spleen model; c liver model

Fig. 17 Shell models for interactive simulations: a slit annular

plate and b hemisphere with 18-hole

Fig. 18 Screen-shots from an interactive simulation: a slit

annular plate; b hemisphere with the 18-hole
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and vice versa. Obviously, with the chosen time-step

and computing 4 time-steps before the screen is

refreshed, the simulation with all considered models

can run on each of the used hardware configurations at

a pace faster than real time or quite close to real time

6 Conclusions

VR- and AR-based environments call for adequate

solutions for the background physics of deformable

objects in the framework of interactive simulations

that are supposed to run at the same speed as a real

clock or somewhat slower but without a delay that

would affect the aimed functionality. The essence of

the presented solution is the simplified co-rotational

FEM formulation. The implemented simplifications

obviously make the formulation unsuitable for certain

analysis types, such as buckling analysis. It was shown

that, despite the simplification implemented in the

formulation, it can cover the geometric nonlinearities

to a significant extent with accuracy that can be

acceptable in certain fields of applications. The

examples with the shell elements were focused on

this aspect. But it should be emphasized that the

achievable accuracy strongly depends on the character

of geometrically nonlinear behavior. If it is dominated

by large local rigid-body rotations whereby strains and

stress stiffening effects remain small, then the pre-

sented formulation, which keeps the element elastic

behavior linear with respect to the co-rotational

reference frame, is expected to yield good accuracy.

The prerequisite for this is adequate FE meshing as the

rigid-body rotation is accounted for element-wise.

This implies that the areas characterized by substantial

gradients of rigid-body rotation upon deformation

require finer meshing (of course, standard criteria for

FE meshing apply as well).

It was shown that FEmodels with several thousands

elements may run in real-time with conventional

hardware configurations. Some of the hardware con-

figurations used in the tests contain components that

could even be described as outdated. Shell elements

are obviously more demanding as they employ both

Table 1 Simulation pace

of different hardware

configurations with solid

models

Hardware configuration: processor graphic card Sets

Parameter Torus Spleen Liver

Elements 2487 2226 2945

DOFs 1956 1656 2538

Vertices – 962 2598

Faces – 1920 5192

Intel E8500 (3.16 GHz) NVidia 740 GT Ratio 1.29 1.51 1.18

F/s 32 38 30

Intel i7-870 (2.93 GHz) NVidia 650GTX Ratio 1.56 1.82 1.43

F/s 39 45 36

Intel i3-2120 (3.3 GHz) NVidia 750 GTX Ratio 1.75 2.05 1.62

F/s 44 51 41

Table 2 Simulation pace

of different hardware

configurations with shell

models

Hardware configuration: processor graphic card Sets

Parameter Slit plate Sphere

Elements 234 1040

DOFs 960 3432

Intel E8500 (3.16 GHz) NVidia 740 GT Ratio 3.05 0.92

F/s 76 23

Intel i7-870 (2.93 GHz) NVidia 650 GTX Ratio 3.69 1.11

F/s 92 28

Intel i3-2120 (3.3 GHz) NVidia 750GTX Ratio 4.14 1.25

F/s 103 31
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nodal translations and rotations, whereby handling the

latter is numerically more expensive. A suitable solu-

tion may be sought in solid-shell elements [43] that use

only translations as nodal degrees of freedom. Cer-

tainly, the mentioned FE model sizes can be described

as modest compared to the FE models used in typical

engineering tasks, but the objectives of engineering FE

models and performed simulations are also substan-

tially different. In addition, the formulation can be

enriched by the coupled mesh technique, which

together with the adequate choice of the integration

scheme (time-step size) and solver provides vast

options for the trade-off between the numerical effort

and accuracy.

As examples suggest, the approach can be applied

for the purpose of surgical simulation. If the real-time

requirement is not strict, i.e. if it is relaxed to, say,

numerically very efficient then the approach may also

find its application in MBS dynamics for flexible

bodies experiencing geometrically nonlinear defor-

mation with respect to the floating reference frame.

This would eliminate the need to superpose the large

rigid-body motion with the deformational motion, as

the former is readily incorporated into the co-rota-

tional FEM. Finally, considering the computational

power of commercially available hardware compo-

nents (personal computers meant here), the approach

may represent a well-balanced alternative to the

available solutions for the current needs of interactive

simulations. Beside the considerations related to

shells, further work should also tackle the challenges

of implementing efficient solutions for material non-

linearities, contact and tear and adequate estimation of

the average element rigid-body rotation.
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